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Topological bulk states and their currents
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We provide evidence that, alongside topologically protected edge states, two-dimensional Chern insulators
also support localized bulk states deep in their valence and conduction bands. These states manifest when local
potential gradients are applied to the bulk, while all parts of the system remain adiabatically connected to the
same phase. In turn, the bulk states produce bulk current transverse to the potential difference. This occurs even
when the potential is always below the energy gap, where one expects only edge currents to appear. Bulk currents
are topologically protected and behave as edge currents under an external influence, such as temperature or local
disorder. Detecting topologically resilient bulk currents offers a direct means to probe the localized bulk states.
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I. INTRODUCTION

Since their discovery topological materials have been very
well studied theoretically [1–8]. More recently, however, the
study has moved beyond theory. There is now a great deal
of work focused on finding real materials with topological
characteristics [9–11]. If we were able to harness topological
materials for technological applications, the resilience of edge
states would make them extremely attractive for a number of
applications, from frictionless directed transport of currents,
to transistors, amplifiers, and detectors [12–16]. Though many
of the topological materials discovered so far are unsuitable
for use in technologies for reasons such as their toxicity, it is
believed that about 27% of recorded inorganic crystals have
a topological nature [6], so maybe one day a material will
be found that meets all the criteria for a practically useful
topological material.

Among topological materials, Chern insulators (CIs) are of
much interest due to their theoretical simplicity [17] and the
fact that they can be realized in the laboratory with cold-atom
technology [18–22]. When two-dimensional CIs have sharp
boundaries they develop gapless edge states [1–5]. These edge
states support edge currents that have a number of remarkable
properties. They flow without losses, flowing freely around
imperfections on the edge with no backscattering. Further,
their conductivity is quantized by the Chern number, which
is a topological invariant that characterizes the system. The
common view of CIs is that it is these edge states that
make them interesting, while the bulk is simply insulating.
In this paper we challenge the idea that CIs are composed
of robust edge states surrounding an inert bulk. We focus on
the bulk of the CI and, by studying the influence of locally
varying potentials, we find and characterize currents in the
bulk of the system. These currents arise from a continuous
distortion of the valence band that gives rise to localized bulk
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states. To understand their origin one can view the bulk of a
homogeneous Chern insulator as a perfectly entangled state of
pairs of edgelike currents, adding up to zero net flow. Potential
gradients modify those states, progressively disentangling the
hidden currents through a transfer of population. The bulk
states share the robustness of edge states. Beyond this, they
have an enhanced tunability and no geometric constraints
imposed by the shape of the system. Hence, in addition to
being interesting, they potentially point the way to another
approach for designing technologies based on topological
materials, which will perhaps be easier to engineer.

The paper is organized as follows. In Sec. II we recap the
physics of the edge of a CI and we derive the topological edge
current in terms of the Chern number ν. We also summarize
our main findings concerning bulk currents in CIs. In Sec. III
we consider a concrete lattice model of a CI, the Haldane
model [23], and we show the presence of topological localized
edge and bulk currents. In particular, we demonstrate the
robustness and topological character of the bulk currents. In
Sec. IV we perturbatively calculate the effect a potential gra-
dient has in one-dimensional (1D) and quasi-2D topological
systems. We demonstrate that such potential gradients result
in localized modes in the bulk, which are crucial for the
appearance of localized bulk currents. Finally, we sum up in
Sec. V.

II. EDGE AND BULK CURRENTS

In this section we present the possible currents that can
emerge in a CI. We first determine the currents supported by
the localized edge states of a CI by considering it in the contin-
uum. We model the edge physics of a CI with an isolated, one-
dimensional, fermionic Hamiltonian H = ν

∫ ∞
−∞ d p ε(p)a†

pap

[17]. The annihilation and creation operators for momentum
p, a†

p and ap, obey a linear dispersion relation, ε(p) = p,
that extends to infinity. In equilibrium at temperature T , the
occupation of the edge states depends on momentum and
chemical potential μ as n(p) = (e(ε(p)−μ)/T + 1)−1. Holes in
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the negative energy modes are quasiparticles with positive
energy and momentum, which we write as b†

p = a−p. In units
of e2/h̄, the net particle current is

Iedge = ν

2π

∫ ∞

0
dε[n(ε − μ) − n(ε + μ)]. (1)

Evaluating this integral, we find that a uniform chemical
potential V (r) = −μ acting on a material with Chern number
ν induces a current

Iedge = ν

2π
μ, (2)

localized at the edge, which is robust against temperatures and
local disorder. This current can be thought of as the difference
between the current at nonzero chemical potential and the
current at half filling. If the system is defined on a cylinder,
then the two edges contribute two opposite currents due to
the counterpropagating edge modes, thus giving rise to a total
zero transverse current.

The main result of this paper is that, surprisingly, if the
chemical potential is nonuniform and varies over the lattice
system, it creates topological currents in the bulk of the
material. Specifically, any small potential gradient ∇V (r)
induces a local perpendicular bulk current

Ibulk(r) = ν

2π
a0|∇V (r)|, (3)

proportional to the Chern number ν and the lattice constant
a0. The bulk current can occur without the presence of gapless
states in the bulk. It is observed even when the potential is so
small that it cannot close the insulating gap, cause a phase
transition, or locally destroy topological order. Hence, these
currents emerge not due to the population of new conducting
orbitals above the Fermi level, but because of a particular
restructuring of the valence band states. The particular struc-
ture of the valence states in a CI that support a nontrivial
Chern number also give rise to localized bulk states, as we
shall see in the following. Furthermore, these bulk currents
share the topological protection of edge currents against finite
temperature as well as local disorder. Unlike edge currents, the
bulk currents have a direction and geometry that are tunable
with the potential V (r), unconstrained by the form of the
sample.

