
PHYSICAL REVIEW B 102, 045421 (2020)
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Surface nanopatterns formed by ion beam sputtering (IBS) frequently include a high density of structural
defects, which seriously limit their practical applications. Recent theoretical work [M. P. Harrison and R. M.
Bradley, Phys. Rev. E 93, 040802(R) (2016)], based on the anisotropic Kuramoto-Sivashinsky (aKS) equation,
proposes that rocking a substrate during IBS can produce defect-free patterns under certain requirements. We find
experimentally, via low-energy Kr+ irradiation of Si and amorphous carbon targets, that rocking the substrates
generally improves the order of the ripple patterns. Indeed, order is improved even when conditions required in
the aKS model may not be satisfied. Through numerical simulations, we show that a suitable generalization of
this equation, in which conserved nonlinear effects are incorporated, reproduces satisfactorily the pattern order
in our experimental conditions.
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I. INTRODUCTION

Ion beam sputtering (IBS) is a facile tool to fabricate
nanopatterns at surfaces via physical self-assembly induced
by bombardment of solid targets with energetic ions [1–4].
For near-normal incidence of the ion beam, nanodot patterns
form [5,6], while nanoripple patterns emerge under oblique
incidence angle conditions [7,8]. By changing the beam en-
ergy Eion, ion flux f , total ion fluence F (which is the product
of f times the total irradiation time), and the ion source, as
well as the ion incidence angle, the scales of the patterns
can be controlled. Moreover, IBS is fast, cheap, and easy
to control; it can be easily scaled to the sizes requested for
various applications and is applicable to any solid substrates,
all of which makes IBS an attractive tool for nanopatterning.

IBS-produced patterns, however, include significant den-
sities of structural defects, a common drawback of this self-
assembly process which often limits its applications [4], there
having been experimental proposals to decrease the number
of such defects, e.g. by sequential IBS [9]. Recently, Harrison
and Bradley (HB) [10] predicted IBS of periodically rocked
substrates to produce virtually defect-free patterns. They con-
sider the anisotropic Kuramoto-Sivashinsky (aKS) equation
[1,11,12] as a long used nonlinear model for the evolution of
the surface height h(x, y, t ) in IBS [13], namely,

ht = −Ahxx + A′hyy − B∇4h + 1

2

(
λh2

x + λ′h2
y

)
, (1)

where t is time, x (y) is the target plane coordinate along
(perpendicular to) the projection of the ion beam direction,
and subscripts denote partial derivatives; the coefficients A
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and A′ model curvature-dependent erosion [14], B quantifies
the relevance of thermal surface diffusion according to the
seminal proposal in Ref. [14], and λ, λ′ are coefficients of
the so-called Kardar-Parisi-Zhang (KPZ) nonlinearities [15],
which reflect the dependence of the erosion rate on the
local slopes [1,11]. While coefficient B in Eq. (1) is beam
independent [14], A, A′, λ, and λ′ do depend on irradiation
conditions, specifically on the angle of incidence θ between
the ion beam and the normal to the unrocked target [1,11].
Thus, periodically rocking the substrate (changing θ between
two fixed values α and β, see Fig. 1) makes these coefficients
change periodically in time.

For A, A′ > 0, Eq. (1) predicts a ripple structure which is
periodic along the x direction, with ripple ridges along the
y direction. The discussion of the effect of rocking becomes
simplified for the case in which h is independent of y, Eq. (1)
describing a one-dimensional (1D) substrate [10]. Allowing
the polar angle θ to change periodically between two values
α and β, as shown in Fig. 1, the numerical study of Eq. (1)
predicts nearly defect-free ripple patterns to form on the
rocked surface under certain rocking and sputter conditions,
while the unrocked surface shows a significant density of
structural defects under otherwise the same sputter conditions
[10].

The first condition for defect-free pattern formation is that
λ should change signs during rocking [10]. Intuitively, this is
because, in absence of nonlinear terms, the linear instability
that occurs in Eq. (1) amplifies a specific Fourier mode of the
height exponentially faster than all other modes, which im-
proves surface ordering. Meanwhile, the λ-nonlinearity arrests
amplitude growth once it sets in with a nonzero coefficient
[16,17]. Based on theoretical and experimental indications
[1,18], it is expected that λ(θc) = 0 for a certain value of the
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FIG. 1. Schematic of the rocking geometry during IBS, where θ

is the polar incidence angle between the Kr+ beam (yellow arrow)
and the (unrocked) surface normal (so that θ = α in this sketch). The
sample is rocked around the y axis, which is perpendicular to the
projection of the beam on the (x, y) substrate plane, so θ changes
periodically between the fixed values α and β, with �θ = β − α

being the span of polar angles during rocking.

incidence angle θc. Thus, a practical suggestion for exper-
iments made in Ref. [10] is to rock the substrate around
the polar angle θL where the linear instability is maximized,
assuming θL ≈ θc. Hence, one should employ α and β values
such that

α < θL < β. (2)

Second, optimal order in the ripple pattern is numerically
achieved [10] for rocking frequencies ν such that

0.2σ � ν � 0.4σ, (3)

where σ is the linear growth rate of the fastest growing mode
on the unrocked substrate for the given sputter condition [14].
In the case of the aKS equation, Eq. (1), this linear growth rate
is given by [10]

σaKS = A2

4B
, (4)

so the midpoint value of the optimal frequency interval de-
scribed by Eq. (3) is estimated by the aKS equation as

νaKS � 0.3A2

4B
. (5)

The analysis in Ref. [10] extends to 2D substrates and con-
siders differences between stepwise (discrete) and sinusoidal
(continuous) rocking, without substantial changes to the phys-
ical description just described.

In this paper, we test experimentally the theoretical pre-
dictions from Ref. [10] by rocking targets during IBS by a
broad Kr+ beam at low energies. To assess the generality of
the behavior for different materials, we employ Si(100) and
amorphous-carbon (a-C) targets. Our experiments show that
substrate rocking during IBS indeed improves the order of
the ensuing patterns compared with what is obtained on the
unrocked surfaces for the same irradiation conditions. Within
our experimental angular precision, the proposed rocking
condition, Eq. (2), is not always required to obtain patterns
with improved order. After checking numerically that Eq. (2)
is indeed a requisite for defect-free patterns for the 2D aKS

equation, we search for a minimal extension of this model
which can rationalize our experimental findings. We find
that a suitable anisotropic generalization of the so-called
extended KS (eKS) equation [6,16], which essentially adds a
conserved-KPZ nonlinearity to Eq. (1), can elucidate qualita-
tively our morphological observations on the rocked surfaces
within a unified theoretical description.

The paper is organized as follows. Our experimental meth-
ods are described in Sec. II. This is followed by Sec. III, which
contains our experimental results for Si targets at two different
energies, and for a-C targets at one of these energy values.
This set of conditions allows us to assess the robustness of our
results with respect to changes in the target composition and
with respect to changes in the ion energy. The final part of this
section is devoted to numerical results on the aKS and eKS
equations, and to comparisons with the experimental results.
Further discussion is provided in Sec. IV, which is followed
by a summary and our conclusions in Sec. V.

