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Electronic and transport properties of anisotropic semiconductor quantum wires
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Within the effective-mass approximation, we theoretically investigated the electronic and transport properties
of 2D semiconductor quantum wires (QWs) with anisotropic effective masses and different orientations with
respect to the anisotropic axis. The energy levels in the absence and presence of an external magnetic field
are analytically calculated, showing (i) a strong dependence on the spacing of energy levels related to the
alignment QW angle and the anisotropy axis, and (ii) for non-null magnetic fields, the quantum Hall edge
states are significantly affected by the edge orientation. Moreover, by means of the split-operator technique,
we analyzed the time evolution of wave packets in straight and V-shaped anisotropic QWs and compared the
transmission probabilities with those of isotropic systems. In the anisotropic case, we found damped oscillations
in the average values of velocity in both x and y directions for a symmetric Gaussian wave packet propagating
along a straight wide QW, with the oscillation being more evident as the noncollinearity between the group
velocity and momentum vectors increases.
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I. INTRODUCTION

In the last two decades, the production of graphene has led
to a significant level of interest on the physics of layered mate-
rials [1–11]. This interest is not only due to its possible future
technological applications, but also because it provides the
possibility to probe interesting phenomena predicted by quan-
tum field theories not found in conventional semiconductors
and metals. Along with the investigation of basic properties
of these materials, there has also been a significant effort to
develop devices that can benefit from their two-dimensional
(2D) character. In that respect, the introduction of additional
confinement by creating 1D [quantum wires (QWs)] and 0D
(quantum dots) structures becomes relevant [12–21], since
these are known to modify the electronic spectra and the
transport properties of the structure in comparison with the
pristine sample.

There is growing interest in single layers of black phos-
phorus (BP), also known as phosphorene [22–28], which
is a semiconductor with a puckered structure due to sp3

hybridization and displays a tunable band gap [24,25]. In addi-
tion, phosphorene presents a highly anisotropic band structure
and thus an anisotropic effective mass [5,12,22–28]. Another
material that has attracted attention due to its anisotropic
properties is single-layer arsenic (arsenene) [29–34], a semi-
conductor also with a puckered structure. Due to the highly
anisotropic band structures of such crystals, their electrical
conductivity, thermal conductivity, and optical responses are
found to be strikingly dependent on the crystallographic direc-
tions [26,27,35–43]. In particular, one possible consequence
of the anisotropy may be seen in the electronic confinement
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caused by the presence of constraints such as external gates or
crystal terminations. In that case, a dependence of the confined
states on the direction of the alignment of the constraint may
arise.

In the present paper, we investigate the electronic and
transport properties of anisotropic materials in which a 1D
confining potential has been imposed. The work proceeds as
follows: Initially, we investigate the case of 1D confinement
in an anisotropic system (i.e., a QW) in which the QW
orientation may not match the anisotropy axis of the sample.
To do that, we employ an effective mass model in which
the anisotropy is encoded in the direction-dependent effective
mass. Next, we show results for the spectra of confined
states for different orientation angles of QW edges in the
presence of an external magnetic field. By using the split-
operator technique [13,14,44–58], we then present results for
the time evolution of a Gaussian wave packet propagating in
an anisotropic QW that presents a bend, i.e., the orientation
of the QW with regard to the anisotropy axes changes along
the longitudinal direction. We numerically investigate the
electronic scattering of the propagated wave packet at the bend
caused by the mismatch between the electronic subbands at
each QW region, which is evidence of their dependence on
the orientation angle. In addition, we calculate the average
velocity values for the x and y directions of an initially sym-
metrical Gaussian wave packet propagating along a large QW
to analyze the nonspecular reflections at the QW edges and
the combination of effects due to the anisotropy and system
geometry.

The paper is organized as follows: In Sec. II, we present
the analytical model for anisotropic classic systems taking as a
starting point an effective mass model. We show the spectrum
of confined states for QW anisotropic systems with different
orientation angles with and without an external magnetic field
in Sec. III. The influence of an anisotropic QW formed by
leads with different alignment angles in the scattering initial
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TABLE I. Electron effective masses in the x and y directions for
phosphorene and arsenene in units of free-electron mass (m0) [23].

Phosphorene Arsenene

mx/m0 1.01 0.23
my/m0 0.19 1.22

Gaussian wave packet is studied in Sec. IV. Our conclusions
are presented in Sec. V.

