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Antiresonance in the spin current through a quantum dot induced by electron-phonon interaction
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We investigate the nonequilibrium spin transport through an electron-phonon coupled quantum dot, on which
an external magnetic field B0 and a rotating magnetic field [B1 cos(ω1t ), B1 sin(ω1t )] are applied. It is found
that the spin current is significantly affected by the destructive interference between electron tunneling waves
through different spin channels. As a result, dips appear in the spin current as a function of ω1 every time the
Rabi frequency is tuned to be integral numbers of the phonon frequency. It is also found that the main spin
current peak does not always exist at the resonant rotating frequency ω1 = gμBB0.
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I. INTRODUCTION

The electron-phonon interaction (EPI) determines a variety
of physical properties of nanodevices. It induces long-lasting
nonequilibrium in the electron system of a laser-excited solid
[1] and leads to degeneracy lifting of Majorana bound states
[2]. The transport properties of nanosystems have been found
to be profoundly impacted by the EPI [3–14]. Vibronic
structures appear in transport characteristics because of the
phonon satellites arising in spectral functions of nanosystem
electrons [7,9,14]. Replicas of the Kondo effect appear in the
conductance through a molecule or a quantum dot in which
the occupation of the relevant electronic level is coupled to
a phonon mode [4]. In a double-quantum-dot system the in-
terplay between strong electron-phonon coupling and interdot
tunneling can lead to a negative differential conductance [5].

Characteristics arising from EPI are naturally expected
in spin current or spin-dependent transports through a nan-
odevice [15]. The mesoscopic quantum dots are one of the
most important spin-based electronic devices and are known
as ideal systems for a detailed investigation of electronic
transport phenomena. Because of the small size of the dots,
electron transport is influenced significantly by nuclear vi-
brational degrees of freedom, i.e., phonons, which has been
observed in a variety of experiments [16–24].

II. MODEL AND FORMULATION

In this paper, we investigate the spin current through a
single-level quantum dot (QD), in which electrons are cou-
pled to a single-mode phonon bath. The single level is split
by an external magnetic field B0, ε↓ − ε↑ = ωr = gμBB0,
with g being the effective electron gyromagnetic factor and
μB being the Bohr magneton. The spins are coupled by
a rotating magnetic field [B1cos(ω1t ), B1sin(ω1t )] applied
perpendicular to B0. Spin current is generated as the QD
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couples to an electron reservoir. The model Hamiltonian
can be written as H = Hdot + HLead + HT (hereafter h̄ = 1).
Here,

Hdot =
∑

σ

[εσ + λ(b† + b) + Ud†
σ̄ dσ̄ /2]d†

σ dσ

− gμBB1(d†
↑d↓eiω1t + d†

↓d↑e−iω1t ) + ω0b†b (1)

describes the QD state. HLead = ∑
kσ εka†

kσ
akσ represents a

normal-metal lead. HT = ∑
kσ (Va†

kσ
dσ + H.c.) depicts hy-

bridization between the QD and the lead. The fermion op-
erators d†

σ (dσ ) and a†
kσ

(akσ ) create (annihilate) an electron
of spin σ =↑,↓ in the QD and the lead, respectively, and the
bosonic operator b† (b) creates (destroys) a phonon mode of
frequency ω0 in the QD. Here, λ and U are the respective
strengths of EPI and intradot e-e Coulomb repulsion.

By introducing a unitary transformation U =
exp{−iω1t

2 [(d†
↓d↓ − d†

↑d↑) + ∑
k (a†

k↓ak↓ − a†
k↑ak↑)]}, we

can eliminate the time dependence of Hamiltonian H while
transforming the system into the rotating reference,