II. EXPERIMENTAL

IBS is performed in a chamber with its base pressure in low
10−9 Torr. A broad Kr+ beam is produced by a Kauffman-type
ion source (Physical Electronics, 04-161 Sputter Ion Gun),
with 10-mm diameter at the substrate when incident normal to
the surface (θ = 0◦). The angular dispersion of the ion beam
is approximately ± 1.35◦ as judged from the beam profile
measurement provided by the manufacturer. The ion current is
less than 10 μA at normal incidence, from which the incident
ion flux f is estimated. Given that secondary electrons also
contribute to the target current, the thus-determined value of
f only sets an upper limit for the actual ion flux. The patterns
formed on the substrates are imaged ex situ by an atomic force
microscope (AFM; Park Systems XE-100) in the noncontact
mode. The images are, then, analyzed using the SPIP (Image
Metrology) package.

Concurrent with bombardment, both Si(100) and a-C sub-
strates are rocked around an axis in the substrate plane, which
we consider as the y axis, see Fig. 1, at a frequency ν in the
0.01 min−1 to 0.3 min−1 range. Substrate rocking is actuated
by an ac-servo motor that is controlled by the LabView pro-
gram [19]; the orientation of the sample is determined with a
precision of 0.036◦. Continuous rocking produces much better
ordered patterns than discrete rocking under otherwise identi-
cal sputter conditions, see Appendix A for details. Hence, we
consider continuous rocking in the present paper.

III. RESULTS

A. Determination of optimal frequencies

To implement the scheme proposed by HB [10], we need
to determine the optimal rocking frequencies described by
Eq. (3). Experimentally, an estimate for the rate σ entering
this condition can be obtained based on the behavior of the
system at small irradiation times when the surface is assumed
to be well described [2,4] by the linear approximation of,
e.g., Eq. (1). The surface height is thus seen to evolve as a
linear superposition of Fourier modes whose amplitudes grow
or decay exponentially in time, being dominated by the one
corresponding to the ripple structure [2,4]. This translates into
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FIG. 2. (a) Surface width W (θ ) as a function of the polar inci-
dence angle θ for target atomic species, ion energy Eion, and total ion
fluence F as specified by the corresponding legend. The value of the
incidence angle at which W (θ ) reaches its maximum for the given
sputter condition defines θL , see the text. The graphs have different
vertical offsets for clarity of presentation and dashed lines are guides
to the eye. (b) Evolution of W (t ) as a function of irradiation time t for
experiments performed at the fixed θ = θL value determined in the
corresponding box of (a). The red solid lines show exponential fits
to the observed behavior of the roughness in the early stage or linear
regime as W (t ) ∝ eσ t , where σ is assumed to be the linear growth
rate of the fastest Fourier mode of the surface height, having min−1

units in all cases. The employed flux f is indicated at the bottom of
each figure in the right column.

all height-related quantities. In particular, the surface width or
roughness, W (root-mean-square of the height distribution),
evolves in the linear regime as W ∝ eσ t , where the coefficient
in the argument of the exponential factor is theoretically
predicted [2,4] to be σ = A2

max/(4B), with Amax being the
(absolute value of the) most negative among the coefficient
of the second-order derivative terms, Amax = A in Eq. (1).
Note, in general, A is a θ -dependent quantity, while nonlinear
effects compete with, and mitigate, the linear instability just
described. In the context of the aKS equation, nonlinearities
are expected to cancel exactly at some incidence angle θ = θc.
HB then proposed [10] to experimentally measure the surface
roughness for different angles and determine σ at the value
θL which maximizes W (θ ) for the given Eion and F , as an
approximation of θc. In this process, one should make sure
that all measurements are safely within the linear regime of
evolution, as the onset of nonlinear effects is also nontrivially
θ dependent [20].

We have taken such an approach in our experiments, with
results shown in Fig. 2. Specifically, Fig. 2(a) displays the
behavior of the roughness as a function of the incidence angle

for the Si(100) substrates with Eion = 0.5 keV and 2 keV, and
for the a-C substrate using Eion = 2.0 keV, top to bottom. The
corresponding W (θ ) functions display maxima around 68◦,
75◦, and 75◦, respectively, which will thus be our respective
estimates for θL. In turn, we investigate the temporal evolution
of W (t ) fixing θ = θL for each case, see Fig. 2(b). The initial
data for W (t ) follow quite closely exponential fits of the form
W (t ) = W0 eσ t (solid red lines), which yield σ � 0.21 min−1

for the Si targets irrespective of Eion, and σ � 0.32 min−1

for the a-C target. These constitute our best estimates for the
linear growth rate of the fastest growing Fourier mode on
the unrocked substrates. Using these values and according
to the results obtained in Ref. [10] given by Eq. (3), the
potential optimal rocking frequencies are 0.042 min−1 < ν <

0.084 min−1 for Si and 0.06 min−1 < ν < 0.12 min−1 for a-C
targets under the given sputter conditions.

B. 0.5 keV bombardment of Si targets

We next perform experiments at Eion = 0.5 keV on Si
targets which are rocked in a range of frequencies, from
0.017 min−1 up to 0.275 min−1, which is wider than and
includes the HB-estimated range for the optimal frequency
given by Eq. (3). The incident ion flux is f = 0.625 nm−2 s−1,
while the total ion fluence has been set to F = 5308 ions
nm−2. The results are shown in Fig. 3. Specifically, Figs. 3(a)
and 3(b) show the patterns formed by IBS on unrocked
surfaces at θ = α = 62◦ and θ = β = 70◦, respectively. Then,
Figs. 3(c)–3(h) show the ripple patterns produced on Si sub-
strates which are rocked within the incidence angle interval
[α, β] at various values of the rocking frequency ν, while
keeping all other sputter conditions unchanged. Considering
the angular diameter of the ion beam to be 3.5◦, we choose
�θ = β − α = 8◦ to warrant well differentiated sputter ef-
fects at α and β. Recalling the θL = 68◦ value as estimated
in Sec. III A for the present choice of target and ion energy,
the rocking angle condition Eq. (2) seems approximately
satisfied.

The corresponding 1D power spectral density (PSD) is
shown below each AFM image in Fig. 3. This is computed
as the PSD [21] of 1D cuts along the x axis of the 2D top
view, readily allowing us to quantify the properties of the
ripple patterns. Upon visual inspection of the images, the
order of the patterns on the rocked surfaces in Figs. 3(c)–
3(h) seems pronounced, as compared with those formed on
the unrocked or stationary substrates in Figs. 3(a) and 3(b).
Indeed, all the PSDs of the rocked surfaces show well-defined
peaks, in sharp contrast to the stationary surfaces, whose PSD
maxima are much more rounded; this indicates that rocking
improves the order in the pattern for all values employed of
the rocking frequency. Still, the quality of the order depends
sensitively on ν. In particular, the PSD shown in Fig. 3(f) for
ν = 9.87 × 10−2 min−1 shows a markedly sharp peak.