II. ANISOTROPIC CLASSIC SYSTEMS

Let us consider an anisotropic 2D system in which the
anisotropy is introduced as direction-dependent effective
masses. Among an extensive list of anisotropic materials, such
as BP [22–28], arsenene [29–34], ReS2 [59], TiS3 [60], and
others, the first two are the most prominent ones, and for
that reason, we henceforth assume parameters suitable for
these materials. Similar qualitative results discussed in this
paper are expected for any of the above-mentioned anisotropic
materials. Effective mass models have been shown to give a
reasonable description of the low-energy spectrum of phos-
phorene and arsenene [61,62]. In general, in the theoretical
analysis of such a system, it is convenient to chose coordinate
axes in such a way that they match the anisotropy directions
(henceforth known as the x and y directions, with mx and my

being the effective masses along each direction, respectively).
Table I presents the values of electron effective masses for
both phosphorene and arsenene. However, as shown below, it
is necessary in the present case to consider a more general
configuration. Thus, in general, the Hamiltonian is given by

H = p2
x

2mx
+ p2

y

2my
. (1)

A curve of constant energy in momentum space is then an
ellipse. A more complicated but also more interesting case is
when the coordinate axes are not parallel to the anisotropy
axes. We can obtain that by rotating the coordinate system
in momentum space, such that the semimajor axis of the
elliptical constant energy curve is rotated by an angle α around
the z axis. That give us px = p′

x cos α − p′
y sin α and py =

p′
x sin α + p′

y cos α, where the primed terms correspond to the
new, rotated coordinate system. Thus, we can now obtain the
Hamiltonian as

H = p′2
x

2μ1
+ p′2

y

2μ2
+ p′

x p′
y

μ3
, (2)

with

1

μ1
= cos2 α

mx
+ sin2 α

my
, (3a)

1

μ2
= sin2 α

mx
+ cos2 α

my
, (3b)

1

μ3
=

(
1

my
− 1

mx

)
sin α cos α. (3c)

FIG. 1. Schematic representation of the rotated QW de-
fined electrostatically by the 1D square-well potential V (y′) =
V0[�(−y′) + �(y′ − L)] with width L and V0 > 0. α is the rotation
angle with respect to the crystallographic directions (x and y),
defining the new primed coordinates (x′ and y′).

From Eq. (2), we find

p′
y = ±

√
2μ2E −

(
μ2

μ1
− μ2

2

μ2
3

)
p′2

x − μ2

μ3
p′

x. (4)

It can be immediately seen that for mx = my (i.e., 1/μ3 = 0),
we obtain p′

y = √
2μE − p′2

x , with μ1 = μ2 = μ, as expected
for the isotropic case. Let us now obtain the components
of the velocity vector. An important feature of anisotropic
systems is the fact that the velocity is usually not collinear
with the momentum vector, as shown below by computing
v′

i = ∂E/∂ p′
i for i = x and y. Thus, the velocity components

are given by

v′
x = p′

x

μ1
+ p′

y

μ3
, v′

y = p′
y

μ2
+ p′

x

μ3
, (5)

where it is seen that v′
x (v′

y) can be nonzero even if p′
x (p′

y)
vanishes.

III. ANISOTROPIC QWs

A. In the absence of magnetic field

Let us consider the case of a QW with infinite potential
walls [V0 → ∞ in V (y′)] for interfaces aligned along an
arbitrary direction, i.e., nonzero 1/μ3 (see Fig. 1). Without
loss of generality, we will assume that the walls are parallel
to the x′ direction, the assumed translational symmetry direc-
tion of the system, allowing us to write the wave function
as � = φ(y′)eik′

xx′
. Using the Hamiltonian given by Eq. (2)

and the substitutions �p′ = h̄ �k′ and �k′ → −i∇′, the resulting
time-independent Schrödinger equation for the rotated QW
becomes

− h̄2

2μ2

d2φ

dy′2 − i
h̄2k′

x

μ3

dφ

dy′ + h̄2k′2
x

2μ1
φ = Eφ. (6)

We obtain a solution by assuming linear combinations of
incident and reflected states as

�(x′, y′) = [
A exp(ik′+

y y′) + B exp(ik′−
y y′)

]
eik′

xx′
, (7)

045427-2



ELECTRONIC AND TRANSPORT PROPERTIES OF … PHYSICAL REVIEW B 102, 045427 (2020)

FIG. 2. Energy levels as function of QW width with k′
x = 0

in Eq. (9b) (a) for different rotation angles α with respect to the
anisotropy axes and taking the effective masses of monolayer BP,
and (b) for a fixed angle α = π/4 and assuming (solid curves)
phosphorene and (dashed curves) arsenene parameters.

with

k′±
y = ±θ1 − θ2, (8a)

θ1 =
√

2μ2E

h̄2 −
(

μ2

μ1
− μ2

2

μ2
3

)
k′2

x , (8b)

θ2 = μ2

μ3
k′

x, (8c)

where the plus (minus) sign refers to incident (reflected)
waves. Now, one has to introduce the boundary conditions,
i.e., the vanishing of φ at the interfaces, for y′ = 0 and
y′ = L in Eq. (7). That leads to the conditions B = −A and
sin(θ1L) = 0, resulting in the following quantization condi-
tion θ1 = nπ/L with n ∈ Z . Therefore, the wave function and
the energy levels are found as

�(x′, y′) = A sin
(nπ

L
y′

)
exp

[
i

(
x′ − μ2

μ3
y′

)
k′

x

]
, (9a)

E = h̄2n2π2

2μ2L2
+ 	h̄2k′2

x

2μ1
, (9b)

respectively, where 	 = 1 − μ1μ2

μ2
3

. It is seen that both the wave
function, Eq. (9a), and the energy spectrum, Eq. (9b), show a
striking dependence on the QW orientation α in relation to the
anisotropy axes.