Before analyzing the bulk currents in a concrete lattice
model (Sec. III) and deriving them (3) through perturbation
theory (Sec. IV), we first consider how they emerge in the
continuum through an effective quantum field theory. For an
integer quantum Hall system with Chern number ν we can in-
vestigate the presence of bulk currents through their effective
description in terms of a Chern-Simons theory [24,25]. In the
absence of a boundary, the action that describes the system is
given by

S[A] = ν

4π

∫
d2xdtεμκλAμ∂κAλ, (4)

where A is an Abelian vector potential. The electric current
density [26,27] is given by

Iμ
bulk = δS[A]

δAμ

= ν

2π
εμκλ∂κAλ, (5)

which is supported exclusively in the bulk as the system has
no boundaries. When μ = x, κ = y, and λ = t , we obtain the
continuous version of formula (3), where the current Ibulk is
perpendicular to the gradient ∇A0 and A0 = V is the local
potential. In the following, we shall investigate the properties
of bulk currents in a microscopic lattice system and analyze
the physical reason that gives rise to their presence.

III. CURRENTS IN LATTICE MODELS

In this section we investigate the emergence of topological
edge and bulk currents in the Haldane model, a 2D Chern
insulator defined on a hexagonal lattice. This allows us to
verify the validity of Eq. (3) and probe the stability of bulk
currents in the presence of finite temperature and disorder.

A. Lattice currents

Consider a lattice model of free fermions {ci, c†
i }, with a

quadratic Hamiltonian

H =
∑
i, j

Ai j c†
i c j . (6)

The Hermitian matrix Ai j contains both hopping terms i �= j
as well as on-site potentials i = j. We particularize to sys-
tems with a cylindrical symmetry. The periodic coordinate is
labeled x, the height on the cylinder is y, and both coordinates
have finite lengths Lx and Ly.

We regard the cylindrical problem as a one-dimensional
model with translational invariance along the x coordinate,
and a large one-dimensional “unit cell” of size Ly. We Fourier
transform the fermionic operators along the periodic coordi-
nate x, introducing the momentum coordinate p,

c†
j,p = 1√

Lx

∑
x

e−ipxc†
j,x. (7)

The momentum takes discrete values p = 2πn/Lx for n =
1, 2, . . . , Lx, and the index j ∈ {1, 2, . . . , Ly} labels the po-
sition in the unit cell. The Hamiltonian separates into a sum
of contributions H (p), one for each momentum p,

H =
∑

p

H (p) =
∑

p

∑
j,l

A jl (p)c†
j,pcl,p. (8)

The diagonalization of matrix Ajl (p) ∈ CLy×Ly with a unitary
matrix Ujm(p) provides us with the fermionic eigenmodes of
H (p),

d†
m,p =

∑
j

Ujm(p)c†
j,p. (9)

The correlator between any two points in real space, (x, y)
and (r, s), is a function of the correlations in momentum
space. In thermal states, these mode occupations will follow a
Fermi-Dirac statistics, 〈d†

m,pdm′,p′ 〉 = nT (εm(p))δm,m′δp,p′ , and
we may write

〈c†
xycrs〉 = 1

Lx

∑
mp

e−ip(x−r) U ∗
ym(p)Usm(p)nT,μ(εm(p)), (10)

with an implicit dependence on the temperature and the
chemical potential, via the Fermi function nT,μ(ε).
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FIG. 1. Edge currents of the Haldane model as a function of
temperature T and chemical potential μ. (a) Hexagonal plaquette
of the Haldane lattice model. Arrows denote hopping directions for
which νi j = +1 in Eq. (14). (b) The Haldane model on a cylinder
showing the direction of the edge currents and the line l used to de-
fine Iedge. (c) Edge currents vs chemical potential for kBT = 0.1t1 and
10t1. At low temperatures the current is independent of temperature
and follows Eq. (2); at large temperatures it tends to zero. (d) Edge
current vs temperature for μ = 0.2t1 and 3.2t1. When μ is small the
edge current is stable against temperature. These results are obtained
for a cylinder with Lx × Ly = 300 × 30.

The continuity equation for the site occupancy operator
ni = c†

i ci provides us with a definition of the particle cur-
rent Ji j flowing from i to j as dni/dt = ∑

j Ji j . Through
the Heisenberg equation dni/dt = −i[ni, H], this expression
particularizes for quadratic Hamiltonians to∑

j

Ji j = −i
∑
m,n

Amn[c†
i ci, c†

mcn]. (11)

Given that the commutator evaluates to [c†
i ci, c†

mcn] =
δimc†

i cn − δinc†
mci, we identify the current operator as

Ji j = −i(Ai j c†
i c j − Aji c†

j ci ). (12)

Taking expectation values provides us the average current
between any two neighboring sites of the lattice,

〈Ji j〉 = 2 Im{Ai j〈c†
i c j〉}. (13)

We will need to study currents that flow over extended regions,
such as the edge or the bulk of the system. In these cases
we first define a boundary or line l and compute the average
current by summing all the Ji j that start in a given site i and
cross that line.