As a quantitative measure of the order of each ripple pat-
tern, we take the amplitude A and the normalized width �k/k◦
of the peak in the 1D PSD, where k◦ is the wave vector of the
center of the peak. Both A and �k/k◦ are obtained by curve
fitting each PSD with a Gaussian function Ae−(k−k◦ )2/�k2

after
subtracting the background, as illustrated in Fig. 3(i) for one
of the PSDs, and as summarized in Fig. 3(j). Larger values of
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FIG. 3. Unrocked Si surfaces sputtered at (a) θ = 62◦ and (b) θ = 70◦. (c)–(h) Irradiated Si substrates rocked at frequency values ν

indicated on the lower horizontal ν-scale, with α = 62◦ � θ � β = 70◦; thus, the HB condition Eq. (2) is met, with �θ = 8◦. In all cases,
Eion = 0.5 keV, f = 0.625 nm−2 s−1, F = 5308 nm−2, and images are 1 × 1 μm2. The 1D PSD along the x axis appears below each AFM
image. (i) The peak of the 1D PSD corresponding to (f) is fit by a Gaussian peak (solid green line) and background (dotted green line). The
best fit of the full PSD appears as a red solid line. (j) Plot of the amplitude A (open symbols), normalized width �k/k◦ (filled blue symbols)
of the Gaussian peak, and the coherence length along the y axis λy (filled green symbols) as functions of the rocking frequency ν. Here, λy

is estimated by the peak position of the 1D power spectral density along the y axis. Lines guide the eye. The pink shaded region on the ν

scale below (c)–(h) and in (j) indicates the range of frequencies given by Eq. (3) using σ = 0.21 min−1 as obtained from the data depicted in
Fig. 2(b).

A and smaller values of �k/k◦ indicate better space ordering
of the pattern [21]. Both A and �k/k◦ show sharp extrema
as a function of the rocking frequency ν, with the maximum
in A(ν) and the minimum in �k/k◦(ν) being simultaneously
observed around ν = 9.9 × 10−2 min−1. The pink-shaded
region on the ν scale below Figs. 3(c)–3(h) and in Fig. 3(j)
indicates the range of frequencies given by Eq. (3) using
σ = 0.21 min−1 as obtained from the data in Fig. 2(b). As
readily seen in the figure, the optimal ordering achieved in
our experiments, Fig. 3(f) for ν = 9.87 × 10−2 min−1, occurs
quite close to the upper boundary of the theoretically predicted
frequency range, Eq. (3), from Ref. [10]. Actually, order also
becomes optimal along the y axis under these conditions, see
Fig. 3(j) for a plot of the coherence length of the ripple pattern
along the y axis, λy, as a function the rocking frequency. Here,
λy is estimated from the peak position of the 1D PSD along the
y axis and is seen to peak around the rocking frequencies giv-
ing the best order along the x axis, indicating that rocking does
improve the order of the pattern on the fully 2D surface. As

will be seen in Secs. III C and III D below, this is also the case
for the two other surfaces examined. Finally, inspection of the
values of A(ν), �k/k◦(ν), and λy at very small and very high
frequencies indicates that, away from a certain range of values
for ν, the substrate moves too slowly or too quickly for ripple
ordering to substantially benefit from the rocking procedure.

C. 2 keV bombardment of Si targets

We further examine the predictions of HB for a higher
value, Eion = 2 keV, of the ion energy, using the same Si(100)
substrate as in the previous section and f = 0.875 nm−2 s−1

and F = 2182 ions nm−2 for the incident ion flux and total
ion fluence, respectively. For this higher energy, θL increases
to θL � 75◦ while the linear growth rate remains approx-
imately unchanged, σ � 0.21 min−1, recall Figs. 2(a) and
2(b), respectively. Actually, the new value of θL happens to
be very close to an incidence angle θ � 80◦ ≡ θR, at which
we observe the ripple structure on unrocked targets to change
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FIG. 4. Surface patterns produced on Si(100) for Eion = 2 keV,
f = 0.875 ions s−1 nm−2, and F = 2182 ions nm−2. (a) Unrocked
substrate for a fixed value of the incidence angle θ = 80◦ ≡ θR.
(b) Unrocked substrate for the fixed value of the incidence an-
gle which maximizes W , θL = 75◦, as obtained from Fig. 2(a).
(c) Rocked targets around θL , using 71◦ � θ � 79◦ with ν = 6.9 ×
10−2/min. Both images (a) and (b) are of 1 × 1 μm2, while the size
of the image (c) is 3 × 3 μm2.

drastically, displaying a much more complex structure along
the y direction, as compared to the ripple patterns thus far
discussed, see Fig. 4(a). Such an angle θR may perhaps
correspond to the value predicted by the classic BH model at

which the ripple structure rotates by 90◦, due to A′ becoming
negative in Eq. (1) and such that A′(θ ) < A(θ ) for θ � θR

[2,4,14]. In any case, we consider the behavior seen at θ = θR

as an indication of some sort of biaxial ripple instability, fre-
quently reported in IBS of Si targets [4]. For unrocked targets,
the biaxial instability is already hinted at when irradiating
for θ = θL = 75◦, as evidenced by the severe truncation of
ripples along the y direction observed on the ensuing pattern,
see Fig. 4(b). If the sample is rocked around θL, the thus
formed ripple pattern, shown in Fig. 4(c), features significant
coarsening and an increased disorder, as compared with the
pattern formed on a stationary substrate with the ion beam
incident at θL, Fig. 4(b). This indicates a detrimental effect of
the biaxial instability on the order of the ripple pattern and
motivates us to perform rocking experiments using a reduced
value for the maximum incidence angle, β, in order to stay
safely away from θR. Accordingly, we choose β < θL = 75◦,
specifically, we take α = 65◦ and β = 73◦. Note that, as such,
this rocking condition would not satisfy Eq. (2).

In contrast to the cases shown in Figs. 4(a) and 4(c), the
IBS ripple patterns formed on unrocked Si substrates which

FIG. 5. Unrocked Si surfaces sputtered at (a) θ = 65◦ and (b) θ = 73◦. (c)–(h) Irradiated Si surfaces rocked at frequency values ν indicated
on the lower horizontal ν scale, with 65◦ � θ � 73◦ < θL = 75◦, hence �θ = 8◦. In all cases, Eion = 2 keV, f = 0.875 s−1 nm−2, and F =
2182 nm−2, and images are 1 × 1 μm2. For each AFM image, the 1D PSD along the x axis appears below and the inset shows the height-height
correlation function. (i) Plot of the amplitude A (open symbols), normalized width �k/k◦ (filled blue symbols) of the Gaussian peak, and the
coherence length along the y axis λy (filled green symbols) as functions of the rocking frequency ν. Here, λy is estimated as in Fig. 3. Lines
guide the eye. The pink shaded region on the ν scale below (c)–(h) and in (i) indicates the range of frequencies given by Eq. (3) using
σ = 0.21 min−1 as obtained from the data depicted in Fig. 2(b).