Hr f = U −1HU + i(∂tU
−1)U

=
∑

σ

[εr f
σ + λ(b† + b) + Ud†

σ̄ dσ̄ /2)]d†
σ dσ

− gμBB1(d†
↑d↓ + d†

↓d↑) + ω0b†b

+
∑
kσ

ε
r f
kσ

a†
kσ

akσ +
∑
kσ

(Va†
kσ

dσ + H.c.), (2)

where ε
r f
↑(↓) = ε↑(↓) ± ω1

2 and ε
r f
k↑(↓) = εk ± ω1

2 are the shifted
QD and lead electronic energies for up and down spins. The
spin splitting of lead electron energy is induced by hybridiza-
tion between the QD level and conduction channel, which
propagates energy from the QD to the lead and then generates
spin chemical potentials μ↑,↓ = ∓ω1/2 in the lead. In spite
of a spin imbalance, the charge chemical potential is still μ =
(μ↑ + μ↓)/2 = 0. Due to the one-photon difference between
μ↓ and μ↑, an electron in the spin-down channel of the lead
can tunnel into the level ε

r f
↓ in the QD and then tunnel out
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into the spin-up channel after experiencing a spin-flip process
given by the rotating magnetic field. This tunneling process
repeats, and then a steady spin current builds up.

In the absence of hybridization and Coulomb repulsion,
the QD is reduced to a simple driven two-level system. It is
characterized by a coherent weight transfer, Rabi oscillation,
between the two spin states, which is complete as ω1 is tuned
to ω1 = ωr . The spin oscillation period is T = 2π/�, with
� =

√
	2 + (2gμBB1)2 being the Rabi frequency and 	 =

ωr − ω1 representing the detuning from the resonance.
We simplify the Hamiltonian (2) by introducing a new set

of Fermi operators, {c↑, c↓}, which is related to {d↑, d↓} by(
d↑
d↓

)
= S

(
c↑
c↓

)
, S =

(
cos θ − sin θ

sin θ cos θ

)
, (3)

with θ = 1
2 arctan(2gμBB1/	). In terms of the new operators,

the QD electronic states are diagonal, and the Hamiltonian (2)
turns into

Hr f
c =

∑
σ

εr f
cσ c†

σ cσ + λ(b† + b)
∑

σ

c†
σ cσ + Uc†

↑c↑c†
↓c↓

+ω0b†b +
∑
kσ

ε
r f
kσ

a†
kσ

akσ

+
∑
kσσ ′

(Va†
kσ

Sσσ ′cσ ′ + H.c.), (4)

where ε
r f
c↑(↓) = (ε↑ + ε↓ ∓ �)/2 = ε0 ∓ �/2 for the up and

down spins. In the Hr f
c frame, spin-flip events can occur when

an electron tunnels into or out of the QD, and electron-phonon
interaction may take place in the QD. Using the nonequilib-
rium Green’s functions of the QD [25], we can obtain the
spin-σ current, say, the spin-↑ current,

I↑ = iTr
∫

dω

2π
�↑{[1 − f↑(ω)]G<(ω) + f↑(ω)G>(ω)},

(5)

where

�↑ = �

(
cos2 θ − sin θ cos θ

− sin θ cos θ sin2 θ

)
, (6)

with � = 2π |V |2 ∑
k δ(ω − εk ) being the linewidth

and assumed to be independent of energy ω. fσ (ω) =
{exp [(ω − μσ )/κBT ] + 1}−1 is the Fermi distribution
function for the spin σ channel. G<,>(ω) are the Fourier
transformations of the lesser and greater Green’s functions of
the QD,

G<,>(t ) =
(

G<,>
↑↑ (t ) G<,>

↑↓ (t )
G<,>

↓↑ (t ) G<,>
↓↓ (t )

)
,

with the matrix elements being defined as G<
σσ ′ (t ) =

i〈c†
σ ′ (0)cσ (t )〉 and G>

σσ ′ (t ) = −i〈cσ (t )c†
σ ′ (0)〉.

The EPI in the dot can be eliminated by introducing
a canonical transformation: H̃ r f

cdot = eSHr f
cdote

−S , with
S = λ/ω0(b† − b)

∑
σ c†

σ cσ and the dot Hamiltonian
Hr f

cdot = ∑
σ ε

r f
cσ c†

σ cσ + λ(b† + b)
∑

σ c†
σ cσ + Uc†

↑ c↑ c†
↓ c↓

+ ω0b†b. Under this transformation, the elec-
tron operator cσ and the phonon operator b are

transformed to

c̃σ = eScσ e−S = cσ X,
(7)

b̃ = eSbe−S = b − λ/ω0

∑
σ

c†
σ cσ ,

where X = exp[−λ/ω0(b† − b)]. Replacing the operators cσ

and b in Hr f
cdot with c̃σ and b̃, respectively, we get straightfor-

wardly the transformed, electron-phonon interaction decou-
pled dot Hamiltonian,

H̃ r f
cdot =

∑
σ

ε̃r f
cσ c†

σ cσ + Ũ c†
↑c↑c†

↓c↓ + ω0b†b, (8)