B. Haldane model on a cylinder

Haldane’s Chern insulator [23] is a fermionic hopping
model of the form Eq. (6) defined on a honeycomb lattice with
the Hamiltonian

H =
∑
〈i j〉

t1 c†
i c j +

∑
〈〈i j〉〉

t2 eiνi jφc†
i c j +

∑
i

V (ri )c
†
i ci. (14)

Figure 1(a) sketches the hexagonal plaquette of the model,
illustrating the real-valued nearest-neighbor hopping t1 and
the complex-valued next-nearest-neighbor hopping t2 that has
direction νi j = ±1 and phase φ.

The Haldane model has two gapped topological phases
with Chern numbers ν = ±1, as well as a trivial phase where
ν = 0. It is possible to cross between these phases by tuning
φ, t1, and t2. Without loss of generality, we show numerical
results for the Chern insulator phase with ν = +1, using t1 =
1, t2 = 0.1, φ = π/2.

The Haldane model is defined on a bipartite lattice, with
two triangular sublattices A and B, colored red and blue in
Fig. 1(a). It is convenient to write Hamiltonian (14) using two
sets of fermionic operators {ai, a†

i } and {bi, b†
i }, denoting sites

in the A and B sublattices. As specified in Sec. III A, we embed
our problem in a cylinder and perform a Fourier transform
along the periodic coordinate x. The Hamiltonian for fixed
momenta H (p) adopts the form

H (p) = ψ
†
j,pK1(p)ψ j,p + ψ

†
j,pK2(p)ψ j+1,p + H.c., (15)

with

K1(p) = 1

2

(
4t2 cos(φ + p) + Va( j) t1(eip + 1)

t1(e−ip + 1) 4t2 cos(φ − p) + Vb( j)

)
, (16)

K2(p) =
(

t2(eiφ + e−i(φ−p) ) 0

t1 t2(e−iφ + ei(φ+p) )

)
, (17)

and ψ j,p = (a j,p b j,p)T .
Since the unit cell of the honeycomb lattice contains two

sites (one in each sublattice), a one-dimensional cut of the
lattice [cf. Fig. 1(b)] gives us 2Ly sites and 2Ly different
eigenvalues of H (p), εm(p) for m = 1, 2, . . . , 2Ly. We refer
to these as the “bands” of the model.

In the topological phase ν �= 0, the cylinder supports two
sets of edge states, with a gapless and approximately linear

dispersion relation, ω ∝ p. There are two edge modes for
each p, each of them localized at a different boundary of the
cylinder and with group velocity in opposite directions, as
sketched in Fig. 1(b).

C. Edge currents

To study the edge currents we specify a line transverse
to the boundary of the system l [cf. Fig. 1(b)] and analyze
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FIG. 2. Spatial variations of the local potential give rise to bulk
currents. The local potential is kept always below the energy gap,
so the whole cylinder is always in the same topological phase.
(a) Within a central band the potential linearly increases and de-
creases, with its maximum at the center of the cylinder. (b) The
currents I as a function of height on the cylinder y. We observe bulk
currents (blue bars) traverse to the y axis around the whole cylinder
with local strength that depends on the magnitude and sign of the
potential gradient ∇V , in agreement with Eq. (3). We also compute
the total current along the top (orange diamond marker) and bottom
(green circle) halves of the cylinder, finding that they are equal to the
total change of potential along those regions. Data are presented for
a cylinder with Lx × Ly = 1000 × 30 at T = 0.

the total particle current across that line. The net particle
current from “left” (L) to the “right” (R) on the top edge is
a sum of current operators Iedge = ∑

i∈L, j∈R〈Ji j〉, connecting
vertices i and j on both sides of the line. Using Eqs. (10) and
(13) we have computed these currents for thermal states with
temperature T and chemical potential μ.

Figures 1(c) and 1(d) show the evolution of the edge
currents Iedge as we vary the temperature T and the chemical
potential μ. At low temperatures kBT � t1, the edge current is
proportional to the chemical potential V (r) = μ and satisfies
Iedge = νμ/(2π ), agreeing with Eq. (2) in Sec. II. We also ob-
serve that the current is invariant over a broad range of temper-
atures T , as expected [28]. Finally, the edge current vanishes
when the temperature or the chemical potential approach the
insulator gap. This is caused by the creation of particles and
hole excitations in the conductance and valence bands.

D. Bulk currents

Let us now investigate how the bulk of a Chern insulators
reacts to inhomogeneous potentials, and in particular how
new currents appear with a local potential that changes along
the cylinder V (y). The investigation is limited to potential
strengths that are weaker than the insulator’s energy gap,
which means that V (y) cannot induce a topological phase
transition at any point on the cylinder. Moreover, we set the
potential to zero at the boundaries V (0) = V (Ly) = 0, so that
according to (2) no edge currents are excited Iedge = 0 and we
can focus strictly on the bulk physics.