045421-5



SUJIN JO et al. PHYSICAL REVIEW B 102, 045421 (2020)

are sputtered at θ = 65◦ and θ = 73◦ both show a somewhat
mitigated biaxial instability, see Figs. 5(a) and 5(b), respec-
tively. Also fulfilling expectations on the increase of the ripple
wavelength with ion energy [20], the ripple wavelengths are
now larger in Figs. 5(a) and 5(b) than those obtained on
unrocked Si targets irradiated at similar angles of incidence
but smaller Eion, Figs. 3(a) and 3(b).

Figures 5(c)–5(h) show representative patterns formed on
the rocked Si surfaces for various values of the rocking
frequency ν around the range estimated in Sec. III A, under
otherwise the same sputter condition as for the unrocked
targets. To assess the order of the ripple patterns, we again
compute the 1D PSD of each pattern, which is presented
below the corresponding AFM image. From each PSD curve,
both A and �k/k◦ are obtained as previously described,
results being summarized in Fig. 5(i). For most rocking fre-
quencies ν, the normalized width �k/k◦ is smaller and the
amplitude A is larger than those of the unrocked surfaces.
Hence, the rocking protocol almost invariably improves the
order in the resulting pattern, as compared with the results
obtained on the stationary surfaces. This is particularly clear
when comparing, e.g., Fig. 5(b) for an unrocked target with
what is obtained in Figs. 5(c) or 5(h) for rocking conditions
under relatively low or high values of ν respectively.

The optimally ordered patterns, as defined by featuring
maximum A and minimum �k/k◦ values, correspond to
Figs. 5(d)–5(f), as already suggested by visual inspection of
both the patterns and of their height-height correlation maps
[21] provided in the corresponding insets. Again, order also
becomes optimal along the y axis under these conditions,
see Fig. 5(i) for a plot of λy as a function of the rocking
frequency. Remarkably, although within our angle precision
Eq. (2) is not satisfied, the intermediate values of ν at which
these morphologies are obtained are approximately within the
interval described by Eq. (3); note, however, that the opti-
mum condition, Fig. 5(f), appears to be already outside such
frequency interval. Thus, well-ordered patterns are obtained
even if the present rocking condition α < β < θL does not
imply a change in the sign of λ, which is required for order
enhancement when modeled via the aKS equation [10].

D. 2 keV bombardment of a-C targets

In this section, we consider a different material, a-C, to
further confirm the possibility for substrate rocking to enhance
ordering of nanoripple patterns without the need of interme-
diate stages in which nonlinear effects cancel out, specifically
that λ changes signs as expected within the description based
on the aKS equation [10].

As noted above, for a-C targets using Eion = 2 keV, it is
found that θL = 75◦, see Fig. 2(a). The pattern formed by
IBS of an unrocked a-C substrate at θ = θL displays rectan-
gular features as shown in Fig. 6(b), which might suggest
an impending ripple reorientation transition [14,22]. Since
the associated biaxial instability degrades the order of the
ripple pattern very seriously, as in Sec. III C we will not
rock the substrate around θL. In this case, we set β = θL and
choose α = 67◦, so �θ = 8◦, as for our experiments with Si
substrates.

IBS of an unrocked a-C target for θ = α actually leads
to a well-defined ripple pattern, as shown in Fig. 6(a). Fig-
ures 6(c)–6(h) show the patterns formed on the a-C surfaces
rocked at various values of ν, via IBS under otherwise the
same Eion = 2 keV sputter condition as for the stationary
targets, and using f = 0.875 nm−2 s−1 and F = 892 ions
nm−2. Below each image, its 1D PSD is displayed, while the
corresponding A and �k/k◦ are shown as functions of ν in
Fig. 6(i). Analogous to the previous results, ripple ordering is
enhanced by rocking as compared with results on stationary
targets. While such an enhancement is less pronounced for
relatively low or high rocking frequencies, it becomes optimal
for intermediate values of ν. Specifically, these correspond to
ν between 13.8 × 10−2 min−1 and 17.3 × 10−2 min−1, shown
in Figs. 6(f) and 6(g). Such a range of values is slightly above
the interval specificed by Eq. (3), highlighted with color on
the ν axes appearing in Fig. 6. Actually, order also becomes
optimal along the y axis under these conditions, see Fig. 6(i)
for a plot of λy as a function the rocking frequency. As is
the case of the aforementioned experiments with Si, despite
using a different angle interval which may differ from the
one prescribed by Eq. (2), rocking again proves effective in
improving the order of the pattern as compared with topogra-
phies produced on stationary targets.

E. Continuum models

Thus far, our experimental observations agree with the
theoretical expectation proposed by HB [10], in the sense
that rocking indeed improves spatial ordering of IBS-induced
surface nanopatterns, there being a finite range of values
for the rocking frequency in which order becomes optimal.
However, more detailed predictions derived in Ref. [10] reach
a varying degree of agreement with our experiments.

To begin, when invoking the results from Ref. [10], one
is working under the assumption that the coefficients A and
A′ in Eq. (1) do not change under rocking. Actually, HB
also discuss the (more realistic) alternative possibility that,
in our notation, A(α) 	= A(β ), showing that although such a
behavior may be detrimental to the quality of the pattern,
order improvement can still be achieved for suitable parameter
choices. As the detailed discussion provided on this aspect in
Ref. [10] corresponds to rocking of 1D substrates, we have
performed numerical simulations of the full 2D aKS equation,
Eq. (1), to confirm the generality of such a conclusion for the
physically more realistic case of 2D rocking target surfaces.
In all our numerical simulations, we have employed a finite-
difference discretization scheme in space (with lattice spacing
δx = 0.5) and a fourth-order Runge-Kutta algorithm for the
time evolution (using time step δt = 2 × 10−4), and periodic
boundary conditions, as, e.g., in Ref. [23]. As an initial
condition, we employ uncorrelated, Gaussian random noise
with a small amplitude of order 10−2 in the nondimensional
units employed, while we have checked that results to not
change appreciably for other values of δx and δt .

