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Coupling theory of quasinormal modes for lossy and dispersive plasmonic nanoresonators
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A quasinormal mode (QNM) coupling theory is proposed for a system of coupled resonators. The theory
is generally applicable to systems with energy loss and arbitrary frequency dispersion of permittivity such
as plasmonic nanoresonators. The QNM coupling coefficients in the theory are obtained with first-principle
calculations without fitting the full-wave numerical results or experimental data. The theory is built up based on
the Green’s-function formalism, which shows that the coupling between resonators originates from the mutual
excitation of scattered field of each resonator. With the theory, the source-excited scattered field or the source-free
QNMs of the coupled system can be obtained as an expansion in terms of QNMs of each individual resonator in
the system. The theory provides an intuitive physical picture and also shows superior computational efficiency
compared with the full-wave numerical method if the scattered field of each resonator in the system can be
expanded with a small set of QNMs. The theory is tested against full-wave numerical method and is used to
design metallic nanoantennas with a broadband enhancement of the spontaneous emission rate.
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I. INTRODUCTION

Owing to the support of localized surface plasmon reso-
nance (LSPR), metallic nanoresonators (MNRs) can confine
the electromagnetic field within a deep subwavelength region
far beyond the diffraction limit [1]. Based on the property,
MNRs have been intensively studied and widely applied in
various fields such as spontaneous emission enhancement [2],
single-molecule sensing [3,4], photodetector [5], heat transfer
enhancement [6], super-resolution imaging [7], and nanolaser
[8,9]. With coupled MNRs, some interesting physical proper-
ties are found. For example, the nanogap between two MNRs
can support the gap surface plasmon polariton, which allows
energy to be concentrated in the nanogap and thus further
enhances the electromagnetic field and the spontaneous emis-
sion rate [10]. Broadband enhancement of electromagnetic
field [11,12] can be achieved in coupled MNRs due to the
support of multiple resonant modes. Directional far-field ra-
diation can be realized with coupled MNRs [13] based on
the constructive interference of the scattered fields of each
MNR. Thanks to these properties, coupled MNRs possess
superior performance than a single MNR, in terms of en-
hanced Raman-scattering spectroscopy [14], single-molecule
fluorescence enhancement [15,16], nonlinear response en-
hancement [17,18], etc. Different from single MNR, the res-
onance frequencies and spectral response shape of coupled
MNRs depend on not only the shape, size, and material of
MNRs, but also the number and spacing of MNRs. Based
on the dependence of the scattering spectrum of the coupled
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MNRs on the MNRs’ spacing, a plasmon ruler is proposed to
measure the length of labeled biomolecules [19,20]. With the
dependence of the scattering spectrum of the coupled MNRs
on the number of MNRs, plasmonic imaging is achieved to ex-
amine the spatial distribution of labeled biomolecules [21,22].
In addition, a metamaterial composed of coupled MNRs can
realize plasmon-induced transparency [23,24] based on the
coupling between bright and dark modes. Due to the existence
of absorption and radiation loss, coupled MNRs are typical
non-Hermitian systems and thus can support an exceptional
point [25–27].

By considering the coupling between resonant modes or
waveguide modes of a system, mode coupling theory can
provide an intuitive physical picture to effectively guide the
design of devices and can reduce the computational amount
[28–31]. Therefore, it has attracted great attention of re-
searchers. For lossless coupled MNRs consisting of spher-
ical MNRs, the dependence of the resonance frequency of
the system on the coupling between the plasmon modes of
each MNR is analyzed based on a plasmon hybridization
model [32–34]. For coupled MNRs consisting of arbitrarily
shaped MNRs, the dependence of the scattered field of cou-
pled MNRs on the coupling between MNRs is analyzed by
building up a coupling theory based on the boundary ele-
ment method under the electrostatic approximation [35]. For
lossless coupled MNRs whose permittivity is described by a
single-pole Lorentz model, a coupled-mode theory [29,36,37]
is established by considering the coupling between a sin-
gle resonant mode of each MNR under a generalized tight-
binding approximation. By treating the loss and permittivity
dispersion as perturbations, the classical time-domain coupled
mode theory (TCMT) can be derived from a consideration of
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the power distribution in the coupled system [28,38,39]. The
classical TCMT is sometimes used as a phenomenological
theory, where the model parameters are obtained by fitting
full-wave numerical results or experimental data [27,40,41].

For an open system with absorption or scattering loss,
its supported resonant mode is a quasinormal mode (QNM)
with a complex resonance/eigen frequency [42–47]. For a
lossless closed system, QNM becomes normal mode with a
real resonance frequency [46,47]. The LSPR supported by
MNRs can be rigorously defined as the QNM [48]. Based
on the QNM expansion formalism, TCMT for the coupling
between QNMs of a single photonic crystal resonator and
waveguide modes of photonic crystal waveguides is built up,
where the material permittivity is nondispersive [49]. For a
dispersive and lossy system composed of a single resonant
cavity and multiple ports, a QNM expansion of the scattering
matrix is obtained by building up a coupled-mode theory [31].
Based on a direct expansion-projection procedure upon the
basis of QNMs of single resonators, a coupling theory for
the QNMs of two nondispersive coupled resonators is estab-
lished [50]. Recently, the coupling theories for the QNMs
of lossy and dispersive coupled resonators immersed in a
homogeneous background medium are proposed by using the
QNM expansion formalism and a multiple scattering picture
[51,52]. For coupled MNRs, the finite loss of metal needs to
be considered [53,54], and the permittivity of metal can be
modeled with functions that are more complex than the single-
pole Lorentz model, such as the multiple-pole Lorentz model
[55] and the fractional function with multipoles [56,57]. For
coupled MNRs with finite energy loss and arbitrary frequency
dispersion of permittivity, a rigorous coupled-mode theory of
QNMs based on the first principles of Maxwell’s equations
has not been established yet.

In addition to the coupling theories of QNMs (with an
eigenfrequency), the coupling theories of the generalized nor-
mal modes (with an eigenpermittivity) have been established
for lossy and dispersive coupled systems [58–60] with a
homogeneous distribution of permittivity inside each isolated
scatterer and in the background. The expansion of the source-
excited field in terms of the generalized normal modes is ana-
lytic with respect to the scatterer permittivity [61]. In contrast,
the expansion of the source-excited field in terms of the QNMs
is analytic with respect to the excitation frequency [47,62–66].
This frequency analyticity is important for many applications,
such as for calculating the spectral and the temporal response
of the system [65], for calculating the nonlinear response [67],
and for the quantization of electromagnetic field in lossy and
dispersive resonators [68].

In this paper, a general and rigorous QNM coupling theory
based on the first principles of Maxwell’s equations is pro-
posed for coupled MNRs. Compared with the existing mode
coupling theory, the main advantage of our theory is that it is
generally applicable to coupled-MNR systems with loss and
arbitrary frequency dispersion of permittivity, and the QNM
coupling coefficients in the theory are calculated based on the
first principles, without fitting the full wave numerical results
or experimental data.

First, for a general coupled-MNR system, we analyze the
coupling mechanism based on the Green’s-function formalism
and find that the scattered field of the coupled MNRs can be

obtained as the superposition of the scattered fields of each
individual MNR in the system. For the scattered field of each
individual MNR, the corresponding incident field consists of
two parts, one part is the background field excited by an ex-
ternal source, and the other part is the scattered field from the
other MNRs. Based on this physical picture and by expressing
the scattered field of each individual MNR with the QNM
expansion formalism [47,62,63], we then build up a QNM
coupling theory to describe the mutual coupling between the
QNMs of each MNR in the coupled-MNR system. With the
proposed QNM coupling theory, the scattered field of the
coupled MNRs can be solved analytically when the external
source and the QNMs of each MNR are known. Therefore,
compared with the full-wave numerical method, the proposed
theory is physically intuitive and also has higher computa-
tional efficiency for repeated calculations when changing the
source frequency, the MNR number, and the relative posi-
tion between MNRs. Furthermore, by removing the external
source, the QNMs supported by the coupled MNRs can be
obtained as a superposition of the QNMs supported by each
MNR. The validity of the theory is tested against full-wave
numerical results. With the theory, several coupled-MNR
structures are designed to achieve a broadband enhancement
of the spontaneous emission rate.

This paper is organized as follows. In Sec. II, the existing
QNM expansion formalism is briefly reviewed. In Sec. III, the
QNM coupling theory is introduced. In Sec. IV, the theory
is tested against full-wave numerical results and is used to
design coupled-MNR devices. Conclusions are summarized
in Sec. V.