Figure 2 depicts the dependence of electronic energy levels
of phosphorene and arsenene QWs with respect to the QW
width L, by using Eq. (9b) with k′

x = 0 and the effective
masses of Table I. In Fig. 2(a), the energy levels for three
different QW angles are shown for monolayer BP material,
and in panel (b) we compare the electronic confined states
of (solid curves) phosphorene and (dahsed curves) arsenene
with the fixed angle α = π/4. It is seen that the energy levels
decrease quadratically with increasing QW width, something

FIG. 3. Dispersion relation of QW with width L = 1 nm for
(a) phosphorene and (b) arsenene (As), and taking different rotation
angles α with respect to the anisotropy axes.

already expected when we make k′
x = 0 in Eq. (9b), scaling

as ≈1/L2 in a similar way as observed for confined states in
1D squared quantum well and widely presented in quantum
mechanic text books. A consequence of the change of QW
alignment, as shown in Fig. 2(a), is a shift of the energy
levels, together with a change of level spacing. By comparing
the cases of a QW made of arsenene and phosphorene for a
given value of rotation angle, shown in Fig. 2(b) it is seen
that the behavior of the electronic levels of the two sam-
ples is similar. A difference that is evident in the dispersion
relation in Figs. 3(a) and 3(b), for QW with width L = 1
nm for BP and As, respectively, is the fact that the confined
states in BP QWs present higher energy values than those of
arsenene. This is caused by the different effective masses of
the materials (see Table I). Moreover, Fig. 3 shows that, as α

increases, the energy levels are shifted to lower (upper) values
for phosphorene (arsenene) and the spacing between them
decreases (increases) too, which in turn increases (decreases)
in the number of accessible electronic states. This result is
emphasized in Fig. 4, which shows the energy levels as a
function of the alignment angle α for (blue solid curves) phos-
phorene and (dashed red curves) arsenene QW, maintaining
the QW width L = 1 nm and k′

x = 0 in Eq. (9b). Note that
these behaviors of the confined QW energy levels with respect
to the rotation angle strongly resemble those for 1D quantum
wells in a Schrödinger equation with isotropic masses by
varying the QW width instead of the alignment angle, i.e.,
the change of alignment QW angle with a fixed width L for
the anisotropic case works similarly to the isotropic case by
varying the QW width. Phosphorene and arsenene energy
levels exhibit opposite behaviors due to the highest effective
mass being along opposite directions in these materials (see
Table I). These results suggest that a connection of QWs
with different rotation angles acts similarly to constrictions in
quantum point contact systems, due to the mismatch of the
energy levels in the different sections of the QW junction.
Such kind of QW junction system shall be explored later in
Sec. IV.
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FIG. 4. Energy levels as a function of the rotation angle α with
respect to the anisotropy axes (see Fig. 1) for (blue solid curves)
phosphorene and (red dashed curves) arsenene QWs. It was taken
L = 1 nm and k′

x = 0.

B. In the presence of magnetic field

Let us now study the effect of an external magnetic field
perpendicular to the plane containing the QW by considering
the substitution �p′ → �p′ + e �A in Eq. (6). A convenient choice
of gauge is �A = (−By′, B μ2

μ3
y′, 0). In this case, one finds �∇ ·

�A = (μ2/μ3)B. Since we assume a uniform magnetic field,
in this gauge the vector potential corresponds to a uniform
rotation of the vector potential obtained from the Landau
gauge by an angle of arctan(μ2/μ3). It is seen that for the
isotropic case (i.e., 1/μ3 = 0), as well as for α = 0 and α =
π/2, one recovers the usual vector potential of the Landau
gauge. Then, the Schrödinger equation for rotated QW in the
presence of a perpendicular magnetic field can be written as

−h̄2

2μ2

d2�

dy′2 − i
h̄2k′

x

μ3

d�

dy′ + 	

2μ1

(
eBy′ + h̄k′

x

)2

+ (1 − 	)
h̄2k′2

x

2μ1
= E�. (10)

Performing the coordinate transformation y∗ = y′ + h̄k′
x

eB ,
defining the cyclotron frequency for the rotated anisotropic
system as w2

c = 	( eB
μ1

)
2

and the new energies as E ′ = E −
(1 − 	) h̄2k′2

x
2μ1

, one can rewrite Eq. (10) as

−h̄2

2μ2

d2�

dy∗2
− i

h̄2k′
x

μ3

d�

dy∗ + μ1w
2
c y∗2

2
� = E ′�. (11)

