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We consider plasmonic metasurfaces constituted by an arbitrary periodic arrangement of spherical metallic
nanoparticles. Each nanoparticle supports three degenerate dipolar localized surface plasmon (LSP) resonances.
In the regime where the interparticle distance is much smaller than the optical or near-infrared wavelength
associated with the LSPs, the latter couple through the dipole-dipole interaction and form collective plasmonic
modes which extend over the whole metasurface. Within a Hamiltonian model which we solve exactly, we derive
general expressions which enable us to extract analytically the quasistatic plasmonic dispersion for collective
modes polarized within the plane and perpendicular to the plane of the metasurface. Importantly, our approach
allows us not only to consider arbitrary Bravais lattices, but also non-Bravais two-dimensional metacrystals
featuring nontrivial topological properties, such as, e.g., the honeycomb or Lieb lattices. Additionally, using
an open quantum system approach, we consider perturbatively the coupling of the collective plasmons to both
photonic and particle-hole environments, which lead, respectively, to radiative and nonradiative frequency shifts
and damping rates, for which we provide closed-form expressions. The radiative frequency shift, when added
to the quasistatic dispersion relation, provides an approximate analytical description of the fully retarded band
structure of the collective plasmons. While it is tempting to make a direct analogy between the various systems
which we consider and their electronic tight-binding equivalents, we critically examine how the long-range
retarded and anisotropic nature of the dipole-dipole interaction may quantitatively and qualitatively modify the

underlying band structures and discuss their experimental observability.
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I. INTRODUCTION

The interaction of light with a small metallic particle
results in collective electronic modes termed localized surface
plasmons (LSPs) [1,2]. In the case where the wavelength of
the incoming light is much larger than the nanostructure itself,
the LSP corresponds to a dipolar collective oscillation of the
electronic cloud against the inert ionic background. While
such a phenomena was empirically discovered centuries ago
by late Romans [3], the underlying physics was only theorized
by Mie at the beginning of the 20th century, who solved
Maxwell’s equations for a metallic sphere embedded in a di-
electric medium [4-6]. Since then, plasmonic nanostructures
have attracted a surge of interest due to their ability to perform
subwavelength optics by confining the electromagnetic field
to nanometric regions [7-9]. Due to the extreme sensitivity
of the LSP resonance frequency to the nanoparticle size,
shape, material, and dielectric environment [2,10], a wealth of
appealing technological applications have risen from the field
of nanoplasmonics, such as, e.g., chemical [11] and biological
[12] sensors.

When two metallic nanoparticles are positioned in close
vicinity of each other (i.e., separated by a distance typically
smaller than the LSP wavelength) so that they form a dimer,
another factor crucially influencing the resonance frequencies
of the latter is the Coulomb interaction between the LSPs. The
quasistatic dipole-dipole interaction, which decays with the
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interparticle distance d as 1/d>, gives rise to coupled modes,
often coined “hybridized” modes [13], which correspond to
symmetric (in-phase) or antisymmetric (out-of-phase) config-
urations of the oscillating electric dipolar moments on each
nanoparticle. For transverse-polarized modes (with respect to
the axis formed by the dimer), the high- (low-) energy plas-
monic state corresponds to an in-phase (out-of-phase) config-
uration. Conversely, for longitudinal modes, the low- (high-)
energy state corresponds to aligned (antialigned) dipole mo-
ments. The splitting in frequencies between these hybridized
modes scales with the interparticle distance as 1/d>, and
can be spectroscopically resolved as long as the linewidth
(which is of both radiative and nonradiative nature) of the
two resonance peaks is somewhat smaller than the above-
mentioned splitting. The picture above is valid as long as the
two nanoparticles are not too close to each other, so that higher
multipolar modes do not mix with the dipolar ones [14—17],
and the quantum tunneling of electronic charges between the
two particles can be disregarded, such that so-called charge
transfer plasmons are irrelevant [18-23]. Since the pioneering
work by Ruppin [24], who extended Mie’s theory [4-6] to
two nearby metallic spheres embedded in a dielectric medium,
hybridized plasmonic modes in nanoparticle dimers have been
investigated in numerous experimental [13,19,20,25-30] and
theoretical works [16,18-22,31-38].

In periodic arrays of near-field coupled nanoparticles, the
dipolar interaction between the LSPs leads to collective modes
that are extended over the whole lattice. In one-dimensional
(1D) chains of regularly spaced nanoparticles, such collective
plasmons were extensively studied both at the theoretical
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[17,37,39-54] and experimental [30,40,55-60] levels, since
these systems may serve as plasmonic waveguides where
plasmon-photon hybrid modes (so-called plasmon polaritons)
are laterally confined to subwavelength scales and can pos-
sibly propagate over macroscopic distances. The importance
of retardation effects in the dipolar interaction, which become
relevant for nanoparticles in the chain spaced by a distance
of the order of the LSP wavelength, was put forward in
Refs. [41-47,51-54]. In particular, it was shown that retar-
dation leads to a pronounced discontinuity in the dispersion
relation of the collective plasmons polarized transversely to
the chain for wave vectors corresponding to the intersection
of the light cone with the quasistatic band structure. The
longitudinal dispersion relation remains however continuous,
but presents discontinuities in its derivative in the vicinity of
the above-mentioned crossing. Similar effects also occur in
related condensed matter systems, such as exciton-polaritons
in quantum wires [61]. The crucial role played by radiative
and absorption losses on the propagation of plasmonic waves
along the nanoparticle chain was also studied in detail in
the previous works of Refs. [17,39-54]. Notably, Ref. [37]
showed that the nonradiative Landau damping, that is, the
disintegration of the collective plasmons into particle-hole
pairs, is of primary importance as it dominates the plas-
mon linewidth for nanoparticles of only a few nanometers
in size.

Recently, dimerized [62-68] as well as zigzag chains of
nanoparticles [69,70] were proposed as a plasmonic analog
of the celebrated Su-Schrieffer-Heeger (SSH) model [71-73]
presenting nontrivial topologically protected edge states. In
particular, the robustness of such topological states against
the long-range retarded dipolar interactions was discussed in
Refs. [65-67].

The extension of the concepts introduced above to two
spatial dimensions offers new exciting possibilities. Metasur-
faces, that is, two-dimensional (2D) periodic arrangements of
subwavelength metallic nanostructures, are indeed at present
a very active field of research, as they enable one to tailor
light in a way that goes far beyond what can be achieved
with conventional optics. Thus far, the vast majority of the
literature on plasmonic metasurfaces (see, e.g., the review ar-
ticles of Refs. [74—77] and references therein) focused on the
regime where the separation distance between each resonant
element is of the order of the LSP wavelength, as this can
be experimentally achieved with nowadays nanofabrication
techniques. In this regime, the diffractive electromagnetic far
fields generated by the essentially noninteracting nanopar-
ticles of the array interfere and give rise to so-called sur-
face lattice resonances (SLRs). The latter are of particular
interest since they lead to much narrower absorption lines
as that of the individual constituents of the metasurface,
as well as angle-dependent dispersions, as was theoretically
predicted in Refs. [78,79] and later experimentally verified
in Refs. [80-82]. Further works have demonstrated the use
of SLRs in tailoring frequency stop gaps [83] and are of
relevance to applications in light emission [84,85]. Genuine
quantum-mechanical effects [86], such as the exciting per-
spective of lasing [87-90], as well as Bose-Einstein conden-
sation [91,92], have also been demonstrated in 2D plasmonic
lattices. Notably, the works of Refs. [93,94] combining mod-

eling and experiments have brought attention to the role of the
geometrical arrangement of the nanostructures composing the
metasurface on the SLR properties.

In the present work we focus on the less explored case
of near-field coupled nanoparticles supporting dipolar LSPs
in metasurfaces. In this case, the stronger dipolar coupling
between LSPs, as compared to the weak diffractive cou-
plings encountered in SLRs, can exhibit potentially inter-
esting analogies with atomically thin, 2D materials, such as
graphene [95] or transition metal dichalcogenides [96], where
the electronic band structures are usually well described by
tight-binding calculations. Metasurfaces composed of near-
field nanoparticles may indeed present appealing nontrivial
features in their band structure, paving the way to topological
photonics performed with subwavelength elements [97-99].
For instance, it was theoretically demonstrated that a hon-
eycomb lattice of plasmonic nanoparticles that are near-field
coupled present chiral massless Dirac-like bosonic collective
excitations [100-102] which behave as electrons in graphene
[95]. Such a honeycomb lattice further hosts topologically
protected edge states [103]. Exotic, so-called type-II Dirac
plasmon-polaritons presenting a fully tunable tilted conical
dispersion, were also recently unveiled in Ref. [104]. Strain-
ing the honeycomb metasurface and modifying the electro-
magnetic environment was recently shown to induce tunable
pseudomagnetic fields for polaritons [105].

Due to the vast number of possible 2D lattices of near-
field coupled plasmonic nanoparticles with potentially inter-
esting properties in their band structure, here we develop a
general theoretical framework which enables us to consider
the plasmonic properties of arbitrary metasurfaces. Our open
quantum system approach, which builds on previous works
on plasmonic dimers [36,38] and chains [37,53], allows us to
unveil analytical expressions for the quasistatic plasmonic dis-
persion relations for collective modes polarized parallel and
perpendicular to the plane of the metasurface. By considering
the coupling of the purely plasmonic modes to photons of
the electromagnetic vacuum, we also consider perturbatively
the effects of retardation in the light-matter interaction, and
we show that such retardation effects play a crucial role on
the plasmonic band structure. Our approach, that straight-
forwardly include Ohmic losses, further gives access to the
radiative lifetime of the plasmonic modes, which we evaluate
analytically. Importantly, we also consider the decay of the
collective plasmons into electron-hole pairs and show that the
resulting Landau damping can be as significant as it is in
single nanoparticles which are only a few nanometers in size.

The analytical treatment of the light-matter interaction has
been shown [53] in the case of chains to provide a rather good
account of the results stemming from laborious numerical
calculations based on fully retarded solutions to Maxwell’s
equations for both the plasmonic dispersion relation and the
radiative linewidth. In particular, the discontinuity presented
by the dispersion relation (by its derivative) for the transverse
(longitudinal) modes is qualitatively captured by the pertur-
bative open quantum system approach. When we compare the
results of the present study for 2D arrays of nanoparticles to
existing numerical classical calculations for the square [106]
and the honeycomb lattices [100], we further obtain good
agreement.
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FIG. 1. Sketch of the primitive cell of a generic 2D array of
identical spherical metallic nanoparticles with radius a forming a
Bravais lattice with a basis. In the figure, t; and t, are the primitive
vectors of the Bravais lattice and d; (s =1, ..., S) are the vectors
forming the basis. By convention, d; = 0.