with ε̃
r f
cσ = ε

r f
cσ − λ2/ω0 and Ũ = U − 2λ2/ω0, with λ2/ω0

being the electron self-energy. For simplicity we consider
the case of vanishing effective charge energy, Ũ = 0. By
applying this canonical transformation, the retarded Green’s
function gr (ω) for the isolated dot, described by Hr f

cdot, can be
calculated exactly [26]. Take, for example, the matrix element
gr

11(ω), which is the Fourier transformation of gr
11(t ), i.e.,

gr
↑↑(t ),

gr
↑↑(t ) = −iθ (t )〈{c↑(t ), c†

↑(0)}〉
= −iθ (t )[〈c↑(t )c†

↑(0)〉 + 〈c†
↑(0)c↑(t )〉]. (9)

By inserting the factor 1 = e−SeS we can transform gr
↑↑(t )

from the Hr f
cdot representation to the H̃ r f

cdot frame. Consider, for
example, the first term in the square brackets in Eq. (9),

〈c↑(t )c†
↑(0)〉Hr f

cdot
= eβ�Tr[e−βHr f

cdot eiHr f
cdott c↑(0)e−iHr f

cdott c†
↑(0)]

= eβ�Tr[e−βH̃ r f
cdot eiH̃r f

cdott c̃↑(0)e−iH̃ r f
cdott c̃†

↑(0)]

= 〈c̃↑(t )c̃†
↑(0)〉H̃ r f

cdot
. (10)

Here, in the third line the factor e−SeS is inserted, and the
cyclic property of the trace is used. Since in H̃ r f

cdot there is
no interaction between the electron part H̃el = ∑

σ ε̃
r f
cσ c†

σ cσ

and the phonon part H̃ph = ω0b†b, after putting c̃σ = cσ X and
c̃†
σ = c†

σ X † explicitly, Eq. (10) can be written as

〈c↑(t )X (t )c†
↑(0)X †(0)〉H̃ r f

cdot
= 〈c↑(t )c†

↑(0)〉H̃el
〈X (t )X †(0)〉H̃ph

= (1 − n↑)e−iε̃r f
c↑t e−�(t ). (11)

n↑ is the number of spin-up electrons in the QD. �(t ) =
g[Nph(1 − eiω0t ) + (Nph + 1)(1 − e−iω0t )], with g = (λ/ω0)2

and the number of phonons Nph = 1/{exp[ω0/(κBTph )] − 1},
where Tph is the phonon temperature. Evaluating the second
term in the same way, we find

〈c†
↑(0)c↑(t )〉Hr f

cdot
= n↑e−iε̃r f

c↑t e−�(−t ). (12)

Substituting the results of Eqs. (11) and (12) into Eq. (9) and
then transforming this equation to the energy space, we have

gr
↑↑(ω) =

∞∑
n=−∞

Ln

(
1 − n↑

ω − ε̃
r f
c↑ − nω0 + i0+

+ n↑
ω − ε̃

r f
c↑ + nω0 + i0+

)
. (13)
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Here, the identity e−�(t ) = ∑∞
n=−∞ Lne−inω0t

is used. The Franck-Condon factor Ln ≡
e−g(2Nph+1)enω0/(2κBTph )In[2g

√
Nph(Nph + 1)], with In(z) being

the nth Bessel function of the complex argument z. Here, 0+
is a positive infinitesimal.

In the same way, we can get

gr
↓↓(ω) =

∞∑
n=−∞

Ln

(
1 − n↓

ω − ε̃
r f
c↓ − nω0 + i0+

+ n↓
ω − ε̃

r f
c↓ + nω0 + i0+

)
. (14)

The nondiagonal elements of gr (ω) are easily found to be
zero, gr

↑↓(ω) = gr
↓↑(ω) = 0.