Our first example is a potential that forms a triangular ramp
along the cylinder, as shown in Fig. 2. This potential has a
uniform gradient ∇V along certain bands around the cylinder
and changes sign at the peak. In the bands where the gradient
is not zero, we observe currents that flow orthogonally to the
gradient, with constant strength and a sign that depends on

010203040

(a) (b)

y

−0.2

−0.1

0.0

0.1

0.2

2π
I

−0.2

−0.1

0.0

0.1

0.2

V

V

FIG. 3. Bulk currents localized on potential steps at y = Ly/4
and y = 3Ly/4. This is achieved by a stripe of potential around the
cylinder. The currents are zero everywhere except at the potential
steps, up to a regularization by the lattice spacing. Data are presented
for a cylinder with Lx × Ly = 1000 × 30 at T = 0.

the sign of the gradient [cf. Fig. 2(b)]. In contrast, the regions
where the potential is constant exhibit no net current.

The previous example suggests that the CI reacts to a po-
tential gradient by developing bulk currents. We will confirm
this idea through a quantitative study of these currents. To do
this we change the potential from a ramp to a double step
function

V (r) =
{+w, Ly/4 � y � 3Ly/4,

0, else.
(18)

This function creates two potential steps at y = Ly/4 and y =
3Ly/4 as cartooned in Fig. 3(a). From Eq. (3) we would expect
a potential step to produce a delta function current localized
on the jump (regularized in the simulations by the lattice
spacing), with a strength proportional to the height of the step
w. A numerical study confirms this prediction, showing two
bulk currents narrowly localized around the stripe boundaries,
y = Ly/4 and y = 3Ly/4. These two currents have the same
strength, but flow along opposite directions, as shown in
Fig. 3(b).

In Fig. 4(a) we investigate quantitatively the relationship
between the strength and sign of the localized currents I and
the value of the potential jump w. For small w, currents
scale linearly with w as would be expected from Eq. (3). We
suspect that, similar to edge currents, the bulk currents are
direct manifestations of the nontrivial topological properties
of the model. If this is true, the currents should depend on
the Chern number ν of the system and vanish when we cross
into the nontopological phase. To confirm this we introduce a
dimerization potential [23]

Vd = M
∑

i

(a†
i ai − b†

jb j ) (19)

that breaks the topological phase for |M/t2| > 3
√

3| sin φ|. As
shown in Fig. 4(b), we indeed find that bulk currents disappear
when we enter the ν = 0 phase with a dimerization potential
M = 0.9t1. In both the trivial insulator and topological phases
greater values of w close the band gap and allow trivial,
nontopological currents. Finally, Fig. 4(c) confirms the linear
growth of the bulk currents with the potential gradient, even
for very small values of w.
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(a)

(b)

(c)

FIG. 4. Systematic investigation of the dependence of the bulk
currents on the topological properties of the system. We study
a cylinder with a central stripe of increased potential [illustrated
in Fig. 3(a)]. (a) Bulk currents scale linearly with the potential
gradient when the system is in a topological phase M = 0, ν =
±1. (b) Outside the topological phase, M = 0.9t1, ν = 0, the bulk
currents vanish in the gapless region, consistent with Eq. (3). (c) In
a phase with nonzero Chern number, M = 0, localized bulk currents
appear even for exponentially small steps w/t1. Computations were
carried out on a system of size Lx × Ly = 1000 × 30 at T = 0.

The topological nature of bulk currents manifests also
in a resilience to thermal excitations and disorder. First,
Fig. 5(a) shows the same temperature dependency for bulk
currents as we saw for the edge currents [Fig. 1(c)]. Second,
Fig. 5(b) confirms that bulk currents are largely insensitive to
local random potentials V (r) = δ, with δ drawn with uniform
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kBT/t1
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0.0

0.1

0.2

2π
I
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0.2

2π
I

(b)

FIG. 5. Investigating the robustness of the bulk currents. We
study a cylinder with a central stripe of increased potential, illustrated
in Fig. 3(a). Bulk currents are robust against (a) temperature and
(b) disorder (here, T = 0). Data for (a) are presented for a cylinder
with Lx × Ly = 1000 × 30, while (b) is presented for a cylinder
Lx × Ly = 10000 × 30. Disorder is averaged over 100 samples and
error bars on the mean 〈I〉 are only noticeable around the energy gap.

probability from the interval δ ∈ [−wdis,wdis]. Note that in
both cases—temperature and disorder acting on edge or bulk
currents—the topological currents can only survive a pertur-
bation with a strength below the insulator gap, for otherwise
the system may develop particle and hole excitations that
partially cancel the currents.

E. Currents and localized states

It is well known that edge currents arise from states that are
exponentially localized on the edge of the system. A natural
question is whether the states participating in bulk currents
share the same localization properties. We characterize the
localization strength with the inverse participation ratio (IPR).
The IPRm,p for the mth eigenstate ψm,p with quasimomentum
p is the fourth moment of the wave function

IPRm,p =
∑

y

|ψm,p(y)|4. (20)

States with a large value of IPR are strongly localized in space.
We can obtain more information from the IPR by considering
where states are localized in the system. To study this we
define the asymmetrical IPR Fm,p,

Fm,p = nT,μ(εm(p))
∑

y

|ψm,p(y)|4 sgn

(
y − Ly

2

)
. (21)

This assigns a positive value to states primarily localized in
the lower half of the cylinder and a negative value to those
localized to the upper half. It weights each state by its fermion
occupation nT,μ(εm(p)) in order to indicate which states actu-
ally contribute to the particle current. At zero temperature and
chemical potential T = μ = 0 this will assign a zero value to
all states above ε = 0.