By assuming the following ansatz �(x′, y∗) =
exp (−iμ2k′

xy∗/μ3)φ(x′, y∗) to eliminate the first derivative in
Eq. (11), it becomes

−h̄2

2m∗
d2φ

dy∗2
+ m∗

2
w2

c y∗2φ =
√

μ2

μ1
Eφ, (12)

where m∗ = √
μ1μ2. Solving Eq. (12) numerically, we obtain

the energy levels for a QW in the presence of external mag-
netic field and different system parameters. Figure 5 shows

FIG. 5. Dispersion relation of phosphorene QW for different
alignment angles α with respect to the anisotropy axes and fixed
QW width L = 100 nm and magnetic field amplitude B = 5 T.
Black solid, red dashed, and blue short-dashed curves correspond
to the spectrum for rotation angles α = 0, α = π/4, and α = π/2,
respectively.

the dispersion relation for different alignment angles (black
solid curves) α = 0, (red dashed curves) α = π/4, and (blue
short-dashed curves) α = π/2, and fixed QW width L = 100
nm and external magnetic field B = 5 T. It is seen that, similar
to an isotropic semiconductor structure with two boundaries,
there is a momentum region around k′

x = 0 where the energy
levels are flat (i.e., dE/dkx′ = 0). These states correspond
to quantum Hall states, being more dispersive the higher
the energy value, owing to the fact that the lower energy
states are more strongly confined by the magnetic field. The
presence of the edges gives rise to propagating states, resulting
in the quantum Hall edge states. These states are related to
the dispersive region of the energy spectrum in Fig. 5, i.e.,
for momentum values away from the plateaus [63–67]. In
addition to the mentioned features, for the anisotropic QW
case: (i) the quantum Hall edge states are significantly affected
by the alignment of the QW and (ii) as α increases, the energy
states are found to be less dispersive, that is, caused by the
fact that the wave functions become more localized, as will be
discussed next in Fig. 6. Consequently, the group velocities of
the quantum Hall edge states show a striking dependence on
the edge alignment.

To understand the effects of the rotation angle changes
and the magnetic field on the electronic confined states, we
show in Fig. 6 the probability density of the ground state
for different rotation angles with and without a magnetic
field, taking the same system parameters as in Fig. 5. Since
Eq. (11) is a quantum harmonic oscillator type equation, the
ground-state wave function of a rotated anisotropic QW in the
presence of a magnetic field is given by

�(x′, y∗)=
(

m∗ωc

π h̄

)1/4

exp

(
−m∗ωcy∗2

2h̄
−i

μ2

μ3
k′

xy∗
)

. (13)

Similar to the case for zero magnetic field [see Eq. (9a)],
the wave function not only contains the plane-wave term but
depends on the QW alignment in relation to anisotropy axes,
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FIG. 6. Squared total wave function for anisotropic rotated QWs
in the presence of an external magnetic field, B = 5 T, with a fixed
QW width L = 100 nm and wave vector k′

x = 0. Black dashed-dot,
red dashed, and blue short-dashed curves correspond to the case
for rotation angles α = 0, α = π/4, and α = π/2, respectively. For
comparison, |�|2 for B = 0 is shown by green solid curve.

which is contained in the y∗ term. One can note that (i) for a
fixed rotation angle, the total wave function is more localized
for B �= 0 than B = 0, as already expected, (ii) for B �= 0, as α

increases, |�|2 becomes more localized, and (iii) for B = 0,
the QW rotations do not affect the wave-function profile,
as shown by the green solid curve in Fig. 6 for α = 0 and
α = π/3.

A complementary way to see the magnetic-field depen-
dence of the confined states in anisotropic QWs is shown in
Fig. 7. The spectra for null and non-null wave vectors are
present in panels (a) and (b), respectively, for three different
rotation angles. Note that, as the magnetic field increases, the
magnetic length becomes smaller than the system size, so

FIG. 7. Energy levels of a phosphorene QW with width L = 100
nm as function of the magnetic field for wave vector values (a) k′

x =
0, and (b) k′

x = 0.2 nm−1 for different rotation angles α with respect
to the anisotropy axes.

(a)

(b)

L
x

y

Ly

Lx
xi

Ei
m mx y

FIG. 8. Illustration of (a) the energy bands for each QW section
of (b) the V-shaped anisotropic QW due to an abrupt change of
orientation angle α along the QW length. For x < xi (� xi), one has
α = 0 (α �= 0). The two QW sections are made up of a phosphorene
QW with width L. The energy bands for each QW section exhibit
different energy-level spacing and minimum, and consequently lead
to an energy mismatch in the junction. Ei and xi indicate the initial
wave-packet energy and the position of the QW corner. Lx (Ly) is
system length along the x (y) direction.

confinement effects are strongly reduced, and the magnetic
levels in the phosphorene QW converge to the Landau levels
of an infinite phosphorene sheet, given by E = h̄ω(n + 1/2),
with n = 0, 1, 2, . . ., and ω = eB/mg = ωc

√
μ1/μ2 being the

cyclotron frequency calculated with the geometric mean of the
masses mg = √

mxmy [12,22]. Moreover, one can realize that
the energy-level spacing is strongly affected by the magnitude
of the applied magnetic field, and with increasing magnetic
field the confinement effects due to QW rotation discussed in
Sec. III A are less evident, such that regardless of the wave
vector amplitude [see, e.g., Figs. 7(a) and 7(b)] and QW
rotation angle, the energy levels converge to the Landau levels
of an infinite system.