The retarded Green’s function Gr (ω) of the QD in the pres-
ence of QD-lead coupling is given by Gr

↑↓(ω) = Gr
↓↑(ω) =

0 and Gr
↑↑(↓↓)(ω) = [gr−1(ω) − �r (ω)]−1

11(22), where the re-
tarded self-energy is �r (ω) = −i�I/2, which is contributed
by electron tunneling between the QD and lead. The lesser
and greater Green’s functions can be obtained via the Keldysh
equation, G<,>(ω) = Gr (ω)�<,>(ω)Ga(ω), with the ad-
vanced Green’s function Ga(ω) = Gr∗(ω) and the lesser self-
energy matrix

�<(ω) = i�

(
cos2 θ f↑(ω) + sin2 θ f↓(ω) sin θ cos θ [ f↓(ω) − f↑(ω)]
sin θ cos θ [ f↓(ω) − f↑(ω)] sin2 θ f↑(ω) + cos2 θ f↓(ω)

)
. (15)

The greater self-energy matrix �>(ω) is given directly
when the function fσ (ω) in Eq. (15) is replaced by fσ (ω) −
1. From the equation n↑,↓ = ∫

dω
2π

ImG<
11,22(ω) the electron

numbers are self-consistently solved.
Substitution of the expression of G<,>(ω) into Eq. (5)

gives the expression of spin-up current,

I↑ = �2Tr
∫

dω

2π
τyuτyGr (ω)uGa(ω){ f↑(ω) − f↓(ω)},

(16)

where u11(22) = sin2 θ (cos2 θ ), u12(21) = sin θ cos θ , and τy is
the y component of the Pauli matrix vector. The total spin
current through the QD is defined as Is = I↓ − I↑ = −2I↑,
and the spectral function of the QD electron of spin σ is
Aσ (ω) = −Im[Gr

σσ (ω) − Ga
σσ (ω)].

III. RESULTS AND DISCUSSION

In previous studies, current exhibits satellite peaks due to
EPI [9,11,13,14]. However, in Fig. 1, which shows the spin
current as a function of the rotating frequency ω1, dips, instead

FIG. 1. Spin current at different values of B1 with, in units of
ω0, κBT = 0, κBTph = 5, � = 0.1, λ = 0.7, ωr = 2, ε0 = λ2/ω0, and
I0 = e�/π h̄.

of peaks, appear in each curve when the Rabi frequency �

is tuned to be an integral number of one phonon quantum
ω0. At each dip the corresponding � value is marked. We
attribute this phenomenon to the destructive interference be-
tween electron tunneling waves through the spin-up channel
of the QD and that through the spin-down channel. In the H̃ r f

cdot
picture, an electron of spin down of the lead can tunnel into
the spin-down channel in the QD and then tunnels out with
spin flip. It can also transfer the dot via the spin-up channel
with spin flip occurring as it enters. Equation (4) shows the
probability amplitudes for an electron to get spin flipped or
not when it tunnels into (or out of) the dot are, respectively,
V sin θ and V cos θ .

Figure 2 gives the spectral functions A(ω) of the QD
electron at three specific rotating frequencies, ω1/ω0 =

FIG. 2. The dimensionless spectral functions of a QD electron of
spin up (solid line) and spin down (dash-dotted line) corresponding
to two adjacent dips (ω1/ω0 = 3.8, 5.2) and a peak between in the
curve of gμBB1/ω0 = 1.2 in Fig. 1.
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FIG. 3. Spin current dependence of electron-phonon interaction
strength λ at gμBB1 = 3.2ω0. Other parameters are as in Fig. 1

3.8, 4.5, 5.2. At gμBB1/ω0 = 1.2 and ωr/ω0 = 2 we have
�/ω0 = 3 for ω1/ω0 = 3.8, �/ω0 = 3.5 for ω1/ω0 = 4.5,
and �/ω0 = 4 for ω1/ω0 = 5.2. In an A(ω) ∼ ω curve of spin
up (down), the solid black line (dash-dotted red line), a big
peak arises at ω = ε̃

r f
c↑ = −0.5� (ω = ε̃

r f
c↓ = 0.5�), and due

to the EPI, satellite peaks appear at −0.5� ± nω0 (0.5� ±
nω0), with n being a positive integer. For later convenience,
we label the resonant peak at ω = −0.5� (ω = 0.5�) the
0↑-phonon (0↓-phonon) band and the peaks at −0.5� ± nω0