We have investigated both quantities for a cylinder with
a stripe potential, Eq. (18). Figure 6(a) shows the IPR for a
cylinder with a stripe potential, confirming two distinct sets
of localized states. First, there are highly localized gapless
states that live on the boundaries of the cylinder. Considering
these gapless states, in Fig. 6(b) we see the positive dispersing
branch is localized in the lower half and the negative dispers-
ing branch in the upper half. Since the potential is zero at the
boundaries V (0) = V (Ly) = 0, these states are symmetrically
filled and give a zero net edge current.

In the bulk, the potential stripe splits the bulk modes into
two groups, one for each of the homogeneous local poten-
tial regions in the cylinder. This separation, best illustrated
in Fig. 6(c), opens a window in the valence band of bulk
states, with a minigap of size roughly �w for t2 � t1 [cf.
Figs. 6(a)–6(c)]. Within this small window, we find a new
family of topological localized bulk states, connecting the
two valence bands. As in the case of edge states, Fig. 6(c)
shows a positively dispersing branch localized in the lower
half and a negatively dispersing branch in the upper half. It
is these states that give rise to the bulk currents, as we argue
in the next section. However, unlike edge states, which live
in the insulator gap, these topological bulk states result from
a continuous distortion of the original valence bands around
p � π . Moreover, the strength of the current is not driven by
changes in the occupation of states as localized bulk states are
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FIG. 6. The spectrum of the system showing localization mea-
sures of the states. The valence and conductance bands are displayed
together with the edge states. The setup is a cylinder with a central
stripe of increased potential, as shown in Fig. 3(a). (a) The IPR,
Eq. (20) is shown for all states in the system, highlighting strongly lo-
calized edge states as well as localized bulk states. Inset: Dispersion
relation of the full spectrum. (b) The asymmetrical IPR Fn,p, Eq. (21),
plotted for states close to zero energy and momentum. (c) Zooming
in on the states localized within the bulk, we can infer they give rise
to bulk currents.

always filled. Instead, increasing the size of the potential step
w distorts the spectrum and widens the bulk energy windows,
adding more states onto the fully filled localized bands shown
in Fig. 6(c) and increasing the current it supports. On the
other hand, as the potential gradient is reduced to zero, we
numerically observed that the bulk current goes to zero and
the corresponding states become completely delocalized. This
interpretation will be further confirmed by perturbation theory
in the following section.
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−w +w
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w = 0.2

w = 0.4
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FIG. 7. Population distribution of a simple SSH chain inside the
step potential of Eq. (23). (a) The t1 coupling connects pairs of
alternated sites, or dimers. An example of such is formed by the
pair of sites (b2, a3), shown inside the dashed circle. The two edge
sites are disconnected from the rest of the chain. (b) The population
density is evenly distributed inside each dimer, except for the dimer
at the potential step. To illustrate the population imbalance at the
step we show w = 0.2, 0.4, 0.8. The edge modes are occupied or
unoccupied depending on whether they have negative or positive
potential, respectively, with an average population 0.5 between them.
Data are show for a chain of Ly = 6 at T = 0.

IV. BULK CURRENTS FROM PERTURBATION THEORY

In this section we show how localized cylinder modes can
give rise to localized bulk currents. To that end, we analyze the
momentum p = π modes of the Haldane model on a cylinder.
For these modes Hamiltonian (15) becomes

H (π ) = t1

Ly∑
j=1

(b†
ja j+1 + H.c.)

+ t2
∑

j

(2i a†
j a j+1 − 2i b†

jb j+1 + H.c.)

+
∑

j

[Va( j)a†
j a j + Vb( j)b†

jb j]. (22)

It consists of a 1D Su-Schrieffer-Heeger (SSH) chain with
perfectly dimerized first-neighbor tunnelings t1 inside an
inhomogeneous potential Va,Vb and with complex second-
neighbor tunnelings t2. We consider a single potential step as
the simplest potential configuration that hosts localized modes
in the bulk,

Va( j) = Vb( j) =
{−w, j � Ly/2,

+w, j > Ly/2.
(23)

A. Analysis of the 1D SSH chain

We begin by studying the SSH model that appears when
we only have t1 couplings inside a potential step, with t2 = 0.
In this limit, all fermions are localized in dimers, which are
pairs of sites (b j−1, a j ) connected by a t1 coupling, as the
two sites inside the dashed circle in Fig. 7(a). There are
also two localized edge modes, each formed by a single site.
These two edge modes are decoupled from the t1 terms of
the Hamiltonian and have populations n1 and nN subject to
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the constraint n1 + nN = 1 due to half filling. As all fermions
are localized in dimers, there can be no correlations between
neighboring dimers, i.e., 〈a†

j b j〉 = 0.
The dimer modes in the bulk are degenerate and their

population is evenly distributed between their two sites,
nbj−1 = naj = 1/2, as shown in Fig. 7(b). Because they are
degenerate in energy they can rearrange themselves into delo-
calized modes along the regions with equal local potential [cf.
Fig. 6(a)]. However, the dimer modes located at the potential
step, which we will refer to as step modes, have a different
local potential at each dimer site. Therefore they have a
different energy than the rest of the bulk modes. Moreover,
there is an imbalance in the population of their two sites of
the order of the potential step w as we show in Fig. 7(b). Since
the step modes are nondegenerate, they are always localized
at the step for t2 � t1.