Our model is not only applicable to plasmonic nanopar-
ticles, but is also of relevance for any 2D system of regu-
larly spaced subwavelength resonators coupled through the
dipole-dipole interaction within the near-field regime, such as,
e.g., dielectric nanoparticles where Ohmic losses are notably
reduced [107-109], microwave resonators [104], magnonic
microspheres [110], cold atoms [111], or supercrystals made
of semiconducting quantum dots [112].

This paper is organized as follows: Section II presents our
Hamiltonian model and the open quantum system approach
which we use to study collective plasmons in a generic
2D array of interacting spherical metallic nanoparticles. In
Sec. III we present the diagonalization procedure of the purely
plasmonic Hamiltonian, which gives access to the quasistatic
dispersion relation of the collective modes. The latter is then
extensively discussed, including the cases of Bravais and non-
Bravais lattices. In Secs. IV and V we consider the effects
of the photonic environment alone which we treat perturba-
tively and present our results for the dispersion relation of
the plasmonic modes including retardation effects (Sec. IV),
as well as the corresponding radiative lifetimes (Sec. V).
Section VI then analyzes the (possibly crucial) role played
by the electronic environment onto the collective modes and
presents our results for their Landau damping decay rates, as
well as their associated electronic frequency shifts. In Sec. VII
we discuss the experimental observability of the plasmonic
modes, before we conclude in Sec. VIII.

II. MODEL

We consider an ensemble of interacting spherical metallic,
nonmagnetic nanoparticles of radius a forming an arbitrary
2D Bravais lattice with a basis. The array is characterized by
the vectors R = nt; + mt, forming the Bravais lattice. Here t;
and t, are the primitive lattice vectors, while n € [0, N{] and
m € [0, N3] are integer numbers with \; (N3) the number of
unit cells in the t; (t) direction. The array is composed of S
sublattices, and the nanoparticles belonging to the sublattice
s=1,...,8 are located at R; = R +d,, where d, is the
vector belonging to the xy plane and connecting the sublattice
s to R (see Fig. 1). By convention, we set d; = 0 in the
remainder of the paper.

Each nanoparticle forming the array supports three degen-
erate orthogonal dipolar LSP resonances polarized along the
o = x, Y, and z directions and characterized by the frequency
wg. Neglecting the effect of the embedding medium, as well
as the screening of the valence electrons by the core electrons,
one has wg = a)p/\/g [2], where w, = \/4mnee?/m, is the
plasma frequency (throughout this paper, we use cgs units).
Here —e (<O0) is the electron charge, m, its mass, and r, is the
electronic density of the metal.

The dipolar LSPs supported by the nanoparticles in the
array interact with their neighbors through the Coulomb in-
teraction. Such a coupling gives rise to collective plasmonic
modes which extend over the whole metasurface [74]. In
this work we focus on the subwavelength regime where d <
ky !, with d the center-to-center nearest-neighbor interparticle
distance and ky = wy/c, with ¢ the speed of light in vacuum.
Furthermore, we assume that the interparticle distance d 2>
3a. In this parameter regime, Park and Stroud [17] have shown
by means of an exact diagonalization procedure based on a
generalized tight-binding approach including multipoles up
to £ = 80 (with £ the angular momentum) that the domi-
nant interaction between two nanoparticles is the near-field
quasistatic electric dipole-dipole (£ = 1) interaction which
decays as 1/d>. For smaller interparticle distances (2a < d <
3a), higher multipolar interactions with £ > 1 [17] as well
as tunneling phenomena [23] play an important role for the
description of the collective modes, and we do not enter this
regime of parameters in the remainder of the paper. Notice
also that, since we consider nonmagnetic particles, and since
our model does not incorporate an external magnetic field,
magnetoplasmonic modes (see, e.g., Ref. [113]) which would
result in oscillating magnetic dipolar moments are irrelevant
to the present study.

Similarly to individual LSPs, the extended plasmonic
modes supported by the metasurface are coupled to both a
photonic and an electronic environment. The collective plas-
mons are indeed coupled to vacuum electromagnetic modes
through the light-matter interaction, giving rise to finite radia-
tive lifetimes as well as radiative frequency shifts, stemming
from the retarded part of the dipole-dipole interaction [38,53].
Moreover, such collective modes are coupled to electron-hole
excitations inside the nanoparticles, leading to the nonradia-
tive Landau damping and an additional frequency renormal-
ization.

We write the full Hamiltonian of the system as

H= le + th + Hen + le—ph + le-eha (D

where Hy; describes the purely plasmonic degrees of freedom,
while Hp, and Hep correspond to the photonic and electronic
environments, respectively. In Eq. (1), Hyj.pn and Hy.e, are the
coupling Hamiltonians of the plasmonic subsystem to photons
and electron-hole pairs, respectively.

Within the Coulomb gauge [114,115], the plasmonic
Hamiltonian

Hy = Hy + H)}" )

describing the near-field coupled LSPs is characterized by a
noninteracting and an interacting term [37,101]. The nonin-
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teracting part related to individual nanoparticles reads

Hi=2.2.0

with A (Ry) the o component of the displacement field as-
sociated with the dipole moment p(R,) = —eN, ) hJ (R,)6
of a single LSP located at position Ry, while I17 (R;) is the
momentum conjugated to AJ (Ry). Here and in what follows,
hats designate unit vectors. In Eq. (3), N. is the total number
of valence electrons in each nanoparticle. The interacting term
in Eq. (2) arises from the quasistatic dipole-dipole interaction
and reads

2
Hi = (ezze) oY SR R

ss’ R R’ oo’
Ry # R’/)

Ha (Rv) Neme
2N.m, 2

[ RO’ Y, (3)

860r — 3(6 - /Oss/)(ﬁ/ * Pss')
|R‘y - R;/ :

; “)

where p, = R/, — R;.

As we deal with nanoparticles of small sizes, quantum-size
effects (such as Landau damping) can be important. Moreover,
a quantum treatment of the plasmonic degrees of freedom
provides a self-contained description of the light-matter in-
teraction [38,53]. In view of the analysis of these effects, we
hence write the plasmonic Hamiltonian (2) in terms of the
bosonic ladder operators

N.mewp . O7(Ry)
P°(Ry) =/ ————h° (Ry) + i—— 5
TR =T R F I O

that annihilate an LSP at position R on sublattice s with
polarization o = x, y, z and its adjoint bf*(Rs). Together with
Egs. (3) and (4), Eq. (2) thus takes the form

Hy = Tiwg " > b7 (RO (Ry)
s Ry o
a2 o o
+ TZ S D[R+ 5T (R,)]

ss’ R, R’ oo’
Ry # R v

x [b;’,’(R;,) +b (R )]

800’ = 3(6 - Pss )6 - Pys)

(6)
(IR, — R} |/d)’
with the coupling constant
wo /a\3
e=22(%) 7
> \g Q)

Note that Q2 < wy since we consider interparticle distances
d > 3a.

The Hamiltonian (6) displays some similarities with
a tight-binding Hamiltonian of an electronic 2D system
[116]. The first term on the right-hand side of Eq. (6) [
bg’*(Rs)bgr (R;)] corresponds to a fixed on-site energy, while
the resonant terms [ b‘;T(RS)b‘;' (R})] in the second term
describe the creation of an LSP at the lattice site Ry together
with the destruction of an LSP at the lattice site R}, similar to
a hopping term.

There are however important differences between the
plasmonic Hamiltonian (6) and an electronic tight-binding
Hamiltonian. First, plasmons correspond to bosonic excita-
tions, which do not have a finite chemical potential. Second,
the dipole-dipole interaction responsible for the existence
of the collective plasmons is quite different compared to
the hopping amplitude in a tight-binding model [116]. On
the one hand, the long-range dipolar interaction scales with
1/|IRs — R;,|3, whereas the hopping amplitude decreases ex-
ponentially with the distance. Thus, the dipolar interaction
beyond the first neighbors can have important effects. On
the other hand, the dipole-dipole interaction depends on the
polarization of the excitations, contrary to those in tight-
binding model§. Third, there are additional nonresonant terms
[ox b‘s’%(Rs)b‘;' '(R’y) + H.c.]in Eq. (6) which do not conserve
the number of quasiparticles and play a crucial role for
physical quantities depending on the plasmonic eigenstates,
e.g., the collective mode damping rates [37]. How the above-
mentioned differences may crucially affect the plasmonic
band structure is extensively discussed in Sec. II1.

The Hamiltonian (1) further describes the coupling of the
collective plasmons to vacuum electromagnetic modes in a
volume V described by the Hamiltonian

ph - Zhwkak ak i (8)

k}tk

where aﬁ" (aﬁ"T) annihilates (creates) a photon with wave
vector k, transverse polarization ik (ie., k- ik =0), and
dispersion wg = c|k|. In the long-wavelength limit |k|a <«
1, the minimal-coupling Hamiltonian between plasmons and
photons in Eq. (1) reads [114]

o= 3% [m

I,(R,)-A(R,)

N.e
i A2<Rs>] ©)
2mec?
with
. [Nemehawg AT10t -
I (R,) = l‘/T;O[bS Ry —bI(Ry)]  (10)
and where

/Znhc - W
ARy =D (g e™ R g e R)  (11)
Wk
k)uk

is the vector potential evaluated at the nanoparticle centers.
Note that since we consider interparticle separation distances
much smaller than the wavelength associated with the LSP
resonances, we neglect Umklapp processes in Eqgs. (8) and
(9). Importantly, within the Coulomb gauge, the first term on
the right-hand side of Eq. (9) contains the retardation effects
stemming from the finite velocity of light [115].