IV. WAVE-PACKET PROPAGATION AND SCATTERING
IN ANISOTROPIC QWs

As previous results have shown, the electronic spectrum
of anisotropic QWs is strongly dependent on the relative
orientation of the QW in relation to the anisotropic axes.
Therefore, it can be expected that a change of orientation
angle (α) along the length of the QW may give rise to an
energy mismatch, as illustrated in Fig. 8(a), which can in
turn lead to electron scattering. To investigate that, let us
now calculate the transport properties of a QW in which an
abrupt change of α is introduced, forming an elbowlike feature
in an otherwise straight QW. For this purpose, let us now
consider electrons in the (x, y) plane moving from left to
right in a region with a V-shaped QW formed by a straight
section with α = 0 and a section with α �= 0 as illustrated in
Fig. 8(b). The electrons are confined by a steplike potential,
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i.e., V (x, y) = 0 inside the QW and V (x, y) = V0 otherwise.
Moreover, we assume that the electrons are always in the
conduction band and that conduction-to-valence band tran-
sitions are negligible, which is a reasonable approximation
when dealing with low-temperature systems and also once
that the conduction-to-valence energy distance, i.e., the energy
gap, is large for phosphorene systems [12,22,23]. QWs with
width L = 3 nm and L = 10 nm, abrupt borders, and made
out of phosphorene were considered. For simplicity’s sake,
throughout this section the effective masses along the x and y
directions were exchanged as the ones referred to in Table I.

The injected electrons are described by a combination of a
Gaussian function with a plane wave along the x direction and
the ground-state wave function of the QW in the y direction
φ0(y). Then, at t = 0 the initial wave packet is defined by

�0(x, y) = exp

[
iki

xx − (x − x0)2

2d2

]
φ0(y), (14)

where ki
x =

√
2mxEi/h̄2 is the wave vector corresponding to

the packet kinetic energy Ei [see dotted line in Fig. 8(a)],
d is the initial wave packet width in the x direction that is
chosen as the same QW width L, and x0 is the initial position
in the x direction of the wave-packet maximum, set up far
from the corner of the bent QW, such as x0 = −32.5 nm and
x0 = −8.6 nm for the QW width cases L = 10 nm and L = 3
nm, respectively. It is important to stress that the ground-state
wave function φ0(y) is given by Eq. (9a), which is closely
related to the initial QW alignment angle, since it contains
angle-dependent anisotropic effective masses terms.

With the aim of solving the time-dependent Schrödinger
equation to obtain the propagating wave packet through the
evolved time steps and thus to get the transport proper-
ties of the analyzed system, one applies the split-operator
technique. For this, we follow the approach described in
Refs. [13,14,44–58]. This allows us to separate the expo-
nential of the time evolution operator (for the case in which
the Hamiltonian does not explicitly depend on time, this
operator can be written as Û (t ′, t ) = exp [− i

h̄ H (t ′ − t )]) into
two parts: One of them involves only the potential operator
V̂ , whereas the other contains only the kinetic operator T̂ ,
as well as enabling us to also split the kinetic terms for
each direction. Therefore, the timeevolved wave function is
obtained by successively applying the operation Û such as

�(�r, t + �t ) = e−iV̂ �t/2h̄e−iT̂x�t/h̄e−iT̂y�t/h̄e−iV̂ �t/2h̄�(�r, t ),
(15)

where T̂x(y) is the kinetic-energy operator for x(y) direction
and we neglect terms of order O(�t3) and higher, such error
being a consequence of the noncommutativity of kinetic and
potential terms. This error can be minimized the smaller the
time step. We assume a small time step of � = 0.7 fs. Here,
we opted for the split-operator technique, because it allows
us to track the position and velocity of the center-of-mass
trajectories, see reflection patterns and scattering on the edges,
and obtain the transmission and reflection coefficients (which
will be important to the analysis in this section).

To numerically solve this problem, we discretized the
(x, y) plane with a square grid, assuming �x = �y = 0.4
nm and �x = �y = 0.12 nm for the cases where L = 3 nm

and L = 10 nm, respectively, and used the finite difference
scheme to solve the derivatives in the kinetic energy terms of
the Hamiltonian. In addition, as suggested in Ref. [68] and
successfully used in Refs. [47–49,58], we added an absorbing
(imaginary) potential on the boundaries of our computational
box to avoid spurious reflections and backscattering when the
wave packet reaches the limits of our system.