Sample results of our numerical simulations of Eq. (1)
are shown in Fig. 7. These correspond to different putative
(continuous) rocking protocols for each of which, not only
λ(α) 	= λ(β ), but also A(α) 	= A(β ). The right column of
the figure corresponds to ranges of values for λ in which,

045421-6



ORDER IMPROVEMENT OF SURFACE NANOPATTERNS VIA … PHYSICAL REVIEW B 102, 045421 (2020)

FIG. 6. Unrocked a-C surfaces sputtered at (a) θ = 67◦ and (b) θ = 75◦. (c)–(h) Irradiated a-C surfaces rocked at frequency values ν

indicated on the lower horizontal ν scale, with α = 67◦ � θ � β = θL = 75◦, hence �θ = 8◦. In all cases, Eion = 2 keV, f = 0.875 nm−2 s−1,
and F = 892 nm−2, and images are 1 × 1 μm2. For each AFM image, the 1D PSD along the x axis appears below. (i) Plot of the amplitude
A (open symbols), normalized width �k/k◦ (filled blue symbols) of the Gaussian peak, and the coherence length along the y axis λy (filled
green symbols) as functions of the rocking frequency ν. Here, λy is estimated as in Fig. 3. Lines guide the eye. The pink shaded region on the
ν scale below (c)–(h) and in (i) indicates the range of frequencies given by Eq. (3) using σ = 0.32 min−1 as obtained from the data depicted in
Fig. 2(b).

although λ(α) 	= λ(β ), this parameter does not change signs.
As expected from Ref. [10], no improvement in surface
ordering takes place, the corresponding ripple arrangements
being quite disordered, as generally expected for the aKS
equation at long times in large spatial domains [11–13]. In
contrast, in the left column in Fig. 7, where conditions are
such that λ does change sign under rocking, virtually perfect
order is always observed when ν is close to the theoretically
predicted optimum [10] in spite of the fact that, say, A(α) =
0.5 	= 1.0 = A(β ). Here, A(α) and A(β ) are chosen to reflect
the difference in the ripple wavelengths of the patterns on
the stationary substrates sputtered at θ = α or θ = β. We
have checked in additional simulations (see Appendix B) that
the specific numerical values of the parameters do not play
a relevant role in this qualitative behavior, which seems to
be quite generic for Eq. (1). Moreover, a general trend is
observed (see again Appendix B), such that an increase in
the difference between A(α) and A(β ) implies a decrease of
the range of rocking frequencies producing virtually perfect
order.

Considering our experiments on Si at Eion = 0.5 keV, the
overall agreement with the HB picture of rocking seems
substantial. Indeed our experiments, being consistent with
the angle condition prescribed by Eq. (2), lead to optimal
ripple ordering when rocking proceeds at a frequency (almost)
within the theoretically predicted interval given by Eq. (3),
recall Fig. 3. To date, the precise dependence of the coefficient
λ appearing in the aKS equation with the incidence angle
θ is not well known. Explicit formulas are available in Ref.
[1], which were derived by extending to nonlinear order
Bradley and Harper’s results [14] on the dependence of the
local erosion rate on the local surface geometry, according
to Sigmund’s classic description of energy deposition from
collision cascades [3,4]. To apply the result from Ref. [1],
knowledge is in turn required on the average ion penetration
depth and the lateral stragglings of the assumed Gaussian
distribution of energy deposition. Simulations (not shown)
using the Stopping and Range of Ions in Matter (SRIM)
package [24] yield 8.2 nm, 2.6 nm, and 2.4 nm values,
respectively, for these parameters which, once fed into the
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FIG. 7. Top views of surface morphologies obtained from nu-
merical simulations of the 2D aKS equation, Eq. (1), at steady state
for A′ = 1.0, B = 1.0, and λ′ = 2. The parameters A and λ change
periodically in the [A(α), A(β )] = [0.5, 1.0] and [λ(α), λ(β )] inter-
vals, respectively, with the latter being specified on each panel. The
rocking frequency employed, ν = 0.04, corresponds to Harrison and
Bradley’s estimate, Eq. (5) [10], where we have used A = (A(α) +
A(β ))/2 = 0.75. All units are arbitrary.

expression for λ(θ ) [1], predicts θSRIM
c � 65◦ as the incidence

angle at which the corresponding nonlinear term cancels out.
This value is not far from the θL � 68◦ value estimated from
the experiments reported in Sec. III C. In view of the many
approximations involved in this calculation and of our angular
uncertainties, the proximity between these two values may be
even coincidental, but is still suggestive of the applicability
of the aKS equation to our experiments on Si with Eion =
0.5 keV. We would like to note that the expressions for, e.g.,
the linear-term coefficients A and A′ derived in Ref. [1] are
known not to be correct, as they predict pattern formation
for θ = 0◦ under the present conditions, which contradicts
observations, see Ref. [4] and references therein for a detailed
discussion.

Our experimental results for Si at higher energy (Eion =
2 keV) or with a-C targets contrast, however, with our results
on Si at Eion = 0.5 keV, from the point of view of their com-
parison with predictions by the aKS equation under rocking
conditions. While experimental errors affect the determination
of θL and the extent to which θL approximates the θc value at
which λ(θc) = 0 in the aKS equation, the systems addressed
in Secs. III C and III D may not satisfy Eq. (2), under which
rocking is predicted by the aKS equation to enhance ordering.
And while our 2 keV rocking experiments do achieve order
improvement for a finite range of ν values, as expected from
the point of view of the aKS equation, the optimal frequency
seems to overshoot the aKS-predicted range more clearly than
in our 0.5 keV results. Note that the above-predicted range

FIG. 8. PSD of 1D interfaces at steady state from numerical
simulations of (a) and (b) the 1D (no y dependence) aKS equation,
Eq. (1), and (c) the 1D (no y dependence) eaKS equation, Eq. (6),
under rocking conditions such that λ ∈ [λ(α), λ(β )], with intervals
as indicated in each panel. The rocking frequency ν = 0.075 in all
cases. The remaining parameter values are A = 1 and B = 1. All
units are arbitrary.

assumes A is θ independent. If we allow A to change during
rocking as the experimental observation indicates, the over-
shooting increases further, since the optimal rocking range
narrows as found in Fig. 11(b). Recall that Eq. (2) stems from
the condition that λ changes signs during rocking. Figure 8(a)
shows the surface PSD from a numerical simulation (in which
the y dependence has been dropped, for simplicity) of the aKS
equation, Eq. (1), under rocking such that λ does not change
signs. Indeed, the broad peak of the PSD speaks of quite a
disordered ripple structure. Quite a different result is seen in
Fig. 8(b), where a sharp peak (nearly perfect order) is obtained
under rocking such that λ changes signs, also according to
Eq. (1). These behaviors suggest that the aKS equation may
not properly describe our experimental observation for Si with
Eion = 2 keV or for a-C targets.