In addition to the photonic environment, the collective
plasmons are coupled to electron-hole excitations described
by the Hamiltonian [117,118]

Hep = Z Z Z ER.\"'cI{AicRsi’ (12)
s R,
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where CR.i (clgv ;) annihilates (creates) an electron in the
nanoparticle located at R, associated with the one-body state
|Rs) with energy eg,; in the self-consistent potential V of
that nanoparticle. Assuming V' to be a spherical hard-wall po-
tential, the coupling between plasmonic and single electronic
degrees of freedom is [36]

Hyen =AY Y 3" [BI(R,) + b (Ry)]
s Ry

o ij
x (Rii| o |Ryj)cy cq ;- (13)
with
fimew;
A= . (14)
2N,

III. QUASISTATIC PLASMONIC BAND STRUCTURE

In this section we start by focusing on the plasmonic
degrees of freedom alone. We first present the diagonalization
procedure of the Hamiltonian (6), from which we obtain
the quasistatic plasmonic band structure. The latter is then
analyzed in detail for both the cases of Bravais (Sec. III A) and
non-Bravais lattices (Sec. III B). The discussion about how
the band structure is influenced by retardation effects in the
dipole-dipole interaction is postponed to Sec. I'V.

The plasmonic Hamiltonian Hp given in Eq. (6) is
quadratic, and can thus be diagonalized exactly by means of a
bosonic Bogoliubov transformation. In the large metasurface
limit, going to Fourier space, we then introduce a set of
bosonic operators (see Appendix A for details)

B =Y [ (@bl (@) + viZ @b (-] (15)
annihilating a collective plasmon with wave vector q in the
band t with polarization ¢. Notice that, in general, ¢ =
e:(q) is a q- and t-dependent quantity but we drop in the
remaining of this paper both indexes for notational simplicity.
In Eq. (15), b5(q) corresponds to the Fourier transform of
the bosonic ladder operator (5) [cf. Eq. (A1)], while u 7 (q)
and vZ9(q) are complex coefficients which are determined by
imposing that Hy, is diagonal in this new basis, i.e.,

Hy =Y Y H:iq). H:(q)=hoi (@B (qB:(q),
q 1€

(16)
where w?(q) is the quasistatic collective plasmon dispersion
relation. The Bogoliubov operators 8:(q) and S f(q) act on
an eigenstate |n?(q)) of the Hamiltonian H; (q) corresponding
to a collective plasmon in the band t with wave vector q
and polarization ¢ as B;(q)|n;(q)) = \/n5(q)|n;(q) — 1) and
BF(@)Int (@) = /nE(q) + 1|nE(q) + 1), respectively. Here
nZ(q) is a non-negative integer.

The dispersion relation w?(q), as well as the coefficients
of the Bogoliubov transformation (15), are obtained from the
Heisenberg equation of motion [cf. Eq. (A6)], which yields
the system of equations

[wo — i (q)]ut? (q)

+QY [ (@ - v (@] (@=0  (17)

and
— [@0 + @i (@)]vil (@)

+ Q) [uf (@) — v (@)]£5,° (q) = 0. (17b)

In Eq. (17) the lattice sum

= Y ( d

s
Py’

(pyy #0)

/

3
) eiq'p’“/ [800’ - 3(6 : 1655,)(6/ : IbSS/)]

18)

takes into account the quasistatic dipolar interaction between
each pair of nanoparticles composing the metasurface. In the
remainder of the paper, the lattice sum (18) is calculated for
a specific metasurface numerically, until satisfactory conver-
gence is obtained. In practice, we perform the summation in
Eq. (18) up to o™ = 300d, which yields a relative error of
the order of 10~°.

The system of equations (17) needs to be satisfied for
all integer s € [1, S] and for all polarizations o = x,y, z,
yielding a 65 x 6S eigensystem. Due to the structure of
the lattice sum (18), such an eigensystem decouples into a
block-diagonal matrix composed of a4S x 4S anda2S x 28
block, corresponding to the in-plane (IP, ¢ = x, y) and out-of-
plane (OP, o = z) polarized modes, respectively. Each block
then yields a secular equation of order 28 and § in [w? (1%,
respectively, which then gives access to the quasistatic band
structure.

Additional insight about the nature of the quasistatic col-
lective plasmons can be obtained from their corresponding
eigenstates, from which we can deduce the polarization ¢
of the collective modes. Introducing the vector ui(q) =
[, uf(q), Yo, uzs(q), Y-, ufs(q)], we define the polarization
angle as [119]

¢ (q) = arccos (|a;(q) - g)- (19)

With such a definition, purely longitudinal (transverse) collec-
tive plasmons correspond to ¢:(q) = 0 (7 /2).

A. Bravais lattices

In the case of an arbitrary Bravais lattice (i.e., S = 1),
the sublattice indexes s and s, as well as the band index t,
are irrelevant and can then be dropped from the system of
equations (17). Such a system can be fully analytically solved,
yielding for the OP plasmonic modes polarized in the ¢ = z
direction the dispersion relation

| Q
0*(q) = wo, |1 +2— f=(q) (20)
wo

Q
ol (q) = wo{ 1+ — |:fxx((I) + P (q)
o

and

1/2
+VIf*(@q) — @R + 4[f"y(q)]2} } 1)
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for the IP modes with polarizations ¢ = ¢ 4. Explicit expres-
sions for the corresponding Bogoliubov coefficients can be
found in Appendix A.

We notice that the quasistatic dispersion relations (20) and
(21) have been obtained by Zhen et al. [106] using a classical
point-dipole model [cf. their Eq. (3.3)]. It is not surprising
that, within the quasistatic approximation, our quantum ap-
proach and the classical one of Ref. [106] (which however is
limited to simple Bravais lattices) give the same results since
the Hamiltonian at hand [cf. Eq. (2)] is quadratic.

As an example of application of our general method for
obtaining the quasistatic band structure of plasmonic modes
in generic Bravais lattices, we consider in the following the
simple square lattice sketched in Fig. 2(a), whose correspond-
ing first Brillouin zone (1BZ) is depicted in Fig. 2(b). The
plasmonic dispersion relation (20) for the square lattice is
plotted in Fig. 2(c) for the OP polarization as a solid line.
For comparison, we also show (dashed line) the plasmonic
band structure considering only dipolar interactions between
nearest neighbors (nn) in the lattice, for which the lattice
sum (18) reduces to fZ(q) = 2[cos(g.d) + cos(gyd)]. As can
be seen from Fig. 2(c), the nearest-neighbor approximation
qualitatively reproduces the full band structure in most of the
1BZ, except for wave numbers close to the I" point. There, the
long-range nature of the quasistatic dipolar interaction leads to
a pronounced cusp of the dispersion relation. Such a behavior,
which is purely an artifact of the quasistatic approximation
and which points to the importance of taking into account re-
tardation effects, as we shall do in Sec. IV, can be understood
by a mean-field treatment of the dipolar interactions beyond
those between nearest neighbors (see Appendix B).

We now turn to the discussion of the plasmonic modes
polarized within the plane formed by the square lattice. The
band structure (21) is plotted in Fig. 2(d) as solid lines. The
color code corresponds to the polarization angle defined in
Eq. (19). While for the high-symmetry axes I'M or I'X, the
IP collective plasmons are purely longitudinal or transverse,
for less-symmetric axes such as the MX direction in the
1BZ, such modes can be of a mixed type. For comparison,
we further plot the dispersion relation taking into account
nearest-neighbor couplings only, for which the lattice sums in
Eq. (21) are replaced by f7(q) = —4 cos (g.d) + 2 cos (gyd),

2 (q) = 2cos (qxd) — 4cos (qyd), and fra(q) = 0. In con-
trast to the OP modes [Fig. 2(c)], the long-range nature of the
dipolar interaction has a more pronounced effect on the plas-
monic band structure for IP polarized modes. For instance,
the dipolar interaction lifts the degeneracy of the dispersion
induced by the symmetry of the square lattice within the
nearest-neighbor approximation along the I'M direction of the
1BZ. In addition, the long-range dipolar interaction leads to a
cusp of the upper plasmonic band at the I" point, while the
lower band does not show such a singularity in the derivative
of w®1=(q). This behavior can be explained along the lines of
the mean-field approximation discussed in Appendix B.

B. Bravais lattices with a basis

Our general method for obtaining quasistatic plasmonic
band structures further applies to arbitrary Bravais lattices

()  qya
A

by

s 105
=
=
W 1
3
0.95
0.9
X r M X
0 /8 /4 37/8 /2
¢°(a)

FIG. 2. (a) Sketch of a square lattice with primitive lattice vectors
t; =d(1,0) and t, =d (0,1). (b) Corresponding first Brillouin
zone, with primitive reciprocal vectors b; = %”(1,0) and b, =
27”(0, 1). (c) and (d) Quasistatic plasmonic dispersion relation as a
function of the wave vector q (scaled with the interparticle distance
d) along high-symmetry paths in the first Brillouin zone [cf. (b)]
for (c) out-of-plane (OP) and (d) in-plane (IP) polarizations. The
solid lines represent the full quasistatic dispersion, including long-
range couplings, and the color code corresponds to the polarization
angle (19), which equals 0 (;r /2) for purely longitudinal (transverse)
modes. The dashed and dotted lines correspond to the nearest-
neighbor and mean-field approximations discussed, respectively, in
the main text and in Appendix B. In the figure, the interparticle
distance d = 3a (corresponding to Q2 = wy/54).

with a basis. In the following we start by considering Bravais
lattices with a basis of two.

1. Bipartite lattices

In the case of a bipartite lattice (S = 2), the 4 x 4 matrix
resulting from the system of equations (17) for the OP po-
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larization o = z can be straightforwardly solved, yielding the
two bands with dispersion relations

Q
w(q) = wo\/l + 20)—0[ f@+lff@l], ==+l

(22)
The corresponding Bogoliubov coefficients are given in
Egs. (A11) and (A12). For IP polarization (¢ = x, y), the 8 x
8 eigenvalue problem can in principle be solved analytically,
but provides cumbersome expressions. For practical purposes
we therefore solve for the eigenproblem numerically.

To illustrate our method in the special case of bipartite lat-
tices of near-field coupled metallic nanoparticles, we consider
the celebrated honeycomb lattice sketched in Fig. 3(a). The
corresponding 1BZ is shown in Fig. 3(b). Such a metasurface
has been predicted [101,102] to exhibit Dirac-like collective
plasmonic modes at the K and K’ points of the 1BZ, with ap-
pealing topological properties such as a nontrivial Berry phase
(and its related topologically protected edge states [120]) or
the absence of backscattering. Importantly, the results put for-
ward in Refs. [101,102] rely on short-range dipolar couplings
between nearest neighbors alone. Moreover, Refs. [101,102]
considered the case of orientated dipoles, relevant, e.g., for
elongated metallic rods, while we consider here the case of
spherical nanoparticles.