For each investigated system configuration, we run the
simulation and calculate (i) the transmission probability T (t )
for each time step by integrating the square modulus of the
normalized wave packet in the region after the elbowlike QW
corner, i.e., for x > xi, given by

T (t ) =
∫ Ly/2

−Ly/2
dy

∫ Lx/2−|xi|

xi

dx|�(x, y, t )|2, (16)

(ii) the total average position, i.e., the trajectory of the wave
packet center of mass that is calculated for each time step by
computing

〈x(t )〉 =
∫ Ly/2

−Ly/2
dy

∫ Lx/2

−Lx/2
dx|�(x, y, t )|2x, (17a)

〈y(t )〉 =
∫ Lx/2

−Lx/2
dx

∫ Ly/2

−Ly/2
dy|�(x, y, t )|2y, (17b)

and (iii) the average velocity, by

〈vx(t )〉 = d〈x(t )〉
dt

, (18a)

〈vy(t )〉 = d〈y(t )〉
dt

, (18b)

where the limits of the computational box are defined by x ∈
[−Lx/2, Lx/2] and y ∈ [−Ly/2, Ly/2]. The reflection proba-
bility R is obtained by similar integration as Eq. (16) but
for the region before the QW corner (x < xi). For larger t ,
the value of the transmission (reflection) probability integral
increases (decreases) with time until it converges to a number.
This number is then considered to be the transmission (reflec-
tion) probability of such a system configuration.

Transmission probabilities for the bent QW computed by
using the split-operator technique are presented in Fig. 9 as
function of the initial wave-packet energy. In Fig. 9(a), the
transmission was obtained for a QW rotated by a fixed angle
α = 15◦ and QW width L = 3 nm (triangles) and L = 10
nm (circles) both in isotropic (open symbols) and anisotropic
cases (filled symbols). In Fig. 9(b) we showed the fixed QW
width L = 3 nm and analyzed two different rotation angles:
α = 15◦ (triangles) and α = 60◦ (circles). From Fig. 9(a), one
can notice that (i) since the energy levels become closer for
wider QWs, the wave packet has a larger transmission prob-
ability for wider channels in both isotropic and anisotropic
systems, as well as also explaining the rapid convergence of
the transmission to 1 for wider QWs as a consequence of the
larger number of accessible electronic states, and (ii) the quan-
titative difference between anisotropic and isotropic curves for
each fixed QW width case is due to the difference in their sub-
band energy values. Note that the energy bands in both straight
and rotated sections of the V-shaped QW are (non)identical
for (an)isotropic case and thus, as a consequence of this
energy mismatch caused by the QW bending, one has a greater
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FIG. 9. Transmission probabilities as a function of the initial
wave-packet energy by assuming the elbowlike QW with (a) a fixed
rotation angle α = 15◦ and QW widths L = 3 nm (triangles) and
L = 10 nm (circles), and (b) a fixed QW width L = 3 nm and rotation
angles α = 15◦ (triangles) and α = 60◦ (circles). Red (filled) and
black (open) curves (symbols) correspond to the anisotropic and
isotropic QW cases.

reflection probability for anisotropic case. In both isotropic
and anisotropic cases, due to the channel geometry, the wave
packet is more reflected when it reaches the bend that connects
the two leads represented in Fig. 8(b), and as the right-arm of
the QW is rotated the transmission decreases, as can be seen
in Fig. 9(b). The introduction of a bend in the QW can reduce
the transmission even in the isotropic case, due to the fact
that it breaks the translational symmetry of the system. For
instance, compare the black triangular and circular symbols
in Fig. 9(b), in which the transmission for α = 15◦ is larger
than the case for α = 60◦ for any initial wave-packet energy.
Although the energy bands for the isotropic case are identical
for any rotation angles, the QW geometry has an important
role on the total transmission probability. Thus, to separate
this purely geometric effect from the effect of the anisotropy,
all the results in Fig. 9 show a comparison between the
transmission for isotropic and anisotropic cases for different
values of L [Fig. 9(a)] and α [Fig. 9(b)].

Another aspect of the transport in anisotropic QWs that
was investigated was the effect of the interaction between the
electrons and the QW edges as function of α. A semiclassical

analysis suggests that the noncollinearity of the group veloc-
ities and the momentum vectors [see Eq. (5)] may give rise
to a group velocity oscillation. To investigate that, we have
analyzed the wave-packet dynamics simulating electrons that
propagate through a straight QW as the one represented in
Fig. 1. For this, we considered an initial circularly symmetric
Gaussian wave packet centered in �r = (x0, y0) and multiplied
by a pulse with initial wave vector �k0, given by

�(x, y) = exp

[
− (x − x0)2

2d2
− (y − y0)2

2d2
+ i �k0 · �r

]
. (19)

In this analysis, it was assumed that the QW width is much
larger than the wave-packet width, being taken d = 5 nm
and L = 30 nm, and that the wave packet is injected from
left to right into the channel with initial position (x0, y0) =
(−32.5,−8.6) nm and initial energy E = 200 meV.