B. Localized currents in the cylinder

For small next-nearest-neighbor couplings t2 � t1 we can
study the Hamiltonian modes of Eq. (22) using a perturbation
theory analysis. The full mathematical derivation is carried
out in the Appendix. As the next-to-nearest-neighbor coupling
t2 is nonzero, the bulk modes are no longer localized inside
dimers, but in triplets of neighboring dimers. That is, if we
define a single dimer mode localized at sites (b j−1, a j ) as | j〉,
then the modes for small t2 � t1 are

| j(t2)〉 = | j〉 + ξ−1| j − 1〉 + ξ+1| j + 1〉, ξ−1, ξ+1 ∝ t2
t1

.

(24)
This small delocalization of all bulk modes induces correla-
tions between neighboring dimer sites 〈a†

j b j〉 that depend on
the differences between the energies and populations of the
two neighboring dimer modes [cf. Eq. (A11)].

Coming back to the analysis of the Haldane Hamiltonian
inside a cylinder, we can use Eqs. (10) and (13) together with
the dimer mode correlations 〈a†

j b j〉 to study the two-point
currents along a cylinder generated by the p = π modes. In
the homogeneous potential regions we have shown that all
dimers are degenerate and have the same population imbal-
ance. Therefore, 〈a†

j b j〉 = 0 and there are no currents inside
those regions. However, the localized modes at the edges of
the chain and at the potential step have nonzero correlations,
resulting in localized currents at the cylinder boundaries and
the potential step, respectively. For small couplings t2 � t1
and potential steps w � t1, these localized currents are

Ibulk = −4
t2w

t1
,

Iedge = 2t2. (25)

We show in Fig. 8(a) a sketch of the unit cell of the cylinder
model and the couplings inside of it. Figure 8(b) shows
the localized currents around the cylinder boundaries and
potential step due to the localization of the edge and step bulk
modes for momentum p = π .

C. Dispersion relation

The SSH chain with t2 � t1 couplings explains how lo-
calized modes give rise to localized currents on the cylinder.

FIG. 8. Currents in the Haldane cylinder with a potential step w,
arising from the Fourier mode p = π . (a) Inside the dashed-dotted
rectangle we show a sample of periodic unit cell, for which we
also show the couplings inside of it (t1: dashed and continuous
lines; t2: arrow lines). The other continuous and dashed lines are
the t1 couplings of the whole Haldane model inside a cylinder.
(b) Localized bulk currents and edge currents for a step potential
w = 0.1. Data presented for Ly = 6, T = 0.

However, we know [cf. Eq. (1)] that a Chern insulator only has
currents when it has modes with nonzero dispersion relation.
We can analyze the dispersion relation of the SSH chain
modes by introducing a momentum offset p = π + δp into
the Hamiltonian modes of Eq. (15). By treating this offset
as a small perturbation potential Vp [cf. Eq. (A16)], we can
compute the dispersion relation of a mode |ψ j〉 as

dEj

d p
(π ) = lim

p→0

Ej (π + δp) − Ej (π )

δp

= 〈ψ j |Vp|ψ j〉
δp

. (26)

For small steps w � t1 and couplings t2 � t1, we find for the
localized step and edge modes

dEstep

d p
(π ) = ±6

t2w

t1
,

dEedge

d p
(π ) = ±6t2, (27)

with the sign depending on which cylinder boundary the
mode is located at or whether the step mode has positive
or negative energy. These results, although for a different
potential, quantitatively agree with the dispersion relation of
the modes shown in Fig. 6.

V. CONCLUSIONS

Summing up, we have found that the bulk of a Chern
insulator can exhibit topological localized bulk states when
a gradient of a potential is present. These localized bulk states
can support bulk currents. They share an intrinsic robustness
against temperature and local disorder with edge currents.
However, while edge currents are confined at the boundaries
of the material, bulk currents are defined by gradients of local
potentials and can adopt any shape, extension, and strength.

We qualitatively and quantitatively verified our numerical
findings with perturbation theory. In this way we show that
the bulk currents result from the disentangling of normal bulk
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modes caused by the presence of a potential gradient. Such
a disentangling of modes in a topological material creates
localized bulk modes that support the corresponding bulk
currents. Our investigation of topological bulk currents opens
the door to further studies in more complex models, such as
fermions with spin [1], topological superconductors, or topo-
logical phases with interactions. Furthermore, bulk currents
can be access in experiments, as detailed in the optical lattice
proposal [29].

Finally, our work suggest that localized bulk states can
be used in the same applications as edge states, with greater
versatility and without the need for complex sample fabrica-
tion and shaping. To this end, it is important to emphasize
that, even though much of our quantitative study has been
implemented with stepwise functions, this is not required for
the implementation. Bulk currents may appear wherever there
is a potential gradient, and a strong combined topological
current may result from a weaker potential variation that
spreads over a whole band of the material (cf. Fig. 2).