The two plasmonic bands (22) for o = z are plotted in
Fig. 3(c) as solid lines. For comparison, we also show by
dashed lines the plasmonic band structure with dipolar in-
teractions between nearest neighbors only [101], given by
Eq. (22) and replacing ff(q) and f5(q) by f5,,(q) =0
and f=,(q) = Zi:l e/ respectively. Here the vectors
e; =d, —tp, e, =dy, and e3 = d, — t; connect a lattice site
belonging to the red sublattice in Fig. 3(a) to its three (blue)
nearest neighbors. We observe in Fig. 3(c) the presence of
a cusp for the upper (r = +) band when all quasistatic in-
teractions are taken into account, while no cusp appears for
the lower (t = —) band. Notice that the upper (lower) band
corresponds to bright (dark) modes, where the two dipolar
LSPs are in-phase (out-of-phase) within each unit cell.

As can be seen from Fig. 3(c), the presence of a Dirac point
at the K point of the 1BZ located at K = %(1, 0) is not

ruled out by long-range interactions. Indeed, in the vicinity
of the K point, expanding the lattice sums to linear order
in |k|, where q = K +k with k| < |K], yields f{f(q) >~

1K) ~ —0.449 and f5(q) >~ —1.16(k, + ik,)d. Therefore,
in the weak-coupling regime Q2 < wy, the dispersion (22) is
conical and reads

oi(K) >~ wo — QIfFEK) + Tvik|, T ==%£I, (23)

with the group velocity v = 1.16€2d. Comparing the disper-
sion above with the nearest-neighbor result [101] wf, . (k) =
wo + v}, |k| with vi, = 3Qd/2, we see that the intrasublat-
tice coupling f77 leads to an inconsequential redshift of the
Dirac point frequency, while the intersublattice coupling f}5
renormalizes the precise value of the group velocity.

Since the Bogoliubov coefficients (A12) are negligible as
compared to the coefficients (All) close to the K point,
we can safely disregard the former, which amounts to
performing the rotating wave approximation (RWA) [121].

(b) 0t
4

3
<
5 1
ok
3
095
0.9
M r K M
0 /8 w/4 3m/8 /2
¢>(a)

FIG. 3. (a) Sketch of a honeycomb lattice with primitive lattice
vectors t| =d (ﬁ, 0) and t, =d (‘/73, %), and basis vector d, =
d (?% . (b) Corresponding first Brillouin zone, with primitive
reciprocal vectors by = 2(+/3, —1) and b, = £(0, 1). (c) and
(d) Quasistatic plasmonic band structure for (c) out-of-plane (OP)
and (d) in-plane (IP) polarizations. The solid lines correspond to
the full quasistatic dispersion, and the color code to the polarization
angle (19). The dashed lines correspond to the nearest-neighbor
approximation. Same parameters as in Fig. 2.

Within this limit, the associated effective Hamiltonian reads
in terms of the spinor operator Wy = (bj(k), b5(k)) as

HET =37, W/ H" 0y, with the massless Dirac Hamiltonian

HY' = [lwy — hQfFK)[]L, — hv'e -k, (24)
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where 1, is the n x n identity matrix and o = (oy, 0y, 0;) is
the vector of Pauli matrices

0

_1> (25)

(0 1 (0 —i (1
=1 o) »=\i o) %=T\o

acting on the sublattice pseudospin 1/2. The correspond-
ing plasmonic eigenstates [with eigenfrequencies given by
Eq. (23)] read

1 1
Wf(k)) = E(_Teie(k)>s T = =+l1, (26)

where 0(k) is the angle between the wave vector k and the
x axis, such that tan (k) = k,/k,. The spinors (26) are also
eigenstates of the chirality (or helicity) operator [122] C =
o - k, which corresponds to the projection of the pseudospin
operator onto the wave vector direction, with eigenvalues
C = —1. Since [HT, C] =0, chirality is conserved. As a
consequence, collective plasmonic modes close to the K point
show similar effects as electrons in graphene [101], such as
the absence of backscattering off smooth inhomogeneities
(since (Yi(—=K)|¥Zi(k)) =0 [122]), the related Klein tun-
neling phenomenon, or a Berry flux of —z. Note that the
spinor eigenstates (26) do not depend on the details of the
Hamiltonian (24), such as, e.g., the precise value of the group
velocity v?, but only on its matrix structure. Henceforth,
the properties mentioned above do not depend on the level
of approximation one may use (nearest-neighbor coupling
vs long-range quasistatic interactions). In addition, we will
demonstrate in Sec. IV that the retarded part of the dipolar
coupling does not modify the above physics. Therefore, the
long-range character of the dipole-dipole interaction does not
rule out the massless Dirac nature of the plasmonic quasipar-
ticles in the vicinity of the K point, and the nearest-neighbor
approximation is sufficient in catching the relevant physics.
The same conclusion applies to the inequivalent Dirac point
located at K.

We now turn to the description of the IP polarized plas-
monic modes. We show in Fig. 3(d) the plasmonic band
structure obtained numerically for o = x, y as solid lines. The
color code corresponding to the polarization angle (19) reveals
that two bands correspond to purely transverse plasmons, and
two other bands to purely longitudinal plasmons along the
high-symmetry axes I'K and I'M. We also plot for compar-
ison the dispersion relations with nearest-neighbor coupling
only. In the latter case, the intrasublattice sums f2°,(q)
vanish, so that the 8 x 8 system given by Eq. (17) simplifies
and can be straightforwardly solved analytically. The resulting
four dispersion relations read

o 12
wo[1+\/§w—0 g1(Q)i\/gz(Q)] ,

e (q) = o o @7
wo[l—ﬁw—o gl(q>i\/g2(q>] :
with
G(@) = fim @+ 1) 12(q)| +2Ifm(q)|2 (28)
and

Go(@) = [I£5 @l = 12 L@l

+ AL @I @ + 1 @]

+ 8Re{ 3 (@2 @[ @] 29)

In the expressions above, the 1ntersublattice sums within
the nearest-neighbor approximation read f;,(q) = elrer —

5(€lq € + elq e;) fn 12(q) — _Zelq (] + 4(elq € + elq e;), and

Jani2(@ = 3‘[(6"' & — ¢l4) Ag can be seen from Fig. 3(d),
the nearest- nelghbor approximation is sufficient to qualita-
tively describe the plasmonic dispersion relations, apart from
the second less energetic band for wave numbers close to
the I' point, where a cusp appears in the full quasistatic
band structure. Importantly, we note the presence of two
inequivalent conical intersections (where the band degeneracy
point occurs at the frequency wy) at the K and K’ points of the
1BZ for IP polarized modes. In the vicinity of the K point, we
find for the second and third bands a)ﬁ‘l‘],f(k) ~ wy vﬂl|k|,
with vy, = 9Qd /4. The presence of conical intersections for
IP polarized modes has been reported by Han ez al. [100] using
a numerical solution to Maxwell’s equations. Our transparent
method allows us to analytically describe such a complex
band structure hosting Dirac-like bosonic modes.

2. Tripartite lattices

For tripartite lattices (S = 3), the 6 x 6 system obtained
from Eq. (17) for ¢ =z can still be solved analytically,
yielding the three plasmonic bands

Q 12
wi(q) = wo{l +2=[ i@ + 51 (@) + s_<q>]} . (30a)
wp
Q
wi(q) = wo{l + —[2fff(q) —s54.(q) —s-(q)
[20)]

12
+iv/3(s4(q) - s_(q))]} , (30b)

where

1/3

D 3
s+(q) = n%q)ii\/[ ;q)] - [m=@]*} . 3D

with
Q) = If5@F +1f5@F + 15@)P (32)

and

%(q) = Re{f3(@)f5* (@35 @)} (33)

For o = x, y, the 12 x 12 eigensystem is solved numerically.

As an illustration, we consider in the remainder of this
section the Lieb lattice sketched in Fig. 4(a). Its corresponding
IBZ is shown in Fig. 4(b). Such a lattice, together with
the kagome one [121], is known to display a flat (i.e.,
nondispersive) band together with conical dispersions in tight-
binding models with nearest-neighbor interactions (see, e.g.,
Refs. [123-127]). It is therefore of interest to study if these
features survive in the case of plasmonic metasurfaces, where
the long-range nature of the dipolar interaction might qualita-
tively change the band structure.

We plot in Fig. 4(c) the three dispersion relations (30)
for the Lieb lattice and for OP polarization as solid
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FIG. 4. (a) Sketch of a Lieb lattice with primitive lattice vectors
t, =d((2,0)and t, = d (0, 2), and basis vectors d, = t;/2 and d; =
t,/2. (b) Corresponding first Brillouin zone, with primitive reciprocal
vectors by = %(1,0) and b, = %(0, 1). (¢) and (d) Quasistatic plas-
monic band structure for (c) out-of-plane (OP) and (d) in-plane (IP)
polarizations. The dashed and solid lines correspond, respectively, to
nearest-neighbor and long-range couplings. Color code of the solid
lines: polarization angle (19). Same parameters as in Fig. 2.

lines. For comparison, we also show by dashed lines
the plasmonic band structure within the nearest-neighbor
approximation, for which we have f°, (q) = f ,(qQ) =
fEa@ = fZu@=0, fZ,(q)=2cos(qd), and
55,13(‘1) = 2cos(qyd). Within this approximation, the
resulting band structure is given by wf . (q) = wo[l + r%

/cos? (gxd) + cos? (q,d)]'/* and is characterized by the
presence of a flat band at wy (r = 0) and two dispersive
bands (r = %1). For wave vectors k in the vicinity of the M
point of the 1BZ located at M = z”—d(l, 1), these latter form

a conical dispersion wp (k) >~ wo = v, K|, with group
velocity vi, = 2Qd.