Figure 10 shows the wave-packet average velocities as a
function of time for both x and y directions that were obtained
by computing the first-order derivative of the average posi-
tions Eqs. (17a) and (17b) at each time step, being given by
Eqs. (18a) and (18b), respectively. The wave-packet evolution
through the straight QW with different values of rotation angle
α was analyzed for both isotropic and anisotropic cases, tak-
ing into account the noncollinearity of the wave vector �k and
group velocity vector �v. The wave vector and group velocity
are here associated with the angles θ and φ, respectively,
as illustrated in Fig. 10(a), �v always being perpendicular to
the isoenergy in momentum space. It is easy to see from
Eq. (5) that for isotropic case (1/μ3 = 0), one has �v′ ‖ �k′
and the isoenergies are circular. However, as mentioned in
Sec. II, for anisotropic semiconductors whose isoenergies are
ellipses, this is not the case. Figure 10(b) shows the relation
between the angles θ and φ that differs for almost every angle,
except for θ = 0◦ and θ = 90◦ in which the wave vector
and group velocity are aligned, similar to the isotropic case.
Figures 10(c)–10(e) depict the average velocities (top panels)
v′

x and (bottom panels) v′
y for the following rotation angles:

[Fig. 10(c)] α = 0◦, [Fig. 10(d)] α = 15◦, and [Fig. 10(e)]
α = 45◦. The black solid, blue dashed, and red dashed-dot
curves correspond to θ = φ = α, i.e., the isotropic case, to
θ = α �= φ, i.e., the anisotropic case with the QW parallel to
the wave vector, and to φ = α �= θ , i.e., the anisotropic case
with the QW parallel to the group velocity vector, respec-
tively. According to Figs. 10(c)–10(e), one can realize that
(i) the average velocities for both x and y directions remain
unchanged for the isotropic case (θ = φ = α, black solid
curves), irrespective of the QW rotation angle, as well as for
the anisotropic case in which the wave vector and the group
velocity are collinear as shown by the blue dashed and red
dashed-dot curves in Fig. 10(c). Qualitative similar results can
be obtained for α = 90◦, instead of α = 0◦; (ii) for θ �= φ and
α �= 0◦, 90◦ that corresponds to noncollinear cases between
the wave vector and the group velocity, the average velocities
oscillate, as expected by the semiclassical picture due to the
nonspecular reflections on the edges in an anisotropic media.
This can be seen by the blue dashed and red dashed-dot
curves in Figs. 10(d) and 10(e); (iii) the oscillations are
more evident as |θ − φ| increases, exhibiting an increasing
oscillation amplitude the greater the noncollinearity between
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FIG. 10. (a) Isoenergy curve in momentum space of the electronic band for a nonrotated anisotropic system that corresponds to α = 0. θ

and φ are the minimum angles with respect to kx axis that are associated with the orientation of the wave vector �k and group velocity vector
�v, respectively. (b) Values of angle φ as a function of angle θ given by the following equation: tan φ = (tan θ/μ2 − 1/μ3)/(tan θ/μ3 + 1/μ1).
(c)–(e) Average velocities for the (top panels) x′ and (bottom panels) y′ directions by considering (black solid curve that corresponds to
θ = φ = α) the isotropic case, the anisotropic case with the QW parallel to (blue dashed curve that corresponds to θ = α �= φ) the wave
vector, and (red dashed-dot curve that corresponds to φ = α �= θ ) to the group velocity vector. The rotation angle was assumed as (c) α = 0◦,
(d) α = 15◦, and (e) α = 45◦.

the vectors �k and �v. This can be seen by comparing the
oscillation amplitudes of the blue dashed curves in Figs. 10(d)
and 10(e), and also for a fixed rotation angle by comparing
the θ = α and φ = α cases. Note from Fig. 10(b) that for
θ = α = 15◦ one has φ ≈ 55◦, whereas for φ = α = 15◦ one
implies θ ≈ 4◦, and consequently the difference |θ − φ| is
larger for the former case with θ = α (blue dashed curves)
that indeed exhibits the large oscillation amplitude for the
presented cases.