(0.5� ± nω0) the ±n↑th (±n↓th) phonon sidebands. Fig-
ure 2(a) shows that the 3↑th band locates at the very place
where the 0↓ band lies. This is because the gap between
energy level ε̃

r f
c↓ and level ε̃

r f
c↑ is the very value of 3ω0, i.e.,

� = 3ω0. Then, the overlap between the spectral function
of spin up and that of spin down reaches a maximal value,
leading to a maximal intensity of destructive interference
between electron waves of different spins. Therefore, at ω1 =
3.8 a deep dip appears in the Is-ω1 curve of gμBB1/ω0 = 1.2
(see Fig. 1). With ω1 increasing, these two levels move away
from each other. The overlap reduces first and then expands
after it reaches a minimal value at about � = 3.5, as shown
in Fig. 2(b). A second maximal value is generated as ω1

increases to ω1 = 5.2 [� = 4; see Fig. 2(c)] when the 4↑th
band and the 0↓ one are in the same position. So a second dip
emerges at ω1 = 5.2 in the dash-dotted line in Fig. 1. This dip
is not as deep as that at ω1 = 3.8 because of [compare with
Fig. 2(a)] less overlap between spectral functions of different
spins in Fig. 2(c). The examples above tell why a dip appears
in the Is-ω1 curves every time � equals nω0 and is less deep
for larger n.

On spin current the effect of intradot electron-phonon
interaction strength is shown in Fig. 3. As in Fig. 1, the
Arabic numerals below the dot line indicate the level gap �

corresponding to each dip. Is as a function of ω1 exhibits no
dip at all when the EPI is weak, e.g., λ = 0.3ω0. However,
dips become visible as the EPI is enhanced to some point, say,
λ = 0.7ω0, and these dips are deepened as the EPI strengthens
further, as seen in the curve of λ/ω0 = 1.1. The reason is the
spectral weight is distributed among an increasing number of

FIG. 4. The dimensionless spectral functions of the QD electron
for different EPI strengths λ with � = 8ω0 and gμBB1 = 3.2ω0; the
solid line is for spin up, and the dash-dotted line is for spin down.
Other parameters are as in Fig. 1.

phonon bands for increasing λ, enlarging the overlap between
spectral functions of different spins at � = nω0, as can be
seen in Fig. 4.

The spin current depends mainly on three factors:
(1) the total spectral weight contributing to the electron

FIG. 5. Spin current dependence of electronic coupling strength
between the QD and the lead for (a) gμBB1 = 0.2ω0 and (b) 3.2ω0.
Other parameters are as in Fig. 1.
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FIG. 6. The dimensionless spectral functions of the QD electron
for different � with ω1 = 2ω0, gμBB1 = 0.2ω0 in (a) and (b) and
ω1 = 5.6ω0, gμBB1 = 3.2ω0 in (c) and (d). The solid line is for spin
up, and the dash-dotted line is for spin down. Other parameters are
as in Fig. 1.

tunneling process, (2) the intensity of destructive interference
between tunneling electron waves passing through different
conduction spin channels, and (3) the probability amplitude
for an electron to get spin flipped as it traverses the QD,
which is P = V 2 sin θ cos θ = V 2gμBB1/�. With λ = 0.3ω0

and gμBB1 = 3.2ω0, the spectral bands of different spins
are completely separated [see Fig. 4(a)]. So no destructive
interference occurs, and then no dip appears in the Is-ω1 curve,
as shown in Fig. 3 (dash-dotted line). With rising ω1 the
probability amplitude P goes up first and then down after
reaching the maximum value at ω1 = ωr , while the spectral
weight contributing to the tunneling process expands mono-
tonically. There is no doubt that Is increases as ω1 rises from 0
to 2ω0. However, with λ = 0.3ω0 it keeps increasing until ω1

rises to about 5.4ω0. This is because the expanding spectral
weight dominates the current in this rotating frequency range.
During this increase a steep rise occurs at around ω1 = 5ω0,
which results from the −1↓th and 1↑th bands entering the
bias window. As ω1 rises further, the diminishing P dominates
Is until the 0↓ and 0↑ bands enter the bias window, which
brings about a big spin current peak at ω1 slightly larger
than 11ω0. After this, P dominates again, and Is goes down
monotonically. The peak brought about by the 0↑,↓ band
become less obvious for stronger EPI (see the solid and dotted
lines in Fig. 3) since the spectral weights of these bands are
reduced (see Fig. 4).