As shown in Fig. 4(c), the long-range dipolar interactions
affect differently the topological features of the plasmonic
band structure described above (compare solid and dashed
lines). Indeed, while the presence of a conical dispersion in
the vicinity of the M point is not ruled out by long-range
interactions (as is the case for the honeycomb array, see
Sec. III B 1), the band which is flat in the whole 1BZ within
the nearest-neighbor approximation becomes dispersive, and
is only locally flat close to the M point. One can understand
these features by expanding the band structure (30) in the
vicinity of the M point. With ¢ = M + Kk, to linear order
in [k| < [M| we find fZ(q) ~ fZ(M) ~ —0.331, f3(q) ~
—1.65k.d, f5(q) ~ —1.65k,d, and f35(q) == 0, resulting in

wi(K) = wy — QM) + tv'lk], T=0,%£1, ((34)

i.e., a band v =0 which is locally flat, and two conical
dispersions T = %1 with renormalized group velocity v* =
1.659d.

Interestingly, the plasmonic Hamiltonian within the RWA
for modes polarized in the z direction takes the form H;lff =

> A, with By = (55 (K), b5(k), b5 (k)) and where
My = [hwo — BQIFFOVDI]1s — Av'S -k, (35)

with § = (Sy, Sy, S;). Here the pseudospin-1 matrices (cor-
responding to the three sublattices of the Lieb lattice) are
defined as

0 1 0 0 0 1
ssc=[1 0 o], s,=|0o o of.
0 0 0 1 0 0
00 0
s,=(o o —i], (36)
0 i 0

and fulfill the angular momentum algebra [S;, S;] = i€; xSk,
with €;; the Levi-Civita symbol. The matrices S, Sy, and S,
(which correspond, respectively, to the Gell-Mann matrices
M, A4, and A7 [128,129]) therefore correspond to a three-
dimensional representation of the special unitary group SU(2).
However, contrary to the Pauli matrices, they do not form a
Clifford algebra (i.e., {S;, S;} # 28;;13), so that Eq. (35) does
not correspond to a massless Dirac Hamiltonian [130], despite
presenting a conical spectrum. The eigenspinors correspond-
ing to the Hamiltonian (35) with eigenfrequencies (34), and
characterized by a vanishing Berry phase, read

2

lyik)) = L —tcosO(k) + v2(1 — t¥)sino(k) | (37)
—7sinf(k) — v/2(1 — 72) cos O(Kk)

for t = 0, £1 and are nevertheless eigenstates of the helicity
operator S -k with eigenvalues —7, so that backscattering
is suppressed for the two dispersive bands with v = %1
[{(¥1,(=K)|¥i,(k)) = 0]. The conclusion above is not modi-
fied when we take into account the retarded part of the dipolar
interaction (see Sec. IV).

We show in Fig. 4(d) the plasmonic dispersion relations
calculated numerically for o = x,y as solid lines. We fur-
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ther plot, for comparison, the numerical results with nearest-
neighbor couplings only. We observe from the figure that
for IP polarization, the long-range dipolar interactions com-
pletely reconstruct the plasmonic band structure. Notably,
the topological features (flat bands and conical dispersions)
occurring in the nearest-neighbors coupling approximation
are not preserved when long-range interactions are included.

IV. PERTURBATIVE TREATMENT OF THE
RETARDATION EFFECTS ONTO THE PLASMONIC BAND
STRUCTURE

We now consider the effects of the photonic environment
alone [encapsulated in the Hamiltonian (8)] onto the collective
plasmonic excitations supported by our generic metasurface
of ordered metallic nanoparticles. The plasmon-photon inter-
action [cf. Eq. (9)] leads to two effects crucially affecting
the quasistatic band structure discussed above: (i) the photon-
induced frequency shifts which we unveil in the present sec-
tion and resulting from retardation effects in the dipole-dipole
interaction renormalize the quasistatic plasmonic dispersion;
(i1) moreover, the spontaneous decay of plasmons into free
photons leads to a finite radiative lifetime of the collective
excitations, and consequently to a broadening of the plasmon
lines (see Sec. V).

We start our analysis of the effects of the photonic envi-
ronment onto the quasistatic plasmonic dispersion by con-
sidering the radiative frequency shifts induced by the light-
matter coupling. Along the lines of Refs. [38,53,66], we
treat the plasmon-photon coupling Hamiltonian (9) to second
order in standard nondegenerate perturbation theory, yielding
for the collective plasmon energy levels the result Ep:(q) =

ni(Q)hot(q) + E,(l;()q) + E,g()q). The first term on the right-
hand side of the equation above corresponds to the energy lev-
els of the unperturbed Hamiltonian Hf(q) [cf. Eq. (16)]. The
first-order (in Hy.pn) correction stems from the diamagnetic
term in Eq. (9) (proportional to the vector potential squared)
and reads Erfglgq) = 2nSNE}a* V=3 a)l:l. Since the latter
expression does not depend on the quantum number 7% (q), it
does not participate in the renormalization of the collective
plasmon frequency, and merely represents an irrelevant global
energy shift. The second-order correction to nf(q)hiw:(q)
arising from the first (paramagnetic) term on the right-hand
side of Eq. (9) reads

5 3a3 1
niq) = T 55 > ©x
k

sAk

ns(q)
Wi (q) — wg
2

X |Fg 26 - by e 4 R @)
g

2
n;(q) + 1

wi(q) + wk

Ry D (6 - e P (q) }
Nes

(38)

where the summation over k excludes the singular term for
which wgx = i(q). In Eq. (38) we have defined the array

factor
1 .
Fto— SRR (39)
SE
and
P2 (q) = u33(q) + v55 (q). (40)

In the large-metasurface limit (number of unit cells N >
1), the modulus squared of the array factor above entering
Eq. (38) takes the simpler form

2n)®
—————8(qx £ ky)d(qy £ ky),
TN (q )8(qy £ ky)
so that the radiative frequency shift, defined through the
relation 65(q) = [Ep:(q)+1 — Ens(q)l/ — @i(q), is given by

@ 5 3,6 - P (@)

V Wk

IR l? = (41)

5:(q) = 7o)

k, Ak
|Feql? IRyl
x ket " ka (42)
@i (q) — ok 0i(q) + ok

and scales with the nanoparticle sizes as a’, to leading order
in the coupling constant 2 /wy [cf. Eq. (7)].

The analytical result above is valid for both IP and OP
plasmon polarizations, and depends on the quasistatic plas-
mon dispersion (q) and the Bogoliubov coefficients [cf.
Eq. (40)]. Equation (42) can be explicitly evaluated [121], and
we find

2

nwpa’lq]
5 = - = P%
r(q) [t; x t2|[a)§(q)]2 XS: ‘rs(q)
x | 1— clq| 2@(clql — wi(Q))
Jeelan? - [ex(@)]
(43)
and
3.3
5?\ = — m()—alq'
((I) |tl X t2|[er (q)]z
2
Z [QPSJX(Q) + ﬂpfsy‘(q)]
x [1— clq| 2®(C|q| _ a)iu(q))
| Jedan? - [0 @]
_ ) 2
F T e + Y@
a 2
X [(1)1- (q)] ®(C|q| — a)iH (q))

claly/(cla)? — [0 (@]’
(44)

for the radiative shifts of the OP and IP plasmonic modes,
respectively. Notably, the calculation leading to the above
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FIG. 5. The colored lines display the plasmonic band structure wf(q)+ §:(q) (scaled by ) including retardation effects and the
corresponding radiative frequency shift (42) for (a) and (d) the square, (b) and (e) the honeycomb, and (c) and (f) the Lieb lattices.
(a)—(c) [(d)—(f)] show the OP [IP] modes. For comparison purposes, the thin gray lines reproduce the corresponding quasistatic dispersion
relations w? (q), while the dashed gray lines depict the light cone within each 1BZ. In the figure, d = 3a and kpa = 0.15.

results does not need the introduction of an ultraviolet fre-
quency cutoff for the photonic degrees of freedom [which
prevent us from taking into account photons with a wave-
length smaller than the nanoparticle size, cf. the dipolar
approximation in Eq. (9)], as is the case for nanoparticle
dimers [38] and linear chains [53,66]. We have checked that
the inclusion of such a cutoff, of the order of k. >~ 1/a, does
not significantly modify the results (43) and (44). Notice also
that Eqgs. (43) and (44) are not periodic in reciprocal space
since we consider only the interaction between the collective
plasmons and photons for which the associated light cone
belongs to the 1BZ. Finally, we note from Eqs. (43) and (44)
that 62(0) = 0, so that the dispersion relation at the I' point is
not renormalized by the light-matter interaction.

We plot in Figs. 5(a)-5(c) the plasmonic band structure
for OP-polarized modes w?(q) + 62(q) including Eq. (43) for
(a) the square, (b) the honeycomb, and (c) the Lieb lattices
along the high symmetry lines of their respective 1BZ. As
shown in Fig. 5(a) for the square lattice, the radiative fre-
quency shift 62(q) induces an important renormalization of
the quasistatic band structure, which is of purely transverse
nature [see Fig. 2(c)]. A similar effect is also observed for

other simple Bravais lattices, such as the rectangular and
hexagonal ones [121]. Comparing the retarded dispersion
relation (red line) to the quasistatic one (thin gray line), we
first observe that the retarded one diverges at the intersec-
tion of the quasistatic band structure with the light cone
(dashed lines). A polaritonic singularity arising from the
strong light-matter interaction was already reported in the
literature for the transverse modes in 1D plasmonic chains
by means of involved numerical calculations based on the
fully retarded solutions to Maxwell’s equations [41-47,52].
Recently, studies [53,66] using the open quantum system
approach which we use in this work have shown a similar
divergence occurring in the dispersion relations of transverse
plasmonic modes in chains. Importantly, the results presented
in Ref. [53] show a good qualitative agreement with numerical
electromagnetic calculations for regular nanoparticle chains.
We here point out that the singularities observed in Fig. 5
arise from calculations based on a second-order perturba-
tive treatment of the light-matter coupling. Consequently,
important variations from the LSP resonance frequency wy
should be treated carefully. Notice also that the renormalized
dispersion relation diverges as the inverse of a square root [see
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Eq. (43)] instead of logarithmically as is the case for 1D arrays
[53,66].