II. A BRIEF REVIEW OF THE QNM-EXPANSION
FORMALISM

As a preparation for deriving the QNM coupling theory
in the next section, here we provide a brief review of the
QNM expansion formalism [47,62–66]. The QNMs are the
eigensolutions of the source-free Maxwell’s equations,

∇ × Ẽm = iω̃mμ(r, ω̃m) · H̃m,

∇ × H̃m = −iω̃mε(r, ω̃m) · Ẽm (1)

and satisfy the outgoing-wave condition at infinity. In Eq. (1),
ε and μ represent the permittivity and permeability tensors,
respectively, and the temporal dependence exp(−iω̃mt ) of the
field is assumed. The international system of units (SI) is
adopted for the formula in this paper. Due to the energy loss of
the system, the QNM lifetime τm takes a finite value. There-
fore, the resonance frequency ω̃m takes a complex value, and
its imaginary part Im(ω̃m) = −1/(2τm) represents the energy
loss. Then the imaginary part of the wave number k = ω̃m/c
(c being the speed of light in vacuum) in free space takes
a negative value because of Im(ω̃m) < 0. Thus, the QNM
field �̃m(r) = [Ẽm, H̃m] diverges in the form of exp(ikr)/r
(r being the distance to the scatterer) at infinity in the free
space [47]. The quality factor of the QNM is defined as
[47] Qm = Re(ω̃m)/[−2Im(ω̃m)], which represents the num-
ber of cycles of the light field oscillation within the mode
lifetime τm.
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In the presence of an excitation source, the electromagnetic
field �(r, ω) = [E, H] of the system satisfies the frequency-
domain Maxwell’s equations,

∇ × E = iωμ(r, ω) · H,

∇ × H = −iωε(r, ω) · E + J(r, ω), (2)

where J represents the electric current source with a real
angular frequency ω. By assuming that the QNMs of the
system form a complete set of basis [45,57,63,65], the �(r, ω)
can then be expressed as a linear combination of a series of
QNMs,

�(r, ω) ≈
M∑

m=1

αm(ω)�̃m(r), (3)

where the approximate equality becomes equality for M →
∞. According to the QNM-expansion formalism and for
reciprocal medium (εT = ε,μT = μ, with the superscript
denoting the tensor transposition), the expansion coefficient
αm(ω) can be expressed as [62–64,66]

αm(ω) =
∫∫∫

R3 J(r, ω) · Ẽm(r)d3r

i(ω − ω̃m)Fm
, (4)

with

Fm =
∫∫∫

R3

×
{

Ẽm·∂[ωε(ω)]

∂ω
·Ẽm − H̃m · ∂[ωμ(ω)]

∂ω
·H̃m

}
ω=ω̃m

d3r,

(5)

the integral being performed over the whole space R3. If the
quality factor Qm of the mth-order QNM is of finite value, Fm

then takes a complex value, and its numerical calculation is
explained in Supplemental Material Sec. S1 [69]. For Qm →
∞, which requires the medium to be lossless, one can obtain
Ẽm = Ẽ∗

m and H̃m = −H̃∗
m. Then the QNM becomes normal

mode, and Fm takes a real value and can represent the elec-
tromagnetic energy of the normal mode [47,70]. Therefore,
if Qm takes a large value, |Fm| can be used to represent the
energy of the QNM in an approximate manner. Thus Fm is
called pseudoenergy in this paper.

Note that Eq. (4) is generally applicable to a system with
energy loss and arbitrary frequency dispersion of ε and μ.
For more details, for a system whose permittivity dispersion
can be modeled with the quite general N-pole Lorentz model,
the orthogonality of QNMs can be proved by introducing the
auxiliary fields and using the reciprocity theorem of uncon-
jugated form, and then the QNM expansion coefficient such
as Eq. (4) can be obtained [65,66]. It should be noted that
if different forms of auxiliary fields are used to express the
excitation source J, the corresponding expressions of QNM
expansion coefficient will be different, but the convergence
of the series (M → ∞) given by Eq. (3) can be always
guaranteed (although the convergence rate may be different)
[66]. Equation (4) adopted in this paper is just one of these
expressions of the QNM expansion coefficient. For a system
with an arbitrary frequency dispersion of medium, Eq. (4) can

be derived from the Green’s dyadic obtained via the Mittag-
Leffler theorem [62] or the Keldyš theorem [63].

For the scattering problem, we assume that the total field
excited by the current source satisfies Eq. (2), and consider the
nonmagnetic medium (μ = μ0). The background field �b =
[Eb, Hb] excited by J(r, ω) is defined to satisfy ∇ × Eb =
iωμ0Hb, ∇ × Hb = −iωεb · Eb + J, where εb is the permit-
tivity tensor of the background medium in the absence of any
scatterer. Thus, the scattered field �s = � − �b satisfies the
Maxwell’s equations,

∇ × Es = iωμ0Hs, ∇ × Hs = −iωε · Es − iω�ε · Eb,

(6)
where �ε(r, ω) = ε(r, ω) − εb(r, ω) is defined as the per-
mittivity change of the scatterer. Equation (6) shows that the
scattered field can be regarded as the field radiated by an
equivalent current source −iω�ε(r, ω) · Eb in the presence of
the scatterer. Therefore, similar to Eq. (3), the scattered field
�s can be expanded upon the basis of QNMs [Eq. (1)] of the
system in the presence of the scatterer,

�s(r, ω) ≈
M∑

m=1

αm(ω)�̃m(r), (7)

with [66,71]

αm(ω) = −ω
∫∫∫

R3 Ẽm(r) · �ε(r, ω) · Eb(r)d3r

(ω − ω̃m)Fm
. (8)

In the following, we will provide a brief description on the
numerical implementation of the QNM-expansion formalism.
First, we need to numerically calculate the QNM electro-
magnetic fields �̃m and eigenfrequencies ω̃m. For dispersive
media, there are mainly two kinds of methods [47,72]. One
is to transform the nonlinear eigenvalue problem of Eq. (1)
into a linear eigenvalue problem or a polynomial eigenvalue
problem by introducing the auxiliary fields [65,73,74]. An-
other method is the pole-search approach which is based
on the fact that the resonance frequency ω̃m is the com-
plex frequency pole of the source-excited electromagnetic
field [i.e., �(r, ω̃m) → ∞ according to Eqs. (3) and (4)].
For example, ω̃m can be solved with some iterative algo-
rithms such as the linear interpolation iterative algorithm
[75]. Or based on the residue theorem, all complex fre-
quency poles within a contour can be found by calculat-
ing a contour integral and solving a set of nonlinear equa-
tions [76]. The ω̃m can be also obtained by calculating the
complex frequency poles of the scattering matrix [77,78].
In this paper, we adopt the linear interpolation iterative
algorithm [75].

Since the resonance frequency takes a complex value,
an analytical continuation of the relative permittivity in
the complex frequency plane is required. For example, the
frequency-dependent function of the relative permittivity
can be obtained based on a microscopic description of the
charge motion, which is called Lorentz model (its special case
being the Drude model) [55]. In this paper, the Drude model
of εr (ω) = ε∞ − ω2

0/(ω
2 + iωγ ) is adopted for numerical

calculation. The model parameters are obtained by fitting the
experimental data [79] from visible to far-infrared band to

045430-3



TAO, ZHU, ZHONG, AND LIU PHYSICAL REVIEW B 102, 045430 (2020)

FIG. 1. (a) A gold single-wire nanoantenna (side length D =
40 nm for the rectangular cross section, length L = 247 nm) is
excited by a z-polarized point current source (red point). The point
source is away from the antenna end surface by h = 10 nm, and its
projection on the antenna end surface is located at the center of the
surface (this is assumed throughout the paper). (b) A dipole antenna
consisting of two gold nanowires [with the same parameters as in (a)]
is excited by a z-polarized point source (red point). The width of the
nanogap between the two nanowires is d = 100 nm. (c) Spectrum of
the total spontaneous emission rate 	total of the point source near the
single-wire antenna (blue curves) and dipole antenna (red curves),
where ω/(2πc) = 1/λ with λ being the wavelength. The circles and
solid curves represent the full-wave a-FMM results and the QNM
expansion formalism predictions, respectively.

be ε∞ = 8.842, 2πc/ω0 = 0.164 μm and 2πc/γ =
20.689 μm. However, note that our theory to be proposed in
next section is not limited to the Drude model but is generally
applicable to an arbitrary frequency dispersion of permittivity.

With the QNMs obtained, then Eqs. (4) and (8) are used
to calculate the QNM expansion coefficients of the radiation
field and the scattered field, respectively. Finally, the radiation
field and scattered field are obtained by using Eqs. (3) and (7),
respectively, where the number M of QNMs takes a value that
is large enough to meet the requirement of accuracy.

In the following, we will provide a numerical test of
the afore-reviewed QNM expansion formalism. As shown in
Fig. 1, we take the emission problem of metallic nanoan-
tennas as an example. The MNR as sketched in Fig. 1(a)
is a single gold nanowire, and all structural parameters are
provided in the caption of the figure. Figure 1(b) shows a
dipole antenna [5,10,80] whose two arms are just the nanowire
shown in Fig. 1(a), and the spacing between the two arms
is d = 100 nm. A z-polarized point electric current source is
used to represent a fluorescent molecule or quantum dot. The
point source can be expressed as J(r) = δ(r − r0)z, with δ

the Dirac delta function, r0 the position vector of the point
source (as specified in Fig. 1), and z the unit vector along
the z direction. The ratio of the spontaneous emission rate of
the point source modified by the antenna to that of the point
source in free space is equal to the ratio of the corresponding
radiated powers [81]. Therefore, in the following text the
spontaneous emission rate just refers to the radiated power
and they are no longer distinguished for the sake of simplicity.
The total spontaneous emission rate of the point source can
be expressed as 	total = −Re[Ez(r0)]/2, where Re[Ez(r0)]
means the real part of the z component of the electric-field

FIG. 2. Electric-field distribution [in the plane y = 0, the coordi-
nate system being shown in Fig. 1(a)] of the dipolelike QNM [with a
complex resonance frequency ω̃0/(2πc) = 0.8842 − 0.0477i μm−1]
supported by the single-wire antenna shown in Fig. 1(a). Unless oth-
erwise specified, the QNM fields shown in this paper always satisfy
the normalization of Ez(0, 0, 0) = 1. (a) Distribution of the modulus
of the x component |Ex| (left) and z component |Ez| (right) of the
electric field. (b) Distribution of the real part of the x component
Re(Ex ) (left) and z component Re(Ez ) (right) of the electric field.
The superimposed dotted lines in the figure represent the antenna
boundaries.

vector at the source position. To characterize the enhancement
of the spontaneous emission rate, a Purcell factor is defined as
	total/	air [82,83], where 	air = η0k2

0na/(12π ) is the sponta-
neous emission rate of the point source in air, na = 1 being
the air refractive index, η0 and k0 = 2π/λ being the wave
impedance and wave number in vacuum, respectively.