In accordance with the EPSRC policy framework on re-
search data, this publication is theoretical work that does not
require supporting research data.
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APPENDIX: PERTURBATION THEORY

As mentioned in the main text, it is interesting to note that
at momentum p = π the model reduces to an approximate
SSH model with complex second-neighbor tunneling ampli-
tudes t2 that we can treat in a perturbative approach,

H = H0 + Vt ,

H0 = t1

Ly∑
j=1

(b†
ja j+1 + H.c.)

+
∑

j

[Va( j)a†
j a j + Vb( j)b†

jb j],

Vt = t2
∑

j

(2i a†
j a j+1 − 2i b†

yb j+1 + H.c.). (A1)

We analyze the case of a potential step of Eq. (23) at zero
temperature as the simplest one that shows both localized bulk
and edge currents. The step is located between sites b†

s−1 and
a†

s .

TABLE I. Relevant values of θ, ϕ, χ, ε to first order in w for
negative energy modes. L ( j = 1) and R ( j = Ly) are the left and
right edge modes, respectively, and the mode located at the potential
step has j = s.

j ϕ j− θ j− χ j− ε j−

L 0 2i t2
t1

1 −w

2 −i t2
t1

i t2
2t1

0 −t1 − w

2 < j < s − 1 −i t2
2t1

i t2
2t1

0 −t1 − w

s − 1 −i t2
2t1

i t2
t1

0 −t1 − w

s −i t2 (1+w)
t1

i t2(1−w)
t1

−w

t1
−√

t2
1 + w2

s + 1 −i t2
t1

i t2
2t1

0 −t1 + w

s + 1 < j < Ly −i t2
2t1

i t2
2t1

0 −t1 + w

Ly −i t2
2t1

i t2
t1

0 −t1 + w

R −2i t2
t1

0 −1 +w

1. SSH chain modes

The eigenmodes of the unperturbed Hamiltonian H0 are
localized dimers of the form

| j,−〉0 = (α ja
†
j − β j−1b†

j−1)|0〉,
| j,+〉0 = (β j−1a†

j + α jb
†
j−1)|0〉, (A2)

with α j , β j > 0, and | j,−〉 the mode with lowest energy.
Additionally, there are two modes located at the edges of the
chain,

|L〉0 = a†
1|0〉, |R〉0 = b†

Ly
|0〉. (A3)

All dimer modes have α j = β j−1 = 1/
√

2 and therefore
their population is evenly distributed between the two dimer
sites, except for the dimer located at the potential step, which
satisfies for small steps w � t1,

αs =
√

r − w

2r
= 1√

2

(
1 − w

2t1

)
+ O

(
w2

t2
1

)
,

βs−1 = t1√
2r(r − w)

= 1√
2

(
1 + w

2t1

)
+ O

(
w2

t2
1

)
, (A4)

with r =
√

t2
1 + w2.

The energy of the dimers at the step is ε0
s± = ±r, while the

energy of the rest of the bulk modes is ε0
j± = ±t1 − w if they

are located in a region with −w homogeneous local potential
and ε0

j± = ±t1 + w if they are located in a region with +w.
Additionally, for this step potential, the edge modes have
energies ε0

L = −w, ε0
R = +w. A summary of the energies of

the simple SSH chain can be found in Table I. Note that the
bulk dimer modes that are not at the step are degenerated.
Therefore, they can rearrange themselves into delocalized
modes along the bulk, as shown in Fig. 6.

2. First-order perturbation expansion

Using these simple modes of the unperturbed Hamiltonian
we can show that the perturbation potential Vt does not modify
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the energies of the edge and dimer modes at first order,

ε1
j,φ = 〈 j, φ|0Vt | j, φ〉0 = 0, ∀ j ∈ [1, Ly], φ ∈ {+,−},

(A5)
because Vt connects terms in different dimers. However, the
modes of the Hamiltonian are modified by perturbation po-
tential as

| j, φ〉1 = | j, φ〉0 +
∑

k:ε0
k,φ′ �=ε0

j,φ

〈k, φ′|0Vt | j, φ〉0

ε0
j,φ − ε0

k,φ′
|k, φ′〉0. (A6)

Because Vt connects only second-neighbor sites, a perturbed
dimer mode | j, φ〉0 consists of a linear combination of itself
and its neighboring ones | j ± 1, φ′〉0.

3. Correlations inside the chain

Let us compute the contribution of a single perturbed
eigenstate to correlation terms of the type 〈a†

j b j〉 that join
neighboring dimers. We define

θ jφ = 〈 j, φ|1a†
j b j | j, φ〉1,

ϕ jφ = 〈 j, φ|1a†
j−1b j−1| j, φ〉1. (A7)

For the lowest-energy modes φ = −, we find

θ j− = t2〈 j,−|0a†
j b j | j + 1,−〉0

〈 j + 1,−|0Vt | j,−〉0

ε0
j− − ε0

j+1,−

+ t2〈 j,−|0a†
j b j | j + 1,+〉0

〈 j + 1,+|0Vt | j,−〉0

ε0
j− − ε0

j+1,+

= 2it2α jβ j
α jα j+1 − β j−1β j

ε0
j− − ε0

j+1,−

− 2it2α jα j+1
α jβ j + α j+1β j−1

ε0
j− − ε0

j+1,+
, (A8)

ϕ j− = t2〈 j − 1,−|0a†
j−1b j−1| j,−〉0

〈 j − 1,−|0Vt | j,−〉∗0
ε0

j− − ε0
j−1,−

+ t2〈 j − 1,+|0a†
j−1b j−1| j,−〉0

〈 j − 1,+|0Vt | j,−〉∗0
ε0

j− − ε0
j−1,+

= 2it2α j−1β j−1
α j−1α j − β j−2β j−1

ε0
j− − ε0

j−1,−

+ 2it2 β j−2β j−1
β j−2α j + α j−1β j−1

ε0
j− − ε0

j−1,+
, (A9)

where the fractional terms do not contribute if the denomina-
tor is zero. In Table I we present relevant values of θ j−, ϕ j−
for the perturbed SSH model.