FIG. 7. Spin current dependence of Coulomb interaction Ũ for
gμBB1 = 1.2ω0. Other parameters are as in Fig. 1.

From the discussion above we see that the biggest spin cur-
rent does not always appear at the resonant rotating frequency
ω1 = ωr . The location is decided by several factors, such as λ

and gμBB1.
As plotted in Fig. 5, the effect of the electronic coupling

strength � on the spin current is evaluated. By improving
the electronic coupling, electron tunneling into and out of the
QD is facilitated. However, for enhanced coupling the spin
current in the system considered may not increase as expected.
With increasing � the spin current of the system declines
sharply at gμBB1 = 0.2ω0 [see Fig. 5(a)] but goes up greatly
at gμBB1 = 3.2ω0 [see Fig. 5(b)]. The reason behind this
amazing phenomenon is the destructive interference discussed
above. Figures 6(a) and 6(b) show spectral functions of the
QD electron at gμBB1 = 0.2ω0 and ω1 = ωr . Compared with
Fig. 6(a), an important difference in Fig. 6(b) is that the

FIG. 8. The dimensionless spectral functions of the QD electron
of spin up (solid line) and spin down (dash-dotted line) for, in units of
ω0, Ũ = 0, 10, λ = 0, 0.3, 0.7 at gμBB1 = 1.2 and ω1 = 4.5. Other
parameters are as in Fig. 7.
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overlap between spectral functions of different spins expands
significantly, which leads to a big increase in the intension
of the destructive interference. This is why the main peak
in Fig. 5(a) goes down for rising �. For large gμBB1, say,
gμBB1 = 3.2ω0, the QD levels ε̃

r f
c↓,↑ are far away from each

other. So with rising � there is no significant increase in the
spectral functions overlap, as can be seen from Figs. 6(c) and
6(d), and then Is in Fig. 5(b) goes up.

In the case of nonvanishing effective charge energy, Ũ �=
0, the retarded Green’s function gr (ω) for the isolated dot is,
instead of Eqs. (13) and (14),

gr
σσ ′ (ω) = δσσ ′

∞∑
n=−∞

Ln

(
nσ̄

ω − ε̃
r f
cσ − nω0 − Ũ + i0+

+ 1 − nσ̄

ω − ε̃
r f
cσ − nω0 + i0+

)
. (17)

In achieving Eq. (17), the difference between Nph and Nph + 1
in the expression of �(t ) has been ignored. Such approxima-
tion works well in our study, which does not require extremely
low phonon temperatures. Following the same method as that
to obtain Eq. (16), we get the spin current through the QD
with finite Ũ .

Figure 7 shows the spin current Is as a function of rotating
frequency ω1 for both vanishing and nonvanishing charge
energy cases. Is exhibits the same properties for both cases,
except decreasing spin current peaks for increasing Ũ . This
is because for the same EPI strength the spectral weight
distribution contributing to the spin current is the same, except

descending spectral peaks for rising Ũ [see Figs. 8(c) and
8(d)]. The EPI transfers spectral weight from the bands around
ε̃

r f
cσ + Ũ to bands around ε̃

r f
cσ , as shown in Fig. 8. The stronger

the EPI is, the larger the weight transferred is because of the
smaller occupation number at ε̃

r f
cσ .

IV. CONCLUSIONS

In summary, we have investigated the spin current via
an electron-phonon coupled quantum dot exposed to a ro-
tating magnetic field and coupled to a normal-metal lead.
Both vanishing and nonvanishing charge energy cases were
discussed. When the electron phonon interaction is strong
enough, antiresonances are generated in the spin current at
Rabi frequencies of an integral number of the phonon fre-
quency. This antiresonance is attributed to destructive interfer-
ence between electron tunneling waves through different spin
channels. Due to this destructive interference, the spin current
may decline for increasing electronic coupling between the
dot and the electron reservoir. The spin current in the system
is decided by (1) the total spectral weight contributing to the
electron tunneling process, (2) the intensity of the destructive
interference, and (3) the probability amplitude for an electron
to get spin flipped as it traverses the QD. Therefore, its main
peak is not always at the resonant rotating frequency.
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