To clarify how the noncollinearity between the group
velocity and wave vector in the anisotropic case affects the
wave-packet evolution, Fig. 11 displays snapshots of the time
evolution of the probability density propagating through the
QW rotated by the angle α = 15◦ at times (i) t = 40 fs, (ii)
t = 100 fs, (iii) t = 200 fs, (iv) t = 250 fs, and (v) t = 300
fs as labeled in Fig. 10(d), and considering the isotropic case
(upper panels, θ = φ = α) and the anisotropic case with the
QW orientation parallel to the wave vector (middle panels,
θ = α �= φ) and to the group velocity (bottom panels, φ =
α �= θ ). By analyzing the snapshots, it is clear that for the
isotropic case (upper panels), when the wave packet evolves
it disperses but keeping the average position (white dashed
lines) and consequently the average velocity unchanged, as
observed in Fig. 10(d). Since the propagation direction and
the wave vector are collinear for this case, after the reflections
at the potential edges the direction of the group velocity vector
remains the same over time. However, for the anisotropic
case in which the wave vector and the group velocity are
noncollinear, when the wave packet reaches the QW edges
it undergoes nonspecular reflections [69]. As a consequence,
for the case where θ = α, this interaction with the edges
results in a subpackage splitting with different propagation
directions that leads to an average velocity oscillation with
large amplitudes that are damped over time, as shown by
the blue dashed curves in Fig. 10(d). On the other hand, for

the anisotropic case where φ = α, no subpackage splitting
is observed and the average velocity oscillation amplitude
is less pronounced, as shown by red dashed-dot curves in
Fig. 10(d). This is linked to the fact that, in this case, the group
velocity is aligned with the QW orientation and then the total
wave packet evolves in parallel to QW boundaries exhibiting
a straight trajectory and dispersing over time similar to the
isotropic snapshots case, but here owing to the nonspecular
reflections its interaction with the QW edges implies a slightly
different average position and barely affecting the total prop-
agation velocity.

V. CONCLUSIONS

In summary, we developed an analytical model for clas-
sical anisotropic systems using the effective mass model and
applied this formalism to obtain the electronic properties of
QWs made up of arsenene and phosphorene and with the
length direction rotated in relation to its anisotropy axes.
The energy levels in the presence and absence of an ex-
ternal magnetic field perpendicular to the QW plane were
analyzed for different system parameters. In the absence of
a magnetic field, we found an analytical expression for the
QW energy levels that contains a term analog to the ones for
isotropic quantum wells with a 1/L2 dependence and another
term that carries the system anisotropy. Our results showed
that the spacing of the energy levels for both samples is
strongly affected by the alignment angle between the QW
and the crystallographic directions, such that as the angle
increases, the spacing between the energy levels is lowered
(raised) for phosphorene (arsenene), as well as observing
a shifted to lower (upper) energy values. For the non-null
magnetic field case, the electronic wave functions obey a
harmonic oscillator-type equation but for a modified mass and
modified cyclotron frequency that depends on the alignment
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FIG. 11. Snapshots of the total evolved wave function through the QW rotated by α = 15◦ at the time steps (i) t = 40 fs, (ii) t = 100 fs,
(iii) t = 200 fs, (iv) t = 250 fs, and (v) t = 300 fs as labeled by roman letters in Fig. 10(d) and considering (upper panels) θ = φ = α, (middle
panels) θ = α, and (bottom panels) φ = α.

angle between the QW and its anisotropy axes. Numerical
calculations showed that the energy spectrum is significantly
affected by the confining potential edges and that the quantum
Hall edge states are less pronounced the greater the rotation
angle. With respect to the wave-function localization, for
large QW rotation angles, the wave function becomes more
confined, whereas in the absence of a magnetic field it remains
unchanged under rotations.

Since the electronic energy levels of anisotropic QWs are
strongly affected by rotation, we studied their transport prop-
erties by using the split-operator technique and compared the
isotropic and anisotropic results for the transmission proba-
bility, average position, average group velocity, and snapshots
of the time-evolved wave packet. By considering a circularly
symmetric Gaussian wave packet propagating inside of a wide
anisotropic QW rotated by α with respect to the anisotropic
axes, one observed oscillations in the average velocity for
the case when the initial wave vector and the group velocity
vector are not collinear, and the oscillation amplitude is more
pronounced the greater the noncollinearity between them, i.e.,
the greater the θ − φ value. The snapshots at different time
steps demonstrated that for the anisotropic QWs the interac-
tion between the wave packet and the QW edges gives rise
to sub-wave-packets with different momentum orientations,
whereas for isotropic QWs, the wave packet disperses over
time without splitting and its interaction with the QW edges

does not change the orientation of the average group velocity.
In the case of a bent QW, as a consequence of the energy mis-
matching in different sections of the QW and the anisotropy
of the system, one expects that electrons traveling through the
bend can be scattered. The results showed that the transmis-
sion probabilities are greater the lower the rotation angle of the
right arm and the wider the QW, regardless of the anisotropic
character of the system, and the nature of the quantitative dif-
ference of the transmission probabilities between the isotropic
and anisotropic QWs is linked to the difference in their
subband values. The differences in propagation for different
orientations of the QW may be experimentally measured by
attaching perpendicular leads to the system, one expecting
different Hall conductances between isotropic and anisotropic
cases, as well as for collinear and noncollinear situations
between the group velocity and momentum vectors. This
direction-dependent Hall conductance will be investigated in
a future project. Finally, we hope that our electronic and
transport results will prove useful for designing anisotropic
semiconductor-based quantum confinement devices.
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