As shown in Fig. 1(c), the spectrum of 	total/	air is calcu-
lated with the QNM expansion formalism of Eqs. (3) and (4)
(solid curves) and a full-wave aperiodic Fourier modal method
(a-FMM) [84,85] (circles), respectively. For the single-wire
antenna, we only consider one QNM with the highest Q
factor [with a complex resonance frequency ω̃0/(2πc) =
0.8842 − 0.0477i μm−1] within the spectrum range of in-
terest to expand the electromagnetic field excited by the
point source. The field distribution of this QNM is shown in
Fig. 2. For the dipole antenna, we consider two QNMs with
the highest Q factors [with complex resonance frequencies
ω̃1/(2πc) = 0.8495 − 0.0697i μm−1, ω̃2/(2πc) = 0.9142 −
0.0274i μm−1] to expand the electromagnetic field. Figure
1(c) shows that the predictions by the QNM expansion formal-
ism are consistent well with the a-FMM calculation results,
which confirms the validity and the high accuracy of the
former. It can be seen that, for the dipole antenna composed
of two coupled nanowires, there are two resonance peaks in
the spectrum of 	total, whose corresponding frequencies are
the real parts of ω̃1 and ω̃2. However, for the single-wire
antenna, there is only one resonance peak in the spectrum,
whose frequency is the real part of ω̃0.

For arbitrary resonant structures with material dispersion
and loss, the QNM expansion formalism can enable an
analysis of the frequency response of the system from the
perspective of eigenmodes with an intuitive physical picture.
In addition, once the QNMs of the structure are solved, the
QNM expansion formalism can provide the source-excited
field that is analytical with respect to the frequency, polar-
ization and spatial distribution of the excitation source [see
Eq. (4)]. Therefore, it is not necessary to repeatedly solve
the Maxwell’s equations when scanning the parameters of the
excitation source, so that the computational amount can be
greatly reduced [for the calculation in Fig. 1(c), for instance].
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However, in the QNM expansion formalism, the determi-
nation of the QNMs of the system still requires a numer-
ical solution of Maxwell’s equations. Therefore, when the
coupled-MNRs’ structural parameters (such as the number
and relative positions of MNRs) are changed, a repetition
of solving Maxwell’s equations is needed to obtain QNMs
of the coupled MNRs, which will require a large amount of
computation. On the other hand, determining these structural
parameters is usually the key for the design of coupled-MNR
devices [17,20,23,25,80]. Besides, a numerical solution of the
QNMs of the coupled MNRs cannot clarify the mechanism of
the coupling between the MNRs, and thus is not conducive to
guiding the design of devices. In response to these problems,
in the following sections we will propose a general QNM
coupling theory for coupled-MNR systems with loss and
arbitrary frequency dispersion of the permittivity.

III. QNM COUPLING THEORY FOR A SYSTEM
OF COUPLED METALLIC NANORESONATORS

A. QNM coupling theory for the scattered field
of the coupled-MNR system

We first analyze the coupling mechanism in coupled-
MNRs based on the Green’s-function formalism. For this
purpose, Eq. (6) can be rewritten as

∇ × Es = iωμ0Hs,

∇ × Hs = −iωεb · Es − iω�ε · (Es + Eb), (9)

where the nonmagnetic medium (μ = μ0) is considered.
Equation (9) indicates that the scattered field of the system can
be also regarded as the field radiated by an equivalent current
source −iω�ε · (Es + Eb) in the absence of the scatterers of
MNRs [which is different from Eq. (6)]. The Green’s-function
tensor G(r, r′; ω) in the absence of the scatterers of MNRs is
defined to satisfy

∇ × ∇ × G − ω2μ0εb · G = iωμ0Iδ(r − r′), (10)

with I denoting the unit tensor. Thus, the electric-field vector
of the scattered field can be expressed as [86]

Es(r, ω) = −iω
∫∫∫

R3
G(r, r′; ω) · �ε(r′, ω)

·[Es(r′, ω) + Eb(r′, ω)]d3r′. (11)

Equation (11) forms an integral equation with the Es as the
unknown. For an open system, Es satisfies the outgoing-wave
condition at infinity, and can be uniquely determined with
Eq. (11).

As shown in Fig. 3, a coupled-MNR system composed
of P arbitrary MNRs is considered, where εp represents the
permittivity distribution in the presence of the pth MNR,
and εb represents the permittivity distribution of the back-
ground medium in the absence of the scatterers of the MNRs.
The scatterer permittivity change can be expressed as �ε =∑P

p=1 �εp, where �εp = εp − εb (�εp = 0 outside the pth
MNR) is the permittivity change of the pth MNR. By substi-

FIG. 3. Schematic diagram of the coupled-MNR system studied
in this paper. The system is composed of P MNRs of arbitrary shape
and material (P = 3 in the figure). The permittivity distribution of
the background medium is denoted by εb, and that of the pth MNR
is denoted by εp(p = 1, 2, . . . , P).

tuting the expression of �ε into Eq. (11), Es can be expressed
as

Es(r, ω) =
P∑

p=1

Es
p(r, ω), (12)

with

Es
p(r, ω) = −iω

∫∫∫
R3

G(r, r′; ω) · �εp(r′, ω)

·
⎡
⎣Es

p(r′, ω) +
∑
q �=p

Es
q(r′, ω) + Eb(r′, ω)

⎤
⎦d3r′.

(13)

According to Eq. (12), the scattered field �s of the system
can be obtained as

�s(r, ω) =
P∑

p=1

�s
p(r, ω), (14)

with �s
p(r, ω) being the scattered field of the pth MNR.

Comparing Eqs. (11) and (13), one can find that �s
p is just

the field scattered by the pth MNR with
∑

q �=p Es
q(r, ω) +

Eb(r, ω) as the background field (i.e., incident field). This
indicates that the coupling between MNRs in the system
comes from the mutual excitation of the scattered field of
each MNR, which is essentially the multiple-scattering picture
used (but a demonstration of legitimacy not provided) in
[51,52,59]. Then the scattered field of the pth MNR given
by Eq. (13) can be expanded upon the basis of QNMs of
the pth MNR via the QNM expansion formalism introduced
in the previous section, so as to obtain the QNM coupling
equations as stated below. Therefore, the Green’s dyadic
considerations here provide a rigorous demonstration of the
multiple-scattering picture [Eqs. (12) and (13)], and provide a
logic connection between this multiple-scattering picture and
the QNM expansion formalism [Eqs. (6)–(8)].
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According to Eq. (7), �s
p can be expanded upon Mp (de-

pending on p) QNMs of the pth MNR,

�s
p(r, ω) =

Mp∑
m=1

αp,m(ω)�̃p,m(r), (15)

where the mth-order QNM field �̃p,m = [Ẽp,m, H̃p,m]
of the pth MNR satisfies the source-free Maxwell’s

equations,

∇ × Ẽp,m = iω̃p,mμ0H̃p,m,

∇ × H̃p,m = −iω̃p,mεp(r, ω̃p,m) · Ẽp,m.

According to Eq. (8), the QNM expansion coefficient αp,m

in Eq. (15) can be expressed as

αp,m(ω) =
−ω

∫∫∫
Vp

Ẽp,m(r) · �εp(r, ω) · [∑q �=p Es
q(r, ω) + Eb(r, ω)

]
d3r

(ω − ω̃p,m)Fp,m

=
−ω

∫∫∫
Vp

Ẽp,m(r) · �εp(r, ω) · [∑q �=p

∑Mq

n=1 αq,n(ω)Ẽq,n(r) + Eb(r, ω)
]
d3r

(ω − ω̃p,m)Fp,m
. (16)

In Eq. (16), Vp represents the region where the pth MNR is located, Fp,m is the pseudoenergy of the mth-order QNM of the
pth MNR expressed as

Fp,m =
∫∫∫

R3

{
Ẽp,m · ∂[ωεp(r, ω)]

∂ω

∣∣∣∣
ω=ω̃p,m

· Ẽp,m − μ0H̃p,m · H̃p,m

}
d3r,

and the second equality is obtained by using Eq. (15).
In the following, we will show that Eq. (16) can form a set

of linear inhomogeneous equations with the QNM expansion
coefficients αp,m as the unknowns. For this purpose, the QNM-
coupling coefficients are defined as

κ(p,m),(q,n)(ω)

= −ω

Fp,m

∫∫∫
Vp

Ẽp,m(r) · �εp(r, ω) · Ẽq,n(r)d3r, (17)

with p �= q. κ(p,m),(q,n) denotes the coefficient of the mth-order
QNM of the pth MNR excited by the nth-order QNM of the
qth MNR. It depends on the QNMs’ field distribution and
the relative position between the pth and the qth MNRs. The
QNM excitation coefficients are defined as

βp,m(ω) = −ω

Fp,m

∫∫∫
Ẽp,m(r) · �εp(r, ω) · Eb(r, ω)d3r,

(18)
which denotes the coefficient of the mth-order QNM of the
pth MNR excited by the background field Eb. Then Eq. (16)
can be rewritten as a set of linear inhomogeneous equations,

βp,m = (ω − ω̃p,m)αp,m −
∑
q �=p

Mq∑
n=1

κ(p,m),(q,n)αq,n

= ωαp,m −
P∑

q=1

Mq∑
n=1

[δp,qδm,nω̃p,m

+ (1 − δp,q)κ(p,m),(q,n)]αq,n, (19)

with δp,q and δm,n being the Kronecker delta. Equation (19)
can be rewritten in a concise matrix form,

[ωI − K(ω)]a = b(ω), (20)

where a is a column vector with the QNM expansion coef-
ficient αp,m as its (p, m)th element, the frequency-dependent

b(ω) is a column vector with the QNM excitation coefficient
βp,m as its (p, m)th element, and I represents the identity
matrix. The element of the (p, m)th row and (q, n)th column
of the frequency-dependent matrix K(ω) is the QNM coupling
coefficient κ(p,m),(q,n) for p �= q, and is δm,nω̃p,m for p = q.