As can be seen from Fig. 5(a), taking into account the
radiative shift implies that the cusp appearing at the I
point of the 1BZ within the quasistatic approximation dis-
appears (compare the red and gray lines in the figure). In
the vicinity of the I' point (|q|d < 1), Eq. (43) applied to
the square lattice reduces (considering 2/wy < 1) to §%(q) =~
27 Q|qld + O(|q|d)*. Such a linear |q| dependence cancels
out exactly the one of w*(q) in this regime of parameters
[see Eq. (B3)]. We hence find o*(q) + §°(q) ~ wo + R[4 +
V27 + (Iqld)? (/2 — 1)] close to the T point, leading
to a quadratic dependence of the dispersion relation. The
results presented in Fig. 5(a) thus demonstrate that consid-
ering retardation effects is crucial for the study of the collec-
tive plasmonic modes in metasurfaces of near-field coupled
nanoparticles, since the dispersion relations are qualitatively
affected by the interactions with free photons. Such renor-
malization effects are not that prominent in 1D plasmonic
systems, where, apart from the pronounced renormalization
of the dispersion relation at the crossing of the light cone, the
band structure is qualitatively unaffected by retardation effects
[41-47,52,53,66].

We show in Fig. 5(b) the band structure including retar-
dation effects (colored lines) of the OP plasmonic modes for
the honeycomb lattice. For comparison, we also reproduce
as gray solid lines the transverse-polarized quasistatic band
structure shown in Fig. 3(c). The upper band (r = +1) shows
a similar profile as that in Fig. 5(a). It displays a divergence at
the intersection between the light cone (dashed lines) and the
quasistatic dispersion relation. In addition, it does not present
a cusp at the I point. In contrast, the lower band (r = —1)
does not experience a noticeable (on the scale of the figure)
renormalization induced by the light-matter coupling. Such
low-energy plasmonic modes are thus coined “dark” modes
since they only weakly couple to light. They correspond to
LSPs within each sublattices that are out of phase. Conversely,
plasmonic modes which show a significant coupling to light
are called “bright” modes. Such modes correspond to LSPs
within each sublattices that are in phase. Notably, the different
nature of the bright and dark modes has also important con-
sequences on their respective radiative lifetimes, as we will
discuss in Sec. V.

Importantly, the Dirac cone exhibited by the quasistatic
band structure remains unaffected by the light-matter coupling
since the Dirac point lays outside of the light cone within
the regime of parameters which we consider in this work. In
Fig. 5(b) we nevertheless observe a slight mismatch between
the two bands in the vicinity of the K point. Such an artifact
stems from the fact that we only consider the light cone
belonging to the 1BZ in the evaluation of Eq. (42). Full polari-
tonic numerical calculations [104], where the light-matter in-
teraction is taken into account exactly (and not perturbatively),
show however that Dirac cones are unaffected by retardation
effects.

We show in Fig. 5(c) the dispersion relation including retar-
dation effects of the OP plasmonic modes for the Lieb lattice.
Along the lines of the above discussion on the honeycomb
lattice [cf. Fig. 5(b)], the plasmonic dispersion relation of the
Lieb lattice present bright and dark modes. The most energetic

band (red line) corresponds to bright transverse collective
modes and thus displays a singularity at the intersection
between the quasistatic dispersion (gray solid lines) and the
light cone (dashed lines) as well as the absence of a cusp at
the I' point. Conversely, the two low-energy bands correspond
to dark modes.

We now focus on the effects of retardation in the light-
matter interaction onto the collective plasmonic modes po-
larized within the plane of the metasurface [cf. Eq. (44)].
We display in Fig. 5(d) the dispersion relation of the IP
modes in the square lattice (see red and orange lines). The
quasistatic band structure from Fig. 2(d) is reproduced here
by gray lines for comparison. Three important features appear
from the comparison of these two results. The low-energy
band (cf. red line), which corresponds essentially to trans-
verse modes, present a singularity at the crossing of the
quasistatic dispersion relation with the light cone. Conversely,
the high-energy band (cf. orange line), which corresponds
essentially to longitudinal modes, does not present such a
singularity at the crossing, as is the case for plasmonic chains
[41-47,52,53,66]. In addition, the cusp that present the qua-
sistatic high-energy band in the vicinity of the I' point is
washed away by retardation effects. Similar conclusions can
be drawn for the honeycomb and Lieb lattices, see Figs. 5(e)
and 5(f), respectively, as well as for the kagome lattice [121].
In addition, in the case of Bravais lattices with a basis, some of
the IP bands are only weakly modified by retardation effects
[see the cyan lines in Figs. 5(e) and 5(f)] and thus correspond
to dark modes.

In Appendix C we compare our perturbative approach
to numerical calculations based on the solution to the fully
retarded Maxwell’s equations performed in Refs. [100,106],
and find a rather satisfying agreement. Contrarily to three-
dimensional plasmonic systems [119] or metamaterials em-
bedded in a photonic cavity [68,104,105], where matter and
photonic degrees of freedom are strongly coupled and which
require an exact diagonalization of the light-matter coupling
Hamiltonian, here the collective plasmons supported by the
metasurface couple to a continuum of photonic modes as
YV — oo in Eq. (11). Therefore, the coupling is not as strong
as in the previously mentioned systems, and leading-order
perturbation theory is able to catch the main features of the
polaritonic band structure.

V. RADIATIVE DAMPING

We now concentrate on the evaluation of the radiative
decay rate of the collective plasmons. To this end, we treat
the plasmon-photon coupling Hamiltonian (9) as a weak
perturbation to the plasmonic subsystem. In such a regime,
the radiative decay rate of the plasmonic eigenmode [1%(q))
with band index t, polarization &, and wave vector q is given
by the Fermi golden rule expression

a’ 1
vi(@ =2mw) s ) L —8(w;(@) — o)
K, fx K
2
X |Foq D6 - hi)e O PE(q) , (45)
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FIG. 6. The colored lines display the radiative damping rate y;(q) from Eq. (46) [scaled by the single-particle result y, see Eq. (49)] for
(a) and (d) the square, (b) and (e) the honeycomb, and (c) and (f) the Lieb lattices. (a)—(c) [(d)—(f)] The damping for the OP [IP] modes. Same
parameters as in Fig. 5.

where F_ kq and P:J(q) are defined in Egs. (39) and (40), g 2
respectively. In the large metasurface limit (N >> 1), using { Z |: Pl (q) + = Pfsy(q):|
Eq. (41) yields the result + Lldl ]
2
e 2 3@ A kq o £ ey
vi(@ =270y~ ) Z(o S0P (q) s 2
V n Wk
K.
2
x 8(wi(q) — wx), (46) y (7' (Q)] } %)
2
which is valid for arbitrary polarizations. We can then show (clal)
that [121]
2
Zyra)(3)cz3c|q|2
v @)= ——"—"""=|) P
T It; x tzl[wg(q)] s for the IP modes.

We plot in Fig. 6 the radiative damping rate (47) for OP
plasmonic modes for the square [Fig. 6(a)], the honeycomb
- “47) " [Fig. 6(b)], and the Lieb lattices [Fig. 6(c)] along the high
\/ [‘05 (q)] — (clql) symmetry lines originating from the I" point of their respective

1BZ. Note that we do not show in the figure the results along
the entire 1BZ since the damping rate vanishes for wave

O(wi(q) —clql)

for the OP modes, and

> 2nwjdielql? @(a)f” (q) — c|q|) vectors outside of the light cone, as can be easily inferred
Q) = — P 3 - > from the Heaviside step function in Eq. (47). In Fig. 6 the
It x tof[o: ()] \/ [0 (@] — (clql)? displayed results are scaled by the radiative decay rate of a
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single isolated nanoparticle,

2w3a3
Yo = 33

For the square lattice [Fig. 6(a)], the OP plasmonic modes
present a highly superradiant profile [y*(q) > ] inside of
the light cone for wave vectors not too close to the I' point,
while displaying a vanishing rate outside of the light cone.
From the figure we observe that the radiative decay rate
y*(q) increases rapidly as q moves away from the center
of the 1BZ and diverges at wave vectors corresponding to
the intersection of the quasistatic band structure with the
light cone. Such singularities are related to those observed
in the fully retarded dispersion relation [cf. Fig. 5(a)]. The
superradiant behavior of the radiative damping rate observed
in Fig. 6(a) is reminiscent to the one reported for 1D plas-
monic chains [37,41,42,44-46,52,53,63,66]. Such a behavior
is nevertheless much more prominent in 2D metamaterials,
due to the enhanced constructive interferences between the
dipolar electric fields produced by each LSP.

We plot in Figs. 6(b) and 6(c) the radiative decay rates
of the OP plasmonic modes for the honeycomb and Lieb
lattices, respectively. In both cases, one of the plasmonic
band shows a similar profile as that in Fig. 6(a). Indeed, in
both Figs. 6(b) and 6(c) the red lines display a superradiant
behavior which diverges at the intersection of the quasistatic
band structure and the light cone. Conversely, the blue and
cyan lines show the existence of subradiant modes [i.e.,
v£(q) < yol corresponding to dark, nonradiative modes, for
which retardation effects on the plasmonic band structure are
essentially negligible [cf. blue and cyan lines in Figs. 5(b) and
5(0)].

We show in Fig. 6(d) the radiative damping rate (48) for
IP polarized modes in the square lattice. In the figure the
red line corresponds to the lower transverse plasmonic band
in Fig. 5(d) [see also Fig. 2(d)] and presents singularities
coinciding with those in Fig. 6(a). Conversely, the orange line
in Fig. 6(d) which corresponds to the upper longitudinal band
[see Fig. 5(d)] displays an opposite trend, as the radiative
decay rate decreases for wave vectors moving away from the
center of the 1BZ. This is reminiscent to what has been previ-
ously reported for longitudinal plasmonic modes in 1D chains
[37,41,42,44-46,52,53,63,66]. We draw similar conclusions
for the honeycomb and Lieb lattices, see Figs. 6(e) and 6(f),
respectively. Additionally, some of the bands [cyan lines in
Figs. 6(e) and 6(f)] display an almost vanishing radiative
decay rate as they correspond to dark, out-of-phase modes.