With this we can compute the expectation value of the
correlations between dimers,

〈a†
j b j〉 =

∑
φ=+,−

θ jφn(ε jφ ) + ϕ j+1,φn(ε j+1,φ ), (A10)

with n(ε jφ ) the occupation of dimer mode jφ, which follows
Fermi-Dirac statistics. Therefore the correlations between

dimers are

〈a†
j b j〉 = θ j− + ϕ j+1,−

= 2it2(β j−1α j+1 + α jβ j )

×
(

β j−1β j

ε0
j+1,− − ε0

j+
− α jα j+1

ε0
j− − ε0

j+1,+

)
. (A11)

This correlation is zero if the two neighboring dimer modes
have the same energies ε0

j+1,− = ε0
j−, ε0

j+1,+ = ε0
j+, and a bal-

anced population density distribution β j−1β j = α jα j+1. This
is the case for all correlations between dimer modes in the
same potential region. However, the potential step modifies
the energy and population distribution of the dimer mode
inside it, thus that mode has a nonzero correlation between
itself and its two neighboring dimer modes. The same happens
for the edge modes, which are intrinsically different from the
bulk modes and a nonzero correlation appears between them
and their respective neighbor dimer modes.

4. Two-point currents in the cylinder

These correlations give us access to the two-point currents
between sites in the lattice. We can use Eqs. (10) and (13)
together with the perturbed dimer modes to compute the
contribution of the p = π momentum modes to the localized
currents along the cylinder. At the potential step we find two
localized currents, one at each side of the step, of the form

Ias−1,bs−1 = −2
t2w

t1
+ O

(
t2

w2

t2
1

)
,

Ias,bs = −2
t2w

t1
+ O

(
t2

w2

t2
1

)
. (A12)

At the cylinder boundaries we find

Ia1,b1 = 2t2, IaLy ,bLy
= 2t2. (A13)

However, at the bulk of the cylinder, the correlations between
dimer sites are zero, so there are no currents along its bulk.

5. Dispersion relation at p = π

The dispersion relation tells us how much the energy of a
single mode changes when we vary the momentum,

dε j

d p
(p) = lim

p→0

ε(p + δp) − ε(p)

δp
. (A14)

We can model this energy change at momentum p = π by
introducing an offset potential term Vp in the perturbed SSH
Hamiltonian that models an offset in the momentum p =
π + δp. Then, analyzing how much this potential modifies the
mode energies at p = π , we can write the dispersion relation
of the SSH model as

dε j

d p
(p = π ) = 〈 j,−|1Vp(δp)| j,−〉1

δp
, (A15)
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with the offset perturbation potential

Vp = δpt1

Ly∑
j

(−ia†
j b j + H.c.) + 2δpt2

∑
j

(a†
j a j − b†

jb j )

+ δpt2
∑

j

(−a†
j a j+1 + b†

jb j+1 + H.c.). (A16)

We define for each mode | j, φ〉1,

χ j = 〈 j, φ|1(a†
j a j − b†

j−1b j−1)| j, φ〉1,

σ a
j = 〈 j, φ|1a†

j a j+1| j, φ〉1,

σ b
j = 〈 j, φ|1b†

j−1b j | j, φ〉1,

τ a
j = 〈 j, φ|1a†

j−1a j | j, φ〉1,

τ b
j = 〈 j, φ|1b†

j−2b j−1| j, φ〉1, (A17)

then, the dispersion relation (A15) of a mode | j, φ〉1 is

dε jφ

d p
= 2t1 Im{θ jφ + ϕ jφ} + 2t2χ jφ

+ 2t2 Re
{−σ a

jφ − τ a
jφ + σ b

jφ + τ b
jφ

}
. (A18)

To first order in t2, the elements θ, ϕ, σ, τ are purely imagi-
nary, so the dispersion relation is

dε jφ

d p
= 2t1 Im{θ jφ + ϕ jφ} + 2t2χ jφ. (A19)

In Table I we present relevant values for the dispersion relation
of the negative energy modes. We find that the dispersion
relation of the mode localized at the potential step is

dεs−
d p

= −6
wt2
t1

+ O

(
t2

w2

t2
1

)
, (A20)

while the edge modes have

dεL

d p
= 6t2,

dεR

d p
= −6t2. (A21)

The bulk modes all have zero dispersion relation except for
the localized modes neighboring the edge and step potential
sites,

dε2−
d p

= −dεs−1,−
d p

= dεs+1,−
d p

= −dεLy,−
d p

= −t2. (A22)
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