Solving Eq. (20), one then obtains the QNM expansion
coefficients αp,m, for which the b and K are determined by
the given background field and the already solved QNMs of
each MNR in the coupled-MNR system. By substituting the
solved αp,m into Eqs. (15) and (14), the scattered field of the
system can be obtained. Therefore, a repetition of solving
Maxwell’s equations is not needed when changing the number
and the relative position of MNRs, or the frequency and
spatial distribution of the background field. In particular, if
the scattered field of a single MNR can be expanded upon
a small set of QNMs (which is often true such as for the
example in Fig. 1), the computational amount of calculating
the scattered field of the coupled-MNRs system can be greatly
reduced by using the present QNM coupling theory. Besides,
the present theory shows that the coupling between MNRs
originates from the mutual excitation of the scattered fields of
each MNR [see Eq. (13)], which provides an intuitive physical
picture for understanding the coupling mechanism of coupled
MNRs.

B. QNM coupling theory for the QNMs
of the coupled-MNR system

Here we use �̃r (r) to denote the field of the rth-order QNM
of the coupled-MNR system. By substituting Eq. (15) into
Eq. (14), �̃r (r) can then be expanded in terms of QNMs of
each MNR as

�̃r (r) = �̃T (r)a, (21)

where �̃T (r) is a row vector with �̃p,m(r) as its (p, m)th
element. For QNMs of the coupled MNRs, the background
field �b is absent. Thus, the QNM coupling Eq. (20) becomes
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a set of linear homogeneous equations after removing the
inhomogeneous term b,

[ωI − K(ω)]a = 0. (22)

The coefficient a is thus given by the nontrivial solution of
Eq. (22), whose existence requires

det[ωI − K(ω)] = 0. (23)

Equation (23) forms a transcendental equation of frequency
ω, and its solution is just the complex eigenfrequency ω = ω̃r

of the coupled-MNR system. Substituting the solved eigenfre-
quency ω = ω̃r into Eq. (22), one can then solve its nontrivial
solution a = ãr , whose (p, m)th element is denoted by α̃r,(p,m).

For a system with an arbitrary frequency dispersion of
permittivity, the transcendental Eq. (23) can be solved with
an iterative algorithm, such as the linear interpolation iterative
algorithm [75]. For an isotropic medium with a dispersive
permittivity described by an N-pole Drude-Lorentz model
[55], Eq. (22) can reduce to a polynomial matrix eigenvalue
problem. For example, for a system in which the background
medium is nondispersive and the relative permittivity of
MNRs is described by the Drude model, the permittivity
change of the pth MNR is

�εp(ω) = ε0
[
ε∞,p − ω2

0,p/(ω
2 + iωγp)

] − εb,

where ε∞,p, ω0,p, and γp are real-valued parameters of the
Drude model, and εb is the background permittivity. With
the �εp(ω) inserted into, Eq. (22) can then be rewritten as
a polynomial eigenvalue problem,

ω2C2a + ωC1a + C0a = 0. (24)

For p �= q, the element of the (p, m)th row and (q, n)th col-
umn of matrices C2, C1, and C0 are (ε0ε∞,p − εb)M(p,m),(q,n),
iγp(ε0ε∞,p − εb)M(p,m),(q,n), and −ε0ω

2
0,pM(p,m),(q,n), respec-

tively, with M(p,m),(q,n) = ∫∫∫
Vp

Ẽp,m(r) · Ẽq,n(r)d3r. For p =
q, the element of the (p, m)th row and (p, n)th column
of C2, C1, and C0 are δm,nFp,m, δm,n(iγp − ω̃p,m)Fp,m and
−iδm,nω̃p,mγpFp,m, respectively. Details on the derivation of
Eq. (24) are provided in Supplemental Material Sec. S2 [69].
Effective algorithms have been developed for solving the
polynomial eigenvalue problems such as Eq. (24) [87,88].

Compared with the classical temporal coupled-mode the-
ory (TCMT) [28,38], our theory has a more general applicabil-
ity and can provide a rigorous electromagnetic foundation for
the former, as explained below. Removing the inhomogeneous
term βp,m and performing a Fourier transformation of both
sides of Eq. (19), one then obtains the time-domain QNM
coupling equations,

i
dAp,m(t )

dt
= ω̃p,mAp,m(t )

+
∑
q �=p

Mq∑
n=1

Fω{κ(p,m),(q,n)(ω)}t ∗ Aq,n(t ), (25)

with

Ap,m(t ) = Fω{αp,m(ω)}t = 1

2π

∫ ∞

−∞
αp,m(ω) exp(−iωt )dω

being the QNM expansion coefficient in the time domain, and
� denoting the convolution. For the case of weak coupling,
the frequency shift �ω = ω − ω̃p,m (with ω = ω̃r) caused
by coupling will be small according to our theory. Then
the coupling coefficient κ(p,m),(q,n)(ω) ≈ κ(p,m),(q,n)(ω̃p,m) be-
comes approximately independent of the frequency ω since
κ(p,m)(q,n)(ω) is a slowly varying function of ω. Then there is

Fω{κ(p,m),(q,n)(ω)}t ∗ Aq,n(t ) ≈ κ(p,m),(q,n)(ω̃p,m)Aq,n(t ),

so that Eq. (25) reduces to the form of the classical TCMT.
In addition, for the classical TCMT, the electric field in the
integral expression of the coupling coefficient κ(p,m),(q,n) takes
a complex conjugate [e.g., Eq. (2.16) in Ref. [28]], which is
rigorously correct only for lossless media. Thus, the classical
TCMT is a special form of the present QNM coupling theory
for the case of weak coupling and low loss. In some cases,
TCMT is used as a phenomenological theory in which the
parameters (such as the coupling coefficient κ(p,m)(q,n)) are ob-
tained by fitting full-wave numerical results or experimental
data [27,40,41].

In Supplemental Material Sec. S3 [69], we provide a logic
crosscheck on the validity of our theory from the viewpoint
of the original Maxwell’s equations instead of the Green’s-
function formalism, which will show more details concerning
the relation between our theory and other theories as provided
in Supplemental Material Sec. S4 [69].

C. QNM coupling theory for the QNM expansion of the
scattered field of the coupled-MNR system

In this section, we will take the QNMs of the coupled
MNRs [given by Eqs. (21)–(23)] as a set of basis to expand the
scattered field of the coupled MNRs and build up the QNM
expansion theory of the coupled MNRs, so as to explicitly
show the impact of QNMs of the coupled-MNR system on
the resonance properties of the scattered field of the system.

For this purpose, the solution of the inhomogeneous
Eq. (20) can be expressed as

a = [ωI − K(ω)]∗b(ω)

det[ωI − K(ω)]
. (26)

Equation (26) can be obtained with the only assump-
tion that the matrix ωI − K(ω) is invertible, which yields
[ωI − K(ω)]−1 = [ωI−K(ω)]∗

det[ωI−K(ω)] with [ωI − K(ω)]∗ denoting
the adjugate matrix of ωI − K(ω). Equation (26) shows that
at the complex eigenfrequency ω = ω̃r of the QNMs of the
coupled MNRs, the coefficient a of QNMs of each MNR
tends to infinity in view of det[ω̃rI − K(ω̃r )] = 0, so that the
scattered field �s(r, ω) given by Eqs. (14) and (15) also tends
to infinity. Therefore, ω̃r is the complex frequency pole of
�s(r, ω). Then by assuming that �s(r, ω) is a meromorphic
function of ω, and is bounded as ω → ∞ in the complex plane
[the latter can be replaced by some more sophisticated and
exactly specified condition such as that before Eq. (7.20) in
[89]], and that ω̃r is the first-order pole of �s(r, ω) (i.e., there
is no QNM degenerate exceptional point [26,27]) with ω̃r �=
0, �s(r, ω) can be expressed via the complex pole expansion
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theorem (Mittag-Leffler theorem) [48,89,90] as

�s(r, ω) = �s(r, 0) +
∑

r

ω/ω̃r

ω − ω̃r
Pr (r). (27)

In Eq. (27), Pr (r) = limω→ω̃r [(ω − ω̃r )�s(r, ω)] is the
residue of �s(r, ω) at the complex pole ω̃r , and there is
�s(r, 0) = 0 in view that the scattering effect of the finite-size
resonator will vanish for an infinitely large wavelength. To
calculate Pr (r), one can substitute Eq. (26) into Eqs. (15) and
(14) so as to express �s(r, ω) in a matrix form,

�s(r, ω) = �̃T (r)[ωI − K(ω)]∗b(ω)

det[ωI − K(ω)]
, (28)

where �̃T (r) is the row vector defined in Eq. (21), with its
(p, m)th element being the mth-order QNM field �̃p,m(r) of
the pth MNR. With Eq. (28), one can obtain

Pr (r) = �̃T (r)[ω̃rI − K(ω̃r )]∗b(ω̃r )
∂ det[ωI−K(ω)]

∂ω
|ω=ω̃r

. (29)

Assuming that there is no QNM degeneracy, that is, there is
only one linearly independent solution for Eq. (22) at ω = ω̃r ,
one can obtain rank[ω̃rI − K(ω̃r )] = dim[ω̃rI − K(ω̃r )] − 1,

and rank{[ωrI − K(ωr )]∗} = 1, where dim means the dimen-
sion of a square matrix. Then [ωrI − K(ωr )]∗ can be ex-
pressed as [91]

[ω̃rI − K(ω̃r )]∗ = ãrcT
r , (30)

where cT
r is a row vector and ãr is the nontrivial solution of

Eq. (22). By successively substituting Eqs. (30) and (21) of
�̃r (r) = �̃T (r)ar into Eq. (29), and then substituting Eq. (29)
into Eq. (27), the scattered field �s(r, ω) can be finally
expanded in terms of QNM field �̃r (r) of the coupled MNRs,

�s(r, ω) =
∑

r

ω/ω̃r

ω − ω̃r

cT
r b(ω̃r )

∂ det[ωI−K(ω)]
∂ω

|ω=ω̃r

�̃r (r). (31)

Equation (31) explicitly provides the influence of QNMs of
the coupled-MNR system on the resonance properties of the
scattered field of the system, and the influence of the QNM
excitation coefficient βp,m, coupling coefficient κ(p,m),(q,n) and
complex eigenfrequency ω̃p,m of MNRs [see the definitions of
b and K in Eq. (20)] on the expansion coefficient upon the
basis of the QNMs of the coupled MNRs.