(49)

VI. EFFECTS OF THE ELECTRONIC ENVIRONMENT ON
THE COLLECTIVE PLASMON EXCITATIONS

In this section we now focus on the effects induced by
the second environment the collective plasmons are subject
to [cf. Eq. (1)], i.e., the electronic environment, which is
represented by the Hamiltonian (12). Similarly to the photonic
bath which we considered in the preceding Secs. IV and V,
the coupling between plasmonic and single-particle electronic
degrees of freedom, encapsulated in the Hamiltonian (13),
leads to two distinct effects. First, the collective plasmons
dissipate their energy by producing electron-hole pairs inside

each nanoparticles composing the metasurface, corresponding
to the well-known Landau damping (Sec. VI A), and yielding
a second (nonradiative) decay channel which adds up to the
radiative one. Second, the electronic environment induces
an additional renormalization of the quasistatic dispersion
relation, which comes on top of the one induced by free
photons (Sec. VIB).

A. Landau damping

We start this section by first evaluating the Landau damp-
ing of the collective plasmonic modes. To this end, we treat
the coupling (13) between plasmonic and electronic degrees
of freedom perturbatively. Since the typical Fermi temperature
of ordinary metals is of the order of 10*K, we employ the
zero-temperature limit which is a very good approximation.
Within this regime, the Landau damping linewidth I'2(q) of
the plasmonic eigenmode |1£(q)) with band index 7, polar-
ization ¢, and wave vector q is given by the Fermi golden rule

2

2 ¥
L@ = A7 3 3 Y (M @] telolh)
s eh o
x 8(0i(q) — wen), (50)
where
M3 (q) = u3; (q) — vig (q) (51)

is given in terms of the Bogoliubov coefficients entering
Eq. (15). In Eq. (50), A is the coupling constant defined in
Eq. (14), w.;, = (€. — €;,)/h corresponds to the frequency as-
sociated with an electron-hole pair, where €, (¢5,) is the energy
of a single-particle electron (hole) state in the self-consistent
hard-wall potential associated with each nanoparticle, and
(elo |h) is the corresponding dipolar matrix element [121].

Equation (50) can be explicitly calculated [121], yielding
for the Laudau damping rate of the collective plasmons the
analytical expression

oo Bup( wo \' (hei(q)
hO=7 (wi(q)) g( Er ) 6

Here vg and Ef are the Fermi velocity and energy of the con-
sidered metal, respectively, while the function gis a is a mono-
tonically decreasing function of the parameter /iw:(q)/Er
[121,131]. To leading order in the coupling constant (7), the
Landau damping decay rate of the collective plasmonic modes
thus scales with the nanoparticle size as 1/a, as it is the case
for the single-particle result [121,131-133]. This is in stark
contrast to the radiative linewidth, which increases with the
nanoparticle radius as a [cf. Eq. (46)].

In Fig. 7 we illustrate the result of Eq. (52) for the special
case of the OP modes in the honeycomb lattice. In the figure
the displayed results are scaled by the single-particle Landau
damping linewidth 'y = (3vg/4a)g(hiwy/Er) [121], and the
blue (red) curve corresponds to the lower (higher) energy band
in Fig. 3(c). We therefore conclude that the higher the energy
of the mode, the lower its nonradiative Landau decay rate,
as is the case for single nanoparticles [134]. Importantly, in
contrast to the radiative decay rate analyzed in Sec. V, the
Landau damping is nonvanishing over the whole 1BZ, and is
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FIG. 7. Landau damping linewidth (52) (scaled by I'y, the Lan-
dau decay rate of a single nanoparticle) of the out-of-plane polarized
modes in the honeycomb lattice. The blue (red) line corresponds to
the decay rate of the lower (higher) band [see Fig. 3(c)]. In the figure,
d = 3a and Ep = 2h(u0.

of the order of I'y. It is therefore crucial to take into account
such a decay mechanism, especially for small nanoparticles
where it dominates over radiative losses [121].

B. Electronic-induced frequency shift

We now calculate analytically the frequency shift induced
by the electronic environment on the plasmonic band struc-
ture. Treating the plasmon-electron coupling Hamiltonian
(13) to second order in perturbation theory yields for the col-
lective plasmon energy levels nZ(q)hiwi(q) + & (q) + &2

ni(q)’
While the first-order correction Sriezq) vanishes due to the
selection rules contained in the coupling Hamiltonian (13),

the zero-temperature second-order correction reads

2
Séezgq) _ZZ wE(r(l])(q_) ‘Z Mm(q) (elo |
g+ 1 2
nr q 0
C 0l(@) + o XU:M (@)elo|h) 53)

The electronic induced frequency shift, defined as Af(q) =

[5£3zq) T ng (q)] /h, is therefore given by

2

Al(q) = hzgjz ws(q) ‘Z M7 (@) (elo|h)

2

1
wi(q) + wer

(54)

> M (@)(elo|h)

The above expression can be evaluated analytically [121],
leading to the result

3
AL(@) = =2 (@). (55)

z
T

M r K M

FIG. 8. Electronic-induced frequency shift (55) [scaled by |Ag],
see Eq. (57)] of the out-of-plane polarized modes in the honeycomb
lattice. The blue (red) line corresponds to the frequency shift asso-
ciated with the lower (higher) plasmonic band [see Fig. 3(c)]. In the
figure, d = 3a, Er = 2hwy, kpa = 100, and n = 1/2.

20 = 557 (3)

[ ( STiwkpa [w]“) P 4}
X | In|] ———m@m | — — = —=|. (56)
3nErg(iw/EFR) [ wo 2 3

Here 7 is a constant of order 1 [121]. Note that the frequency
shift (55) scales with the size of the nanoparticles as 1/a, up to
a logarithmic correction. As is the case for the Landau damp-
ing linewidth (52), such a frequency renormalization is there-
fore of relevance for the smallest nanoparticles. Moreover, the
electronic shift of the collective plasmons involves only the
plasmonic band structure w:(q) in contrast to the radiative
frequency shifts [cf. Egs. (43) and (44)] which depend on the
eigenvectors as well. Notice that substituting wy with w?(q) in
Eq. (55) allows us to recover the electronic-induced frequency
redshift of an isolated nanoparticle [118],

Ao = 3"F 2 o). 57)

We plot in Fig. 8 the result of Eq. (55) applied to the
special case of the OP collective plasmonic modes in the
honeycomb lattice. As in Fig. 7, the blue (red) line in Fig. 8
corresponds to the lower (higher) energy band in Fig. 3(c).
The displayed results are scaled by the absolute value of the
frequency shift (57) corresponding to a single nanoparticle.
Immediately noticeable from the figure is that the electronic
shift (55) is negative in the entire 1BZ, thus corresponding to
a redshift, and is of the order of Ag. This is in contrast to the
radiative frequency shift (42), whose sign is both depending
on the wave vector and polarization of the collective mode
(see Sec. IV). Finally, the higher the energy of the mode, the
lower is its associated electronic shift. Such a conclusion is
reminiscent of what occurs in isolated nanoparticles [134].

VII. OBSERVABILITY OF THE COLLECTIVE
PLASMONIC MODES

Experimentally, the ability to observe the plasmonic dis-
persion relations presented, e.g., in Fig. 5, is governed by the
resolution of the separation between the bands with respect

045420-15



FRANCOIS FERNIQUE AND GUILLAUME WEICK

PHYSICAL REVIEW B 102, 045420 (2020)

to their respective linewidths. The spectral function A(w, q),
which characterizes the response of the system to an external
perturbation at a given frequency w and in-plane wave vector
q, is the key quantity which is usually determined in a spec-
troscopy experiment (using, e.g., photons or hot electrons).
Assuming a Breit-Wigner form for A(w, q), we have

1
Aop(®, q) (58a)
Z [ — a@(@]* + [Tz@)/2]’
for the OP modes and
Ap(@.q) o ! 58b)

o —av @] + [T @2

for the IP modes, respectively. In Eq. (58), the renormalized
resonance frequency

7(q) = wi(q) + 85(q) + AL (q) (59)

takes into account both the radiative shift 65(q) [cf. Eq. (42)]
and the electronic one AZ(q) [cf. Eq. (55)]. Additionally, the
quantity

T(@) =y (@ +Tiq) + vo (60)

is the total linewidth of the plasmonic modes and includes
three distinct contributions: (i) the radiative losses y/(q)
[Eq. (46)], (ii) the Landau damping I": (q) [Eq. (50)], and (iii)
the Ohmic losses, inherent to any (bulk) metal, characterized
by the damping rate yo, and which we assume to be mode and
size independent.

We show in Fig. 9 the spectral function (58) for both the
OP and IP modes and for the square, the honeycomb, and the
Lieb lattices along the high symmetry lines of their respective
1BZ as a function of w. The parameters used in the figure
are wgp = 2.6 eV/h and Er = 5.5 eV, corresponding to Ag
nanoparticles placed in an effective medium with a refractive
index of 2 [2]. The interparticle distance is d = 3a and the
(reduced) nanoparticle radius is kga = 0.15 (corresponding to
a = 11nm). In Fig. 9 the Ohmic losses entering Eq. (60) are
neglected.

As can be seen in Fig. 9(a), which displays A(w, q) for
the OP modes in the square lattice, the spectral function is
reminiscent of the dispersion relation including retardation
effects shown in Fig. 5(a), since the electronic shift (55) only
induces a finite q-dependent redshift of the band structure.
In the figure we clearly distinguish two different profiles
corresponding to wave vectors inside (|q| < ko) and outside
(Iq] 2 ko) of the light cone. Within the light cone, the total
linewidth (60) is dominated by the radiative damping [see
Fig. 6(a)], so that it is difficult to resolve the plasmonic
dispersion relation. However, outside of the light cone, only
the Landau damping (52) contributes to the total linewidth
of the spectral function, allowing for a clear resolution of the
plasmonic band. Note that, since the plasmonic modes outside
of the light cone are essentially dark, nonoptical techniques
are required to excite such modes. Dark modes in nanoparticle
dimers and chains have been observed using electron energy
loss spectroscopy experiments [28—30], and such a technique
may be transposed to study plasmonic metasurfaces.

We plot in Figs. 9(b) and 9(c) the spectral function (58a)
corresponding to the OP modes for the honeycomb and Lieb

lattices, respectively. In both cases we observe a similar trend
as that in Fig. 9(a). Indeed, the entire band structure is clearly
visible outside of the light cone in both Figs. 9(b) and 9(c),
while the upper bands inside the light cone display a rather
large linewidth. However, we see that the lower bands for both
the honeycomb and the Lieb lattices are still well resolved
inside the light cone. These dispersion relations correspond to
dark plasmonic modes, so that their radiative linewidths for
wave vectors |q| < kg are nearly vanishing [see the blue line
in Fig. 6(b) and the blue and cyan lines in Fig. 6(c)], and only
the Landau damping contributes to the observed linewidth.