Looking for further theoretical support for our experimen-
tal observations, we find that the interface equation

ht = −Ahxx + A′hyy − B∇4h + λ

2
h2

x + λ′

2
h2

y

+ r∇2

(
λ

2
h2

x + λ′

2
h2

y

)
(6)

is quite informative. Equation (6) is a minimal generalization
of the aKS model (which is readily retrieved for r = 0)
via the additional nonlinear term proportional to parameter
r, thus being a particular anisotropic generalization of the
so-called extended KS (eKS) equation, which we will term
the eaKS equation. Being consistent with a conservation-
law form for the height equation as ht = −∇ · J for J =
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−r∇(λh2
x/2 + λ′h2

y/2), this additional nonlinearity preserves
the total amount of material and is frequently described as a
(anisotropic) conserved KPZ term [13]. In the IBS context,
the λ = λ′ isotropic limit of this term has been proposed to
describe the contribution of irradiation to surface-confined
transport, rather than sputtering, of material, yielding the so-
called eKS equation for the height, in which A = A′ as well
[6,16,25]. The eKS equation has been shown to have predic-
tive power when compared to experiments under normal ion
incidence (θ = 0◦) on, e.g., interrupted ripple coarsening on
Si [17] or on nanobead formation on Au by sequential IBS
[23,26]. Under oblique irradiation conditions, the eKS model
becomes anisotropic [27,28]; further generalizations of it can
be formulated [29] to describe IBS systems in the presence of,
e.g., preferential transport along specific substrate directions
and/or strong surface tension anisotropies.

In our present context, we view Eq. (6) as a means to
incorporate to the aKS equation additional (nonlinear) effects
due to surface-confined transport, which are expected to be
particularly relevant for IBS of semiconductor targets at low-
to-medium ion energies [4]. Indeed, amorphization of a near-
surface layer by irradiation and viscous relaxation of such
layer have been shown [30] to account for many early-time
properties of ripple formation in this class of systems (see
additional references, e.g., in Ref. [4]). The most relevant
nonlinearities induced by these relaxation processes have
been recently elucidated [31], indicating a highly complex
interplay among various terms, all of which are conservative.
Hence, we presently take the eaKS model as a minimal model
representing the nonlinear competition between conservative
effects, like ion-induced amorphization and viscous flow (via
the conserved KPZ terms), and non-conservative effects, e.g.,
sputtering, represented by the KPZ nonlinearities.

We have performed numerical simulations of Eq. (6) in
the context of substrate rocking. Already for 1D surfaces,
Fig. 8(c) shows that the eaKS equation can describe surfaces
with improved order (the PSD features several sharp peaks)
under rocking conditions such that λ does not change signs.
Analogous conclusions are obtained in the full 2D case,
addressed in Fig. 9. This figure compares simulations of the
eaKS equation, Eq. (6) (left column), with simulations of
the aKS equation obtained setting r = 0 in Eq. (6), Eq. (1)
(right column), and otherwise identical parameter conditions.
We have also checked different parameter values—such that
r < 0 at all times, thus guaranteeing absence of nonlinear
instabilities [32]—and rocking frequencies, with the same
qualitative conclusions, see Appendix C. As is clear from
Fig. 9, the eaKS equation, Eq. (6), predicts (panels on the left
column) order improvement even in cases for which A(α) 	=
A(β ), and generically better ordering as compared with the
aKS equation under the same parameter conditions (panels
on the right column). What is particularly remarkable is that
the eaKS equation predicts order improvement under rocking
even when the KPZ coefficient λ does not change signs during
the rocking protocol, irrespective of its fixed sign, whether
positive or negative. Hence, from the point of view of the
description of IBS via Eq. (6), the rocking procedure does not
require intermediate steps in which nonlinear effects cancel,
to induce order improvement. In this sense, the eaKS equation
seems qualitatively consistent with our experimental results at

FIG. 9. Left column: Top views of surface morphologies ob-
tained from numerical simulations of the eaKS equation, Eq. (6), at
steady state, for A′ = 1, B = 1, λ′ = 2, and r = −5. The parameters
A and λ change periodically in the [A(α), A(β )] = [0.5, 1.25] and
[λ(α), λ(β )] intervals, respectively, with the latter being specified
on each panel. Right column: Same as left column but for the aKS
equation, Eq. (1), i.e., setting r = 0 in each case. The rocking fre-
quency employed, ν = 0.055, corresponds to Harrison and Bradley’s
estimate, Eq. (5) [10], where we have used A = (A(α) + A(β ))/2 =
0.88. All units are arbitrary.

Eion = 2 keV for Si and for a-C, in which rocking enhances
ordering in spite of the fact that the angle condition, Eq. (2),
may not hold.

A remaining question is then why the experimental ob-
servations on Si for Eion = 0.5 keV are elucidated well
by the aKS model, while those with Eion = 2 keV request
additional nonlinear effects like those represented by the
(anisotropic) conserved KPZ (cKPZ) term. A rationale is
that the surface-confined transport mechanism represented by
this term becomes more relevant by increasing the value of
Eion [16]. Thus, for Eion = 0.5 keV viscous flow (hence, the
cKPZ term) is less relevant to describe the pattern formation
process during rocking, which would be more dominated by
sputtering-related nonlinearities like the ones described by the
aKS equation, while the converse would happen for the higher
(Eion = 2.0 keV) condition. Actually, this is the case experi-
mentally for Ar+ irradiation of Si [33]: while ripples form
at suitable incidence angles for Eion = 0.5 keV, they do not
form at any angle at Eion = 3 keV, as a result of the increased
relevance of (conservative) mass redistribution processes at
the surface at the higher energy condition [33]. From this point
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of view, all our experiments would be described by Eq. (6),
although those performed at 0.5 keV would correspond to a
value of r which is so small that the behavior can be described
effectively by the aKS equation [34].

IV. DISCUSSION

Given the fact that the starting unirradiated targets are
crystalline in all our experiments, in principle one might
naturally expect some influence of crystallinity on the quality
of the ordering of the obtained nanopatterns. However, e.g.,
low-energy Kr+ or Xe+ irradiation of Si and a-C [35] are
well known to induce formation of a thin amorphized layer
at the free interface, whose thickness is of the order of the ion
range [36], and which controls the pattern formation process,
irrespective of the initial condition (whether crystalline or
amorphous) of the target [30,37]. Hence, we do not expect
that the target crystallinity influences significantly the pattern
order properties observed in Secs. III B–III D.

In absence of crystallinity effects, as assumed in Sec. III E,
Carter [38] also studied theoretically the effects of substrate
rocking, but without taking nonlinear effects into account,
and found no improvement in the order of the pattern being
induced by rocking, in sharp contrast to our present experi-
mental observations. This points to the significant role of the
modulation of nonlinear effects in the improvement of the
order of the patterns formed on the rocked surface by IBS.

Actually, in the nonlinear aKS equation, the rocking pro-
cedure does induce some type of modulation of the relative
importance of nonlinear effects with respect to linear effects.
From this fact, HB [10] suggested a heuristic picture for
such a modulation: while linear effects dominate the surface
evolution, the Fourier spectrum of the surface height becomes
narrower around the most dominating mode corresponding
to the ripple structure. This acts as a filtering process, with
the consequence of an improvement of the pattern order as
IBS proceeds. However, the nonconserved KPZ nonlinearity
interrupts this process, as it efficiently leads to amplitude sat-
uration [1,11,16,17]. Hence, order improvement via rocking
requires λ = 0 at intermediate stages in the rocking cycle.
Conversely, large values of |λ| in Eq. (1) induce smaller ripple
amplitudes.