Another way to derive the source-excitation coefficient of
the hybridized QNM of the coupled-MNR system is to use
the QNM expansion formalism in Sec. II with the hybridized
QNMs as the expansion basis, as has been done in [52].
But this requires a normalization condition of the hybridized
QNM which has not been formally confirmed [52]. This
normalization condition is not required by Eq. (31), which
is due to the use of the Mittag-Leffler theorem to derive the
expansion of the source-excited field upon the basis of the hy-
bridized QNMs. But note that for Eq. (31), this normalization
condition [or equivalently, the calculation of the pseudoenergy
Fp,m defined in Eq. (16)] is still required for the QNMs of each
single MNR.

D. Special case of two coupled QNMs

To gain a more concrete understanding of the above theory,
in this section we will discuss a special case that frequently
appears in practice, where the coupled-MNR system consists
of two MNRs (referred to as an MNR dimer in this paper)
[15,17,80,92], and only one QNM is considered for each
MNR. It is assumed that the QNM considered for each MNR
has a high Q factor and plays a decisive role in the resonance
characteristics of the MNR, such as the numerical examples to
be shown later in Figs. 4(a)–4(c). For this case, the scattered
field can be expressed according to Eqs. (14) and (15) as

�s(r, ω) = α1,1(ω)�̃1,1(r) + α2,1(ω)�̃2,1(r), (32)

where the QNM expansion coefficients α1,1 and α1,2 satisfy
the linear inhomogeneous Eq. (19),

(ω − ω̃1,1)α1,1(ω) − κ(1,1),(2,1)(ω)α2,1(ω) = β1,1(ω),

(ω − ω̃2,1)α2,1(ω) − κ(2,1),(1,1)(ω)α1,1(ω) = β2,1(ω). (33)

Solving Eq. (33), one can obtain a = [α1,1, α2,1]T. Substitut-
ing it into Eq. (32), one then obtains the scattered field of the
system.

To solve the QNMs of the MNR dimer, one can remove
the inhomogeneous terms on the right-hand side of Eq. (33)
and then obtain a set of linear homogeneous equations [i.e.,
Eq. (22)],

(ω − ω̃1,1)α1,1(ω) − κ(1,1),(2,1)(ω)α2,1(ω) = 0,

−κ(2,1),(1,1)(ω)α1,1(ω) + (ω − ω̃2,1)α2,1(ω) = 0. (34)

The QNMs of the system are the nontrivial solutions of
Eq. (34), whose existence requires the determinant of the
coefficient matrix to be zero [i.e., Eq. (23)]. This yields that
the complex resonance frequencies ω = ω̃r of the system
satisfies

ω = ω̃1,1 + ω̃2,1

2

±
√(

ω̃1,1 − ω̃2,1

2

)2

+ κ(1,1),(2,1)(ω)κ(2,1),(1,1)(ω). (35)

Note that Eq. (35) is similar to the conclusion of TCMT
[see Eq. (2.8) in [28]]. But differently, the coupling coeffi-
cient κ(p,m),(q,n) = κ in [28] is independent of frequency ω,
which is only applicable to the case of weak coupling as
explained earlier following Eq. (25). Besides, the electric field
in the integral expression of κ takes a complex conjugate [see
Eq. (2.16) in [28]], which is rigorously correct only for a
lossless medium.

Equation (35) forms a transcendental equation of ω since
its right-hand side is a function of ω [denoted by f (ω)].
However, since f (ω) is a slowly varying function of ω in
view that κ(p,m),(q,n) is a slowly varying function of ω [see
Eq. (17)], the transcendental Eq. (35) can be solved by using
the contractive mapping method [93] with the iterative for-
mula ωN+1 = f (ωN ), N = 0, 1, . . .. This method converges
fast and is insensitive to the initial value ω0 of the iteration. In
fact, if f (ω) is approximately treated as a constant, Eq. (35)
simply provides an analytical expression for the complex res-
onant frequency ω̃r . Therefore, commonly there are only two

045430-8



COUPLING THEORY OF QUASINORMAL MODES FOR … PHYSICAL REVIEW B 102, 045430 (2020)

FIG. 4. (a1)–(e1) Schematic diagrams of the five coupled MNRs. The structural parameters of the single-wire MNR are the same as those
in Fig. 1(a). There is l = 10 nm in (e1). The origin O of the coordinate system is located at the center of the antenna end face. (a2)–(e2)
and (a3)–(e3) respectively show the real and imaginary parts of the complex resonance frequency ω̃r of the coupled MNRs as functions of the
distance d . Curves with different colors show the results of different orders of QNMs [i.e., with different r, r = 1 and 2 in (a)–(c) corresponding
to symmetric and antisymmetric QNMs, respectively], which are obtained with full-wave a-FMM numerical calculation (circles) and the QNM
coupling theory (solid curves and pluses). In (d) and (e), the solid curves and pluses show the predictions of the model in which the trimer
antenna is treated to be composed of a dipole antenna [as sketched in (a1)] and a single-wire antenna (i.e., 2 MNRs), or of three single-wire
antennas (i.e., 3 MNRs), respectively.

solutions of QNMs with high Q factors given by Eq. (35) that
are close to ω̃1,1 and ω̃2,1, which correspond to the + and −
on the right side of Eq. (35). The other solutions are far away
from ω̃1,1 and ω̃2,1, which either have low Q factors or locate
out of the spectral range of interest, and thus can be neglected
in the QNM expansion of the scattered field �s [see Eq. (40)
below]. This will be verified by the numerical examples in
Figs. 4(a)–4(c) and Figs. 6(a)–6(c), to be shown later.

According to Eq. (31), the scattered field of the MNR
dimer can be expanded upon the basis of QNMs of the MNR
dimer given by Eq. (34). The denominator in the right side of
Eq. (31) can be simplified to be

∂ det[ωI − K(ω)]

∂ω

∣∣∣∣
ω=ω̃r

= 2ω̃r − ω̃1,1 − ω̃2,1 − ∂ (κ(1,1)(2,1)κ(2,1)(1,1))

∂ω

∣∣∣∣
ω=ω̃r

. (36)

The analytical expression of cr in Eq. (31) will be derived
below. For the QNM with a complex resonance frequency
ω = ω̃r , the nontrivial solution of Eq. (34) is

a = ãr = [α̃r,(1,1), α̃r,(2,1)]
T

= [1, κ(2,1),(1,1)(ω̃r )/(ω̃r − ω̃2,1)]T

= [1, (ω̃r − ω̃1,1)/κ(1,1),(2,1)(ω̃r )]T , (37)

where the normalization α̃r,(1,1) = 1 is specified for the QNM.
For the MNR dimer, one can obtain

[ω̃rI − K(ω̃r )]∗ =
[

ω̃r − ω̃2,1 κ(1,1),(2,1)(ω̃r )
κ(2,1),(1,1)(ω̃r ) ω̃r − ω̃1,1

]
. (38)

Substituting Eqs. (37) and (38) into Eq. (30), we then obtain
the expression of cr as

cr = [ω̃r − ω̃2,1, κ(1,1)(2,1)(ω̃r )]T . (39)

By substituting Eqs. (36) and (39) into Eq. (31), the scat-
tered field of the MNR dimer can be finally expressed as

�s(r, ω) =
∑

r

�̃r (r)
ω/ω̃r

ω − ω̃r

×
[

(ω − ω̃2,1)β1,1 + κ(1,1)(2,1)β2,1

2ω − ω̃1,1 − ω̃2,1 − ∂ (κ(1,1)(2,1)κ(2,1)(1,1) )
∂ω

]
ω=ω̃r

,

(40)

where the QNM field �̃r (r) of the MNR dimer can be ob-
tained by substituting Eq. (37) into Eq. (32) as [i.e., Eq. (21)]

�̃r (r) = �̃1,1(r) + κ(2,1),(1,1)(ω̃r )�̃2,1(r)/(ω̃r − ω̃2,1). (41)

Next we will consider a more special case that two iden-
tical MNRs are placed parallel to each other with a mirror
symmetry, such as the structures shown in Figs. 4(a1)–4(b1).
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Here it is assumed that the background medium and the
medium of the MNRs are isotropic and uniform. For the pth
MNR (p = 1, 2), its permittivity distribution can be denoted
by εp(r, ω) = ε0(r − rp, ω) (with rp being the central po-
sition vector of the pth MNR), and the complex resonance
frequency and field of its supported QNM are denoted by
ω̃p,1 = ω̃0 and �̃p,1(r) = �̃0(r − rp), respectively. Then ac-
cording to Eq. (17), the QNM coupling coefficient can be
expressed as

κ(1,1),(2,1)(ω) = κ(2,1),(1,1)(ω) = κ (ω) = −ω�ε0(ω)M0

F0
,

(42)

with

F0 = F1,1 = F2,1 =
∫∫∫

R3

×
{

Ẽ0(r) · ∂ (ωε0)

∂ω

∣∣∣∣
ω=ω̃0

· Ẽ0(r)−μ0H̃0(r) · H̃0(r)

}
d3r,

and

M0 = M(1,1),(2,1) = M(2,1),(1,1)

=
∫∫∫

Vp

Ẽ0(r − r2) · Ẽ0(r − r1)d3r.

Here the Fp,m and M(p,m),(q,n) are first defined following
Eqs. (16) and (24), respectively. The Vp denotes the region of
the pth MNR, and �ε0 = ε0 − εb is the permittivity change of
the pth MNR with εb being the permittivity of the background
medium. Thus, Eq. (35) can reduce to

ω = ω̃0 ± κ (ω). (43)

Substituting Eq. (43) into Eq. (34), one can obtain the
expansion coefficients a = ã+ and a = ã− [corresponding to
ω̃0 + κ (ω) and ω̃0 − κ (ω) in Eq. (43), respectively] of the two
types of QNMs supported by the system as

α1,1 = α2,1, α1,1 = −α2,1, (44)

which are termed symmetric and antisymmetric QNMs, re-
spectively. With the normalization of α1,1 = 1, the fields of
QNMs corresponding to Eq. (44) can be expressed as

�̃+(r) = �̃0(r − r1) + �̃0(r − r2),
�̃−(r) = �̃0(r − r1) − �̃0(r − r2).

(45)

With Eq. (39), one can obtain

cr = c+ = κ (ω̃+)[1, 1]T = κ (ω̃+)ã+,

and

cr = c− = −κ (ω̃−)[1, − 1]T = −κ (ω̃−)ã−,

for symmetric and antisymmetric modes, respectively. Thus,
Eq. (40) can be simplified to be

�s(r, ω) = ω/ω̃+
ω − ω̃+

[
β1,1 + β2,1

2(1 − ∂κ/∂ω)

]
ω=ω̃+

�̃+(r)

+ ω/ω̃−
ω − ω̃−

[
β1,1 − β2,1

2(1 + ∂κ/∂ω)

]
ω=ω̃−

�̃−(r). (46)

The QNM expansion of Eq. (46) contains only two terms
due to the reason mentioned after Eq. (35). Equation (46)
indicates that if the spatial distribution of the excitation source
satisfies a certain symmetry, then only symmetric or antisym-
metric mode can be excited. For example, for β1,1 = β2,1,
the excitation coefficient of �̃−(r) becomes zero so that the
antisymmetric mode behaves as a dark mode [24].

Equation (43) indicates that the shifts of eigenfrequencies
ω̃± of the MNR dimer relative to the eigenfrequency ω̃0 of
a single MNR are �ω̃± = ω̃± − ω̃0 = ±κ (ω̃±). Since κ is
a function of ω, there is �ω̃+ �= �ω̃− in general. In the
following, we will provide an analysis of the dependence
of κ on ω with the model, so as to compare the values of
|Re(�ω̃+)| = |Re[κ (ω̃+)]| and |Re[�(ω̃−)]| = |Re[κ (ω̃−)]|.
We only discuss the QNMs with high Q factors and assume
ω̃± ≈ Re(ω̃±), i.e., ω is approximately of real value in the
following discussion. The frequency dispersion of permittiv-
ity is assumed to be described by the Drude model. Then the
scatterer permittivity change is

�ε0(ω) = ε0ε∞ − ε0ω
2
0

ω2 + iωγ
− εb.

Substituting it into Eq. (42), one can obtain

|Re[κ (ω)]| =
∣∣∣∣Re

[
M0

F0
(ε0ε∞ − εb)ω

]
− Re

[
M0

F0

ε0ω
2
0

ω + iγ

]∣∣∣∣.
There is (ε0ε∞ − εb)ω < ε0ω

2
0/ω in view of ω > 0 and

Re[�ε0(ω)] = (ε0ε∞ − εb − ε0ω
2
0

ω2+γ 2 ) < 0. Then neglecting γ

in view of γ � ω, one can obtain

|Re[κ (ω)]| ≈
∣∣∣∣Re

(
M0

F0

)∣∣∣∣
[
ε0ω

2
0

ω
− (ε0ε∞ − εb)ω

]
. (47)

Equation (47) shows that the frequency dispersion of the
permittivity causes |Re[κ (ω)]| to be a monotonically de-
creasing function of ω. Therefore, for Re(ω̃+) > Re(ω̃−),
there is |Re[κ (ω̃+)]| < |Re[κ (ω̃−)]|, which further yields
|Re(�ω̃+)| < |Re(�ω̃−)|. This conclusion is consistent with
the numerical results to be shown in Figs. 4(a) and 4(b) and
with the reported experimental phenomena [94] and theoreti-
cal prediction [29].

IV. NUMERICAL TEST OF THE QNM
COUPLING THEORY

To test the validity of the QNM coupling theory devel-
oped in this paper, it is used to predict the electromagnetic
response of several representative coupled-MNR systems in
comparison to the full-wave a-FMM numerical results. Five
coupled-MNR systems are selected as numerical examples,
including MNR dimers [80,95] and MNR trimers [11,96,97].
In the following Secs. IV A and IV B, the validity of the theory
proposed in Sec. III B in predicting the complex resonance
frequencies and the fields of the QNMs of the coupled-MNR
system will be tested, respectively. In Sec. IV C, the validity
of the theories proposed in Secs. III A and III C in predicting
the source-excited scattered field of the coupled-MNR system
will be tested. This test also shows the use of the theory
for the design of antenna devices to achieve a broadband
enhancement of the spontaneous emission rate.
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A. Numerical test of the theory in predicting the complex
resonance frequencies of the QNMs of the coupled-MNR system

The validity of the theory in Sec. III B in predicting the
complex resonance frequencies of the QNMs of the coupled-
MNR system will be tested in this subsection. The dispersive
permittivity of gold is described by the Drude model (see
Sec. II for model parameters) for numerical calculation. Then
Eq. (24) can be used to calculate the complex resonance
frequencies of the QNMs of the system.

As shown in Figs. 4(a)–4(c), we first discuss the coupling
between two MNRs. The geometric parameters of each sin-
gle MNR are the same as those in Fig. 1(a). For a single
MNR, its spectral response in the spectral range of interest
is dominated by the excitation of one QNM with the highest
Q factor [with the complex resonance frequency ω̃0/(2πc) =
0.8842 − 0.0477i μm−1]. Therefore, only this QNM is con-
sidered for each MNR in our theoretical model. The coupled
MNRs considered in Figs. 4(a) and 4(b) rigorously satisfy
κ(1,1),(2,1) = κ(2,1),(1,1), and the coupled MNRs considered in
Fig. 4(c) approximately satisfy κ(1,1),(2,1) ≈ κ(2,1),(1,1). Ac-
cording to the theory in Sec. III D, one only needs to con-
sider the two dominant QNMs with the highest Q factors
supported by these MNR dimers, which are termed symmetric
and antisymmetric modes, respectively [see Eq. (35) for the
reason].

As shown in Figs. 4(a)–4(c), the complex resonance fre-
quencies ω̃r of the symmetric (blue curves) and antisymmetric
(red curves) QNMs of the coupled system are plotted as a
function of the distance d between the two MNRs. For large
values of d , the model predictions (solid curves) agree well
with the full-wave a-FMM results (circles), which confirms
the validity of the theoretical model. With the decrease of d
[e.g., d < 60 nm in Fig. 4(b)], the coupling effect between
the two MNRs increases and the deviation between the model
predictions and the full-wave data increases gradually. This
deviation comes from the fact that only one QNM with the
highest Q factor is considered for each MNR in the model,
while all the other higher-order QNMs with lower Q factors
are neglected.

As shown in Figs. 4(a2)–4(c2), for d < 100 nm the fre-
quency shift |Re(�ω̃r )| (with �ω̃r = ω̃r − ω̃0) of the real
part of the complex resonance frequency ω̃r (corresponding to
the real resonance frequency of the coupled MNRs) increases
with the decrease of d (the value of ω̃0 for a single MNR being
shown by the horizontal black dotted lines). This phenomenon
has been observed in experiments [94,95,98] and can be
explained with our model as stated below. The expression of
the frequency shift |Re(�ω̃r )| = |Re[κ (ω)]| is given by the
right-hand side of Eq. (47) in Sec. III D. In the expression,
the overlap integral M0 of the two QNMs considered in the
model strongly depends on d since the integral is performed
in the region of each MNR, the frequency ω = ω̃r is the
slowly varying function of d , and F0 is independent of d .
For a system with low loss, the electric and magnetic fields
of a QNM with a high Q factor approximately take real and
purely imaginary values [i.e., Ẽm = Ẽ∗

m and H̃m = −H̃∗
m as

mentioned after Eq. (5)], respectively, which leads F0 and M0

to take real values. Thus, with the decrease of d and for small
values of d , M0 increases [see Eq. (42) for the definition of
M0] so that |Re(�ω̃r )| also increases.