In the present paper, we elucidate further nonlinear effects
in IBS patterns during rocking. We observe experimentally
that substrate rocking can also enhance the order under angle
conditions which may violate Eqs. (2) and (3). This obser-
vation implies that the nonlinear aKS model may not suffice
to explain all experimental observations. A minimal enhance-
ment of the aKS equation by the introduction of additional
cKPZ nonlinearities as in the eaKS equation, Eq. (6), seems
to more completely account for experimental observations.
Now, for non-negligible values of r, the condition that λ = 0
is not needed during rocking to improve surface order. We
rather believe that ordering emerges in the eaKS equation
as a competition between different nonlinear effects. Indeed,
in the eKS equation [34,39,40], the cKPZ nonlinearities are
known to act at smaller length and timescales than KPZ
nonlinear terms. In the presence of a linear instability, the
former tend to coarsen the ensuing pattern, both in wavelength
and in amplitude, a process which is eventually interrupted by

the nonconserved nonlinearities for sufficiently large scales.
Actually, such a competition is able to introduce short-range
order for suitable parameter choices [29,34,39,40]. In general,
we expect the relative strength of the two nonlinear terms in
Eq. (6), which is determined by the substrate and the sputter
conditions, to dictate the optimal rocking condition for the
improvement of the patterns. Moreover, as suggested, e.g., by
the morphology shown in Fig. 4(a), one can expect additional
nonlinear effects, as, e.g., those ensuing from refined descrip-
tions of sputtering [41,42] and of surface-confined viscous
flow [4,31] to improve the quantitative description of IBS
under substrate rocking for semiconductor targets.

In our experiments, we have also seen that the pattern
order depends sensitively on the rocking frequency ν under
otherwise the same sputter conditions. The location of the
optimal range for ν determined by the experiment is found
within or near the one derived theoretically from the aKS
equation [10]. Their proximity may be fortuitous, since the
present rocking experiments are not generally performed as
prescribed by this theoretical description. At any rate, 1/σ

still provides a characteristic time scale comparable to the
rocking period, and the optimal range of frequencies is thus
anticipated to be determined by σ . If this is the case, the
theoretically predicted optimal range of rocking frequencies
would serve well as a guide to investigate the corresponding
range in experiments.

Even the best ordered patterns observed in Figs. 3, 5, and 6
commonly show a varying density of residual linear defects
and peculiar triangularlike structures which run at specific
angles to the k-vector direction of the ripple pattern. These
defects have been previously reported, for instance, on sput-
tered Si(100) [20,43,44] and have been recently attributed to
the broken mirror symmetry implied by the ion incidence [45].
If this is the case, one possibility to remove these defects and
further improve surface order would be rocking the substrate
while preserving the mirror symmetry on the target plane, e.g.,
by alternating rocking between α and β and between −α and
−β [46]. Such further improvement of the order in the pattern
should be an interesting extension of the present paper and
will be addressed elsewhere.

V. SUMMARY AND CONCLUSION

We have examined experimentally whether substrate rock-
ing during IBS can improve the order in the nanoripple pat-
terns produced by this technique, as theoretically proposed by
HB [10]. For Si(100) sputtered by Kr+ with Eion = 0.5 keV,
pattern improvement by rocking is indeed observed for an
optimal rocking frequency which, albeit not in the predicted
range, is quite close to it. A number of additional experimental
properties are fairly well described by the original theoretical
proposal via the aKS equation, Eq. (1).

For Si(100) and a-C sputtered for Eion = 2 keV, we also
find improvement of the pattern by substrate rocking. How-
ever, the theoretically prescribed [10] rocking condition,
Eq. (2) [stemming from requiring that λ in Eq. (1) should
change signs during the rocking cycle], may not be met in
these cases. Moreover, the optimal rocking frequency values
somewhat overshoot the theoretically predicted range. Build-
ing upon these observations, we consider the extended aKS
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FIG. 10. (a) Discretely, and (b) continuously rocked Si(100)
target undergoing IBS under the same conditions: α = 65◦, β =
73◦, ν = ν◦ = 6.91 × 10−2 min−1, Eion = 2 keV, f = 0.813 ions
nm−2 s−1 (normal to the surface), and F = 2182 ions nm−2. The size
of both top-view AFM images is 1 × 1 μm2. The inset in each image
shows its height-height correlation function. (c) 1D PSD of ∂h/∂x
for both (a) and (b). (d) Top and bottom panels show representative
line profiles along the solid lines parallel to the x axis in (a) and (b),
respectively.

model, Eq. (6), which generalizes the previously employed
anisotropic KS equation by introducing additional conserved
KPZ nonlinearities, which may be particularly appropriate for
semiconductor targets. This allows us to still reproduce order
improvement, even if λ does not necessarily change signs,
as one might expect for these experimental conditions. This
supports the eaKS model as a comprehensive, albeit minimal,
model to understand the mechanisms by which rocking im-
proves the order of the nanopatterns.
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APPENDIX A: CONTINUOUS VS DISCRETE ROCKING

Figure 10 shows the surface ripple pattern formed by
IBS of a Si(100) target which is either discretely [panel

(a)] or continuously [panel (b)] rocked for incidence angles
θ between α = 65◦ and β = 73◦, at a rocking frequency
ν◦ = 6.91 × 10−2 min−1, and using Kr+ ions with Eion =
2 keV. All additional sputter conditions are also the same
for the two different rocking experiments. Visual inspection
of the images already suggests that better order is achieved in
the case of continuous rocking. The height-height correlation
map of the top-view images supports this conclusion, as the
continuously rocked surface displays a substantially longer
correlation length than the discretely rocked surface, compare
the insets of Figs. 10(a) and 10(b).

Figure 10(c) shows the 1D PSDs along the x axis of
the patterns displayed in Figs. 10(a) and 10(b). To enhance
pattern features, the derivative of the height field h(x, y)
along the x axis is previously computed for each image, and
the 1D PSD is computed for the resulting image. For the
discretely rocked surface, the thus computed 1D PSD shows
two pronounced peaks. The wavelength which corresponds
to the main peak with the larger wave-vector value, i.e.,
λK = 58.5 nm, is similar to the correlation length obtained
from the height-height correlation function, namely 57 nm,
see the inset of Fig. 10(a). This length scale thus originates
from the average ripple period and constitutes the fundamental
wavelength of the pattern. On the other hand, the wavelength
which corresponds to the smaller wave-vector peak of the
1D PSD, λk = 117 nm, is about 2λK . Indeed, paired ripples
abound in the pattern as noticed in the representative line
profile shown in Fig. 10(d) (top). Hence, discrete rocking
seems to drive an additional instability of the ripple pat-
tern, leading to coarsening of the morphology via pairing of
adjacent ripples.