Besides, Figs. 4(a2)–4(c2) show that for d < 100 nm, there
are |Re(�ω̃+)| < |Re(�ω̃−)| for Re(ω̃+) > Re(ω̃−) (sub-
scripts + and − corresponding to r = 1 and 2, respectively),
and |Re(�ω̃+)| > |Re(�ω̃−)| for Re(ω̃+) < Re(ω̃−), which
are consistent with the conclusion predicted by Eq. (47) in
Sec. III D.

Next we will consider a more general system of a trimer
antenna composed of three coupled MNRs, as sketched in
Fig. 4(d1). The same as before, only the QNM with the
highest Q factor is considered for each individual MNR in
the theoretical model. This QNM will split into three QNMs
with high Q factors due to the coupling. Their complex reso-
nance frequencies plotted as functions of spacing d between
MNRs are shown in Figs. 4(d2)–4(d3), where the curves
with different colors correspond to different orders of QNMs.
The results show that for large values of d (d > 60 nm), the
model predictions (pluses) are consistent well with the a-
FMM numerical results (circles), which confirms the validity
of the model. The error of the model increases gradually with
the decrease of d , which is similar to the aforementioned
case of the MNR dimer. In addition, the mode frequency shift
|Re(�ω̃r )| increases as d decreases for d < 100 nm.

For the above examples, in the model only one QNM
is considered for each MNR in the coupled-MNR system.
To test the validity of our theory for the case that multiple
QNMs are considered for each single MNR, we treat the
trimer antenna shown in Fig. 4(d1) as composed of a dipole
antenna [Fig. 4(a1)] and a single-wire antenna. According
to the results in Fig. 4(a), the dipole antenna supports two
dominant QNMs with high Q factors. They are considered in
the model and are obtained with full-wave a-FMM numerical
calculations (instead of with the QNM coupling theory). For
the single-wire antenna, only one QNM with the highest
Q factor is considered in the model as before. Figure 4(d)
shows that the model predictions (solid curves) agree well
with the a-FMM numerical results (circles), which confirms
the validity of the model. Compared to the previous model
that treats the trimer antenna as composed of three MNRs
[pluses in Fig. 4(d)], the present model (solid curves) also
shows good consistency for large values of the MNR spacing
d (d > 60 nm) .

But with the decrease of d , there appears difference be-
tween the predictions of the two models. The reason is that for
the present model, the two dominant QNMs with the highest
Q factors supported by the dipole antenna are obtained with
full-wave numerical calculations, instead of considering the
coupling between MNRs as done in the previous model. For
large values of d , these two QNMs can be well reproduced
through the coupling of the QNM with the highest Q factor
supported by a single-wire antenna [as shown in Figs. 4(a2)–
4(a3)], so that the predictions of the two models become
consistent. While for small values of d , the accuracy of the
reproduction is low, which results in the difference between
the predictions of the two models.

For the above case that the trimer antenna is treated as
composed of a dipole antenna and a single-wire antenna, we
further consider the situation that the gap size of the dipole
antenna is fixed to be a small value of l = 10 nm, so as
to further test the validity of the theory. Figure 4(e) shows
the complex resonance frequencies ω̃r of the three dominant
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QNMs with the highest Q factors supported by the trimer
antenna, which are plotted as functions of the distance d
between the dipole antenna and the single-wire antenna. It is
seen that for large values of d (d > 60 nm), the predictions of
the model are in good agreement with the results of the full-
wave a-FMM. However, for this case, a larger error will occur
for the model if the trimer antenna is treated as composed
of three single-wire antennas, which is due to the very small
distance l [as shown in Fig. 4(a)].

Figures 4(a)–4(d) show that with the increase of d , the
complex resonance frequency ω̃r of QNMs of the coupled-
MNR system will tend to the complex resonance frequency
ω̃0 of the single-wire antenna (as shown with the horizontal
black dotted lines). Figure 4(e) shows that with the increase of
d , ω̃r of the trimer antenna will tend to the complex resonance
frequencies of the QNMs of the single-wire antenna (horizon-
tal blue dotted lines) and of the dipole antenna (horizontal
red and green dotted lines). That is, the complex resonance
frequency ω̃r of the coupled-MNR system will tend to the
complex resonance frequency ω̃p,m of a single MNR as d
increases. This phenomenon can be explained by our theory.
Equation (17) indicates that if d is large enough, there is
κ(p,m),(q,n)(ω) ≈ 0 due to Ẽq,n(r) ≈ 0 within the region Vp of
the pth MNR. Thus, the matrix K in Eq. (23) becomes a
diagonal matrix with the diagonal element δp,qδm,nω̃p,m, and
then the solution of Eq. (23) is simply ω = ω̃r = ω̃p,m.

On the other hand, the QNM field diverges at infinity
as stated in Sec. II. This causes that for d → ∞, there
is κ(p,m),(q,n)(ω) → ∞ so that ω̃r → ω̃0 does not hold any
longer. As shown in Fig. S1 in Supplemental Material Sec. S5
[69], for the dipole antenna ω̃r first approaches ω̃0 and then
diverges with the increase of d (d > 10 μm), which confirms
the above conclusion. This divergence problem of the QNM
field is also pointed out in the QNM coupling theories in
[51,52]. The reason for this phenomenon of divergence is
that only one QNM with the highest Q factor is used in the
model to expand the scattered field of a single MNR, while
the other higher-order QNMs are all neglected, which leads
to the inability to accurately reproduce the scattered field far
away from the MNR. However, since the QNM of single MNR
considered in the model has a high Q factor, the QNM field
diverges only for the case that d is very large, for which
generally the coupling effect between the scattered fields of
MNRs can be neglected [i.e., κ(p,m),(q,n)(ω) ≈ 0 as mentioned
above]. Then the QNMs of the coupled-MNR system reduce
to QNMs of each individual MNR in the system (diabolic-
point degeneracy [99] will occur if the MNRs in the system
are the same), so that it is unnecessary to solve the QNM
coupling equations.

If some QNM of single MNR considered in the model has
a low Q factor, its field diverges even for a small value of d .
To solve this problem, one can first expand the scattered field
inside the MNR (or on the surface of the MNR) with a high
precision by using such QNM with a low Q factor, and then
by using the Dyson’s equation [100] (or the field equivalence
principle [51]), one can obtain the scattered field far away
from the MNR as the radiation field by an equivalent volume
(or surface) current. Note that the above solution is valid only
if the QNM of the coupled MNRs to be solved has a high
Q factor. If not, the radiation field by the equivalent current,

which is at the complex eigenfrequency of the QNM of the
coupled MNRs, still suffers from the divergence problem.

Besides providing some physical understanding, the the-
oretical model also has superior computational efficiency
compared with full-wave numerical methods when changing
the combination parameters (such as the MNRs’ distance d in
Fig. 4) of the MNRs in forming the coupled-MNR system,
which is due to the analyticity of the model with respect
to these combination parameters [see Eqs. (17) and (18)].
To illustrate the point, Table I provides a comparison of the
computation times of different methods. One can see that
for the data in Fig. 4(a), the computation time of the model
(18.779 min) is much shorter than that of the full-wave a-
FMM (8.781 h). For more details, tQNM = 29.271 min and
tQNM,0 = 18.767 min are the computation times of the a-FMM
to solve the QNMs of the coupled MNRs and of the single
MNR, respectively. The truncated harmonic orders in the
transversal x and y directions for the a-FMM are Mx = 30 and
My = 30, respectively (tQNM and tQNM,0 being proportional
to (MxMy)3 [101]). tK = 0.0663 s and tC = 0.0118 s are the
computation times for calculating the matrix K of QNM cou-
pling coefficients in Eq. (20) and for solving the eigenvalue
problem (24) of the coupled MNRs, respectively. Note that tK
and tC will increase with the number of QNMs considered in
the model for the single MNR. The factor 2 is the number of
QNMs solved for the dipole antenna. Besides the computation
time, the consumed memory can be also saved with the model
than with the full-wave numerical methods, since the former
only requires a full-wave calculation of the QNMs of the
single MNR (corresponding to tQNM,0 in Table I), while the
latter requires a full-wave calculation of the QNMs of the
coupled MNRs (corresponding to tQNM), which generally have
a larger spatial extent than the single MNR.

The above numerical test is for systems with a homoge-
neous background medium, while the model can apply as well
to the system with an inhomogeneous background medium.
To demonstrate the point, we provide an additional numerical
example in Supplemental Material Sec. S6 [69], for which
the MNR is an aperture carved in a layered background
medium.

B. Numerical test of the theory in predicting the fields of the
QNMs of the coupled-MNR system

In this subsection, we will reproduce the fields of the
QNMs of the five coupled MNRs in Fig. 4 with the theoretical
model. Figure 5 shows the electric-field distributions of the
symmetric and antisymmetric QNMs of the dipole antenna [as
sketched in Fig. 4(a1)] with d = 200, 100, and 60 nm. Here
we show the Ez component which is the dominant electric-
field component in the nanogap. For the symmetric QNM,
the Ez components at the two antenna arms are in-phase,
which thus forms a constructive interference and leads to an
enhancement of the electric field in the nanogap. However,
the antisymmetric QNM is of the opposite case with a weak
electric field in the nanogap. The predictions of the model
(the second row in Fig. 5) are in good agreement with the
full-wave a-FMM calculation results (the first row) except
for the deviation in the nanogap for d = 60 nm, which is
consistent with the results in Figs. 4(a2) and 4(a3).
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TABLE I. Computation times of different methods. The calculation is performed on a laptop computer with 4-core CPUs of 1.6 GHz and
a memory of 12 GB. n is the number of data points.

Figure Method Computation time

Fig. 4(a)
(n = 9 × 2 = 18)

a-FMM for solving QNM ntQNM

= 18 × 29.271 min
= 8.781 h

model tQNM,0 + (n/2)(tK + tC)
= 18.767 min + (18/2) × (0.0663 s
+ 0.0118 s) = 18.779 min

Fig. 6(a)
(n = 50 × 3 = 150)

a-FMM nta−FMM = 150 × 4.471 min
= 11.177 h

QNM expansion 2 × 3 × tQNM = 2 × 3 × 29.271 min
= 2.927 h

model 1 tQNM,0 + 3tK + n(tb + t ′
C)

= 18.767 min + 3 × 0.0663 s
+150 × (0.0341 s + 0.002 51 s)
= 18.862 min

model 2 tQNM,0 + 3(tK + 2tb + tC)
= 18.767 min + 3 × (0.0663 s + 2
× 0.0341 s + 0.0118 s)
= 18.774 min

For the other four antennas calculated in Figs. 4(b)–4(e),
Figs. S6–S9 in Supplemental Material Sec. S7 [69] show that
the fields of their supported QNMs can be well reproduced
with the model. For smaller values of spacing d between
MNRs (d = 60 nm for instance), the model exhibits a larger
error in reproducing the QNM field in the nanogap, which

reflects a larger contribution of higher-order QNMs that are
neglected in the model.

In Supplemental Material Sec. S8 [69], we provide a
further numerical test of the theory in predicting the QNM
expansion coefficients, i.e., the nontrivial solution a = ãr of
Eq. (22).

FIG. 5. Electric-field distributions of symmetric (a1)–(c1) and antisymmetric (a2)–(c2) QNMs [with the complex resonance frequencies
shown in Fig. 4(a)] supported by the dipole antenna [as sketched in Fig. 4(a1)] for d = 200 (a), 100 (b), and 60 nm (c). The distributions of |Ez|
(left) and Re(Ez ) (right) on y = 0 [the coordinate being shown in Fig. 4(a1)] are provided. The QNMs satisfy the normalization Ez(0, 0, 0) = 1,
with the coordinate origin shown in Fig. 4(a1) as O. The first and second rows show the full-wave a-FMM results and the QNM coupling model
predictions, respectively.
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FIG. 6. Spectra of the normalized total emission rate 	total/	air

obtained with the QNM coupling model (solid curves and pluses,
corresponding to the theories proposed in Secs. III A and C, re-
spectively) and with the full-wave a-FMM (circles). The results in
(a)–(e) are given in turn for the dipole antenna, parallel-nanowires
antenna, vertical-nanowires antenna, and trimer antenna as sketched
in Figs. 4(a1)–4(e1), respectively. l = 10 nm is fixed in (e). The
red point in the insets represents a z-polarized point current source
located at h = 10 nm away from the antenna end face (its projection
on the antenna end face being at the center of the end face). The
blue, red, and green curves correspond to d = 200, 100, and 60 nm,
respectively.

C. Numerical test of the theory in predicting the source-excited
field of the coupled-MNR system

In this subsection, we will test the validity of the QNM cou-
pling theory proposed in Secs. III A and III C in the presence
of excitation sources. For the five coupled MNRs calculated
in Fig. 4, the spectrum of the total emission rate 	total of a
point current source near the coupled MNRs are calculated,
as shown in Fig. 6, which provides the results for differ-
ent spacings d = 200 (blue curves), 100 (red), and 60 nm
(green) between MNRs. Here the point current source is used
to represent a molecule or quantum dot with fluorescence
emission. In order to simultaneously excite the QNMs with
different symmetries, we appropriately locate the point source
to break the symmetry of the system, as shown with the red
dot in Fig. 6.

In the theoretical model, we only consider one dominant
QNM with the highest Q factor supported by each nanowire in
the coupled MNRs. In Fig. 6, model 1 and model 2 correspond
to the theories in Secs. III A and III C, respectively. Note
that the calculation of the background field with different

real excitation frequencies ω [i.e., Eb(r, ω) in Eq. (18)] are
required in model 1, while only the background field with
ω = ω̃r is required in model 2 [see Eq. (31)]. Since only a
few dominant QNMs with the highest Q factors (i.e., QNMs
calculated in Fig. 4) supported by the coupled MNRs are
considered in model 2, the results of model 1 and model 2
will not be exactly the same.

Figure 6 shows that the predictions of model 1 (solid
curves) and model 2 (pluses) are both consistent with the
full-wave a-FMM results (circles), thus confirming the va-
lidity of the theories proposed in Secs. III A and III C. In
addition, the consistent predictions of the two models indicate
that the contribution of the QNMs neglected in model 2 is
small.

Figure 4 shows that the difference between the resonance
frequencies of the splitting QNMs of the coupled MNRs
increases as the spacing d between MNRs decreases (d = 100
and 60 nm for instance) due to the stronger coupling. On the
other hand, these QNMs will be excited by the point current
source, resulting in two or more resonance peaks (the peak
frequencies being the real part of the complex eigenfrequen-
cies) in the spectra of 	total as shown in Fig. 6. Therefore,
a broader band of enhancement of the spontaneous emission
rate 	total can be achieved for a smaller d . For example, for
the trimer antenna with d = 60 nm as shown in Fig. 6(d), the
wavelength range of 	total/	air > 200 is 320 nm, while the
corresponding wavelength range for the single-wire antenna is
only 190 nm. Since the fluorescence wavelength of molecules
or quantum dots usually covers a range from tens to hundreds
of nanometers, the broadband enhancement of the sponta-
neous emission is of great significance for high-sensitivity
sensing of fluorescent molecules [102], high-brightness LED
light source [103], nanolaser [104], and so on. In addition,
the coupled MNRs with multiple resonance frequencies can
be used to enhance both the excitation rate at the fluorescence
excitation frequency and the spontaneous emission rate at the
fluorescence emission frequency, so as to further enhance the
fluorescence intensity [12,105].

Concerning the computational efficiency, Table I shows
that for the data in Fig. 6(a), the computation times of models
1 and 2 (18.862 and 18.774 min, respectively) are much
shorter than that of the QNM expansion method (2.927 h) for
which the QNMs of the coupled MNRs are solved with the
full-wave a-FMM. This comparison shows the superior com-
putational efficiency of the theoretical models when changing
the combination parameters (such as the MNRs’ distance d
in Fig. 6) of the MNRs in forming the coupled-MNR system.
For more details, the definitions and values of tQNM, tQNM,0,
tK, and tC are the same as those for the data of Fig. 4(a).
tb = 0.0341 s and and t ′

C = 0.002 51 s are the computation
times for calculating the vector b of the QNM excitation
coefficients in the coupling equation (20) and for solving this
equation, respectively. The factors 3 and 2 are the number of
d’s values and the number of QNMs solved for the dipole
antenna, respectively. As expected, Table I also shows that the
computation time of the QNM expansion method (2.927 h)
is much shorter than that of the full-wave a-FMM (11.177
h), which is due to the frequency analyticity of the former as
already mentioned close to the end of Sec. II and for the data
in Fig. 1(c).
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V. CONCLUSION

For the coupled-MNR system composed of dispersive and
lossy MNRs, we analyze the coupling mechanism based on
the Green’s-function formalism and show that the coupling
between MNRs originates from a mutual excitation of the
scattered field of each MNR. Based on this point, a QNM
coupling theory is built up with the use of the QNM expan-
sion formalism. Compared with the existing coupled mode
theories, our theory can be generally applied to a coupling
system with energy loss and an arbitrary frequency dispersion
of permittivity. Besides, all the parameters in the theory (such
as the QNM coupling coefficients and excitation coefficients)
are calculated based on the first principle of Maxwell’s equa-
tions, so that there is no need to fit the full-wave numerical
calculation results or experimental data, which ensures a solid
electromagnetic foundation of the theory.

With the theory, analytical expressions of the complex
resonance frequency and field distribution of the QNMs of
the coupled-MNR system in terms of the QNMs of each
single MNR are obtained. In the presence of excitation source,
analytical expression of the scattered field of the coupled-
MNR system in terms of the excitation source and the QNMs
of each single MNR is obtained, and the scattered field of
the coupled-MNR system expanded upon the basis of the
QNMs of the coupled-MNR system is further obtained via the
Mittag-Leffler theorem.

For several representative coupled MNRs, their supported
QNMs in the absence of excitation source and their electro-
magnetic response in the presence of excitation source are
calculated. The validity of the proposed theoretical model
is confirmed through a comparison between the model pre-
dictions and the full-wave a-FMM numerical results. Based
on the theory, the properties of the QNMs and the electro-
magnetic response of the coupled MNRs are explained, and

coupled-MNR systems with a broadband enhancement of the
spontaneous emission rate are designed. The proposed theory
can provide intuitive and quantitative physical pictures for
understanding and designing the optical properties of coupled
MNRs for many applications, such as the enhancement of
spontaneous emission rate [102–104], plasmon ruler [19,20],
exceptional point [25–27], and plasmon-induced transparency
[23,24]. Besides, the theory also shows superior computa-
tional efficiency compared with full-wave numerical methods
when changing the combination (such as the number and
relative position) of the MNRs in forming the coupled-MNR
system.

The range of validity and the limitation of the theoretical
model are summarized below. With the decrease of the dis-
tance between MNRs, the accuracy of the model will decrease
if only the dominant QNMs of single MNRs with high Q
factors are considered in the model. The accuracy can be
improved by considering more QNMs of single MNRs with
low Q factors, but at the expense of increased computational
amount and less physical intuitiveness. On the other hand,
the far-field divergence of QNMs of single MNRs at complex
eigenfrequencies will appear with the increase of the distance
between MNRs. The present theory is limited to isotropic and
nonmagnetic medium, but can be readily extended to the more
general anisotropic or bianisotropic medium [62], or even
nonreciprocal medium.
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