In contrast, the 1D PSD of the ripple pattern shows no
such conspicuous additional peak for the continuously rocked
surface, but only a minor one as shown in Fig. 10(c). In this
case, ripples show little, if any, pairing in the corresponding
representative line profile in Fig. 10(d) (bottom). Now the
mean wavelength λK = 46.5 nm, as estimated from the peak
position in the 1D PSD, a value which is notably smaller
than the 58.5 nm value obtained for the discretely rocked
surface. The surface width or roughness, W � 1.90 nm,
is also smaller for the case of continuous rocking than
for the discretely rocked surface, for which W � 2.66 nm.
Moreover, ripples show many less interruptions along the
y direction in the former than in the latter case. Thus, the
rocking protocol (continuous vs discrete) is found to make a
substantial difference with respect to the quality of the ripple
pattern.

Considering the sizable long-wavelength height modula-
tion which is observed on stationary (unrocked) surfaces sput-
tered at β = 73◦ [see Fig. 5(b)], the observed coarsening via
ripple pairing in the discrete rocking case can be attributed to
the extended sputtering which takes place with θ = β during
each discrete rocking period. In turn, the relatively large W
which also ensues under discrete rocking conditions can also
be attributed to such a height modulation. In the case of
continuous rocking, IBS mostly takes place away from the
θ = β condition, the height modulation contributes less to the
overall pattern, and the peak at the smaller wave vector in
the 1D PSD is much less pronounced than that for the discrete
rocking, as shown in Fig. 10(c).
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FIG. 11. (a) Ripple patterns for different [λ(α), λ(β )] and [A(α),
A(β )] combinations, from numerical simulations of the aKS equa-
tion, Eq. (1). Here, A′ = 1.0, B = 1.0, and λ′ = 2. Only when λ(α) ·
λ(β ) < 0 can virtually perfect patterns form, irrespective of [A(α),
A(β )]. (b) The full width at half maximum (FWHM) of the PSD peak
associated with each 1D pattern, �kFWHM, is plotted as a function of
the rocking frequency ν for different [A(α), A(β )], while B = 1.0 and
λ(θ ) ∈ [10, −6]. The optimal range of ν giving the minimal �kFWHM

narrows as the difference between A(α) and A(β ) increases and is
found around the theoretically predicted range demarcated by the
vertical dashed lines. Specifically, the red (blue) line indicates the
frequency value given by Eq. (5), assuming A(θ ) to be constant and
equal to A(α) (A(β )).

In short, during discrete rocking two distinct instabilities
caused by IBS at the limiting angles, α and β, are alternatively
at work, which adversely impact the quality of the resulting
ripple pattern. No such behavior seems to take place during
continuous rocking; consequently, the pattern order on dis-
cretely rocked surfaces is substantially poorer than the order
achieved under continuous rocking conditions.

APPENDIX B: PREDICTIONS OF THE AKS MODEL FOR
VARIOUS PARAMETER CONDITIONS

Figure 11(a) shows the simulated patterns on the continu-
ously rocked surface according to the aKS model for various
combination of [A(α), A(β )] and [λ(α), λ(β )]. It plainly
tells that the virtually perfect pattern can be fabricated only
if λ(α) · λ(β ) < 0, irrespective of the [A(α), A(β )] interval
employed. Figure 11(b) shows the full width at half maximum
(FWHM) of the PSD peak, �kFWHM, associated with each 1D
pattern for different [A(α), A(β )] as a function of ν, while
λ(α) · λ(β ) < 0. By increasing the difference between A(α)

FIG. 12. (a) Ripple patterns for different combination of
[λ(α), λ(β )] and [A(α), A(β )], from numerical simulations of the
aeKS equation, Eq. (6), using A′ = 1.0, B = 1.0, λ′ = 1.0, and r =
−5. Only when λ(α) · λ(β ) > 0 do the highly ordered patterns form.
(b) The full width at half maximum (FWHM) of the main PSD peak
from the respective 1D pattern, �kFWHM, is plotted as a function
of the rocking frequency for different [A(α), A(β )]s, while B =
1.0, r = −1, and λ(θ ) ∈ [6, 2]. Both, the minimal �kFWHM and the
optimal frequency range depend nontrivially on [A(α), A(β )]. The ν

value yielding the minimal �kFWHM is still around the theoretically
predicted range: the red (blue) line indicates Harrison and Bradley’s
[10] estimate of the optimal frequency, Eq. (5), when A(θ ) is equal
to A(α) [A(β )]. (c) �kFWHM of the 1D pattern is plotted as a
function ν for different values of r, while B = 1.0, A(θ ) ∈ [0.5, 1],
and λ(θ ) ∈ [6, 2]. As the magnitude of r increases, the minimal
�kFWHM decreases and the optimal range of ν increases, indicating
the significant role of the cKPZ term in strengthening the order of the
pattern.

and A(β ), the optimal range of ν producing the minimal
�kFWHM decreases. For each [A(α), A(β )] interval, the op-
timal range of ν still stays near the predicted optimal range of
ν that is demarcated by the vertical dashed lines in Fig. 11(b).
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Specifically, the red and blue lines indicate HB’s [10] estimate
of the optimal frequency, Eq. (5), when A(θ ) is assumed
constant and equal to, respectively, A(α) and A(β ).

APPENDIX C: PREDICTIONS OF THE AEKS MODEL FOR
VARIOUS PARAMETER CONDITIONS

Figure 12(a) shows simulated patterns according to the
aeKS model for various combination of the [A(α), A(β )] and
[λ(α), λ(β )] intervals. In sharp contrast to the aKS model,
only if λ(α) · λ(β ) > 0 can the virtually perfect pattern de-
velop. Figure 12(b) shows �kFWHM of the 1D pattern as a
function of ν for various [A(α), A(β )] intervals, while λ(α) ·
λ(β ) > 0. As ν increases, �kFWHM drops down to a poorly
defined minimum in a very narrow range of ν. However, while
�kFWHM does increase for still larger ν, the �kFWHM values

remain quite small for a wide range of ν, leading to substantial
order enhancement as compared with the unrocked surface.
Such a ν dependence of �kFWHM is commonly observed,
irrespective of [A(α), A(β )], while the minimal �kFWHM

marginally decreases as the difference between A(α) and
A(β ) increases. The minimal �kFWHM is also found near the
theoretical optimal range of ν demarcated by the red and blue
vertical lines in Fig. 12(b), as is the case for the aKS model
shown in Fig. 11(b).

Figure 12(c) shows the ν dependence of �kFWHM for
different values of r. As the magnitude of r increases, the
minimal �kFWHM decreases and the optimal range of ν giving
the minimal �kFWHM increases, indicating the significant role
of the cKPZ term in strengthening the order in the ripple
pattern. In our present experiments with both Si and a-C,
�kFWHM(ν) commonly shows a well-defined minimum in a
narrow range of ν, see Figs. 3, 5, and 6, similar to the r � −1
behavior shown in Fig. 12(c).
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