In Figs. 9(d)-9(f) we display the spectral function (58b) for
the IP plasmonic modes for (d) the square, (e) the honeycomb,
and (f) the Lieb lattices, respectively. Similar conclusions as
that drawn above for the OP modes can be put forward: while
the nonradiative bands outside of the light cone are clearly
visible, the bright ones inside the light cone are essentially
almost not resolvable.

We conclude this section by discussing the effect of Ohmic
damping on the above results. As is evident from Eqgs. (58) and
(60), the inclusion of a finite yo leads to a global, size-, and
mode-independent increase of the width of the spectral lines
shown in Fig. 9. From the experiments of Ref. [135] on silver
clusters, we can extract the value yo = 70 meV /h, which
corresponds to 0.027wy. The increased linewidth induced by
Ohmic losses results in a global resolution of the spectral
function which is then significantly lower than the one shown
in Fig. 9. As a consequence, several plasmonic bands cannot
be distinguished properly as it is the case, e.g., for the OP
modes in the honeycomb and Lieb lattices in the vicinity of
the corners of their respective 1BZ [121]. Nevertheless, within
the regime of parameters used in Fig. 9, the linewidth of a
majority of the plasmonic modes is still sufficiently small
to allow for an experimental detection (except for the bright
modes within the light cone). Embedding the metasurface in
a gain media material [8,44,136—138] should help diminish
the effects induced by Ohmic losses on the spectral function
and further improve the experimental observability of the
collective plasmons.

VIII. CONCLUSION

We have considered the plasmonic properties of meta-
surfaces constituted by an ordered arbitrary two-dimensional
array of spherical metallic nanoparticles. We have focused on
the case where the interparticle distance is much smaller than
the wavelength associated with the dipolar localized surface
plasmon resonance frequency of single nanoparticles, where
the near-field, quasistatic dipole-dipole interaction dominates.
We have developed a comprehensive open quantum system
framework to analyze in full analytical detail the dispersion
relations and the lifetimes of the resulting collective plas-
monic modes supported by the various metasurfaces which we
have studied, including, e.g., the honeycomb and Lieb lattices.
Such metasurfaces present appealing topological features in
their band structures, such as massless Dirac-like conical
dispersions, as well as nearly flat bands, and may be a possible
experimental platform to explore new states of hybrid light-
matter waves.
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FIG. 9. Spectral function (58) for (a) and (d) the square, (b) and (e) the honeycomb, and (c) and (f) the Lieb lattices. (a)—(c) [(d)—()]
The results for the OP [IP] modes. In the figure we choose the parameters fiwy/Er = 0.47 and ko/kg = 1.1 x 1073, corresponding to silver
nanoparticles. In addition, we take d = 3a and kga = 0.15 (corresponding to a = 11 nm). The Ohmic losses y entering the total damping rate

(60) are neglected.

Our model enabled us to unveil analytical expressions for
the retarded dispersion relations of the plasmonic collective
modes, which are in good agreement with existing numerical
solutions to Maxwell’s equations. Our model also includes

the effects of the particle-hole environment to which such
modes are coupled to, and that are of particular relevance for
nanoparticles of only a few nanometers in size. Our theory
further allowed us to provide analytical expressions for the
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radiative and nonradiative (Landau) damping rates of the
plasmonic modes, which enabled us to critically examine their
experimental observability. While Ohmic losses, inherent to
the metallic nature of plasmonic particles, may make the
detection of the collective modes elusive, the use of gain
materials should give scope to their experimental observation.
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APPENDIX A: DIAGONALIZATION OF THE PLASMONIC
HAMILTONIAN

In this Appendix we present the details of the diagonal-
ization procedure of the plasmonic Hamiltonian (6). Since
we consider large metasurfaces, we use periodic boundary
conditions and move to wave vector space using the Fourier
transform

bl (q) =

e MR pI(R)) (A1)

1
>
of the bosonic ladder operator b9 (R;) defined in Eq. (5), with

N = NN; > 1 the total number of unit cells in the lattice.
The Hamiltonian (6) then reads

Hy = thZZZb‘;T(q)b‘; (Q)
ZZZ

x [b7 (@) + b (—@)] + Hee.},

where f7°7 (q) is the lattice sum defined in Eq. (18). Note that
fors =/, fg“ (q) is real due to the inversion symmetry of the
Bravais lattice. Moreover, fJ° Q) =1 f;’;”(q)]* since py, =

p"ijhe plasmonic Hamiltonian Hp given in Eq. (A2) is
quadratic, and can thus be diagonalized exactly by means of
the bosonic Bogoliubov transformation given in Eq. (15). The
inverse transformation reads

bl (q) =Y [u7*(q)Bi(q) — viZ* (@)L (—q)]-

TE

Note that  the bosonic commutation  relations

A v
[B7(@), By ()] = 8rc8e08qq and  [B(q), Bz (q)] =0
impose that the Bogoliubov coefficients in Eq. (15) fulfill the
relations

[

Nea

" (@b (q)

(A2)

(A3)

T@uET* (@) — v (QUET (@] = 8eeBeer (AD)

and

D [

Nes

T@UETH (@) — Vi (@l T ()] = (AS5)

where #27*(—q) = u%(q) and viJ*(—q) = v (q). The dis-
persion relation w (q) as well as the coefﬁcients of the
Bogoliubov transformation (15), are then obtained from the
Heisenberg equation of motion

[B2(q), Hy | = ol (q)BE(q),

which yields the system of equations (17).

In the case of a generic Bravais lattice (see Sec. Il A),
the diagonalization procedure above yields the dispersion
relations (20) and (21) for the OP and IP modes, respectively.
We find for the corresponding coefficients of the Bogoliubov
transformation (15)

(A6)

w*(q) + wo

= 2/ wow*(q)

(A7)

and

w*(q) — wo
2wy’ (q)
in the case of the OP polarized modes. For the TP modes,
the condition ¢} (Q¢l(q) = 2w0 QfY (q) must be fulfilled,
with £2(q) = [0°1+(Q)]* — wf — 2002277 (q) (0 = x, ), 50

vi(q) = (A)

that
w#(q) + wo ¢i(q)
E|l.£X — s A9
u (q) ) /'wowéz“u.i () Za:x,y ¢g (q) (A%
U1+ (q) = Esgn{f*(q)} giiq; ‘% (q),  (A9b)
+
and
ofl=(q) — wo ¢i(q)
&)X — , (A10
v (q) 2./ wowf=(q) Za:x,y ¢2(q) ( Y
VY (q) = Esgn{f*(q)} gyi—((l)vs”’*x(q} (A10Db)
¢x(q)

We point out that neglecting the nonresonant terms in
Eq. (A2), which corresponds to performing the rotating wave
approximation (RWA), yields the same dispersion relations
(20) and (21) to first order in 2 < wy and the same Bo-
goliubov coefficients (A7) and (A9), while v*° (q) = 0 within
such an approximation [121].

In the case of a generic bipartite lattice (see Sec. III B 1),
the Bogoliubov coefficients corresponding to the OP modes
are given by

@i (q) + wo
2/ 2wpwi(q)’
5(q)

T a1 @

S(q) = (Alla)

us(q) =

(A11b)

and
wi(q) — wo
2. 20007 (q)

=)
gl

vi(q) = (Al2a)

vi(q) = (Al2b)
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Alternatively to the exact diagonalization procedure pre-
sented in this Appendix, it may be useful to treat the nonres-
onant terms in Eq. (A2) perturbatively, since, for all practical
purposes, the coupling constant Q2 < wy [cf. Eq. (7)]. Such a
procedure has the advantage of dividing by two the dimension
of the system of equations leading to the plasmonic band
structure, which may be helpful in deriving the spectrum and
the associated Bogoliubov coefficients analytically [121].

APPENDIX B: MEAN-FIELD APPROXIMATION FOR THE
QUASISTATIC BAND STRUCTURE OF THE SQUARE
LATTICE

Here we provide an analytical understanding of the cusp
presented by the quasistatic collective plasmon dispersion
close to the I' point in the case of the OP and IP polarized
modes in the case of the square lattice. As demonstrated in
Sec. IV, such a cusp is actually an artifact of the quasistatic
approximation, and retardation effects strikingly renormalize
this behavior. It is however important to get a full description
of the quasistatic band structure in order to understand the
fully retarded one. The analysis presented below, which relies
on the mean-field treatment of the long-ranged quasistatic
dipolar interactions, can be straightforwardly extended to
other Bravais and non-Bravais lattices.

The behavior of the quasistatic plasmonic dispersion re-
lation of the square lattice for OP polarization close to the
I' point mentioned in the main text (see Sec. I A) can be
understood by treating the nearest neighbors in the lattice sum
(18) exactly, while averaging the interactions beyond nearest
neighbors in the spirit of the mean-field (mf) approximation,
leading to f¥(q) =~ fZ(q) + f55(q). Here

2 3
sw= [ d—”efq'»@)
" p>2d d? 1Y

— 2qd f<ﬁ|q|d), (B1)
with

F)= -1 +J1(z)[—1 + %zHo(z)]

2

where J,(z) and H,,(z) are the Bessel functions of the first kind
and the Struve functions, respectively. Consequently, in the
vicinity of the I" point (]q|d <« 1) and in the weak-coupling
regime of interest (2 < wyp), we find

1 T
+ JO(Z)[Z +z——=z Hl(z)}, (B2)

o (q) = wy + Q% + 2 —27|qld + (% - 1)(Iqld();l,)

so that a cusp appears in the dispersion relation (20). In
Fig. 2(c) we show by a dotted line the plasmonic band
structure within the mean-field approximation detailed above.
As can be seen from the figure, the mean-field approximation
accurately describes the cusp of the full band structure in the
vicinity of the I' point, while it tends toward the nearest-
neighbor approximation away from the I" point.

In the case of the IP-polarized modes, the lattice sums in
Eq. (21) are replaced within the mean-field approximation

presented above by £ (q) ~ fr‘l’n"/(q)—}—fgf/(q) (o,0' =
X,y), where

2
fof (@) = 2n|q|d{—(|%’|) F(V2lqla)

. [(%)2_1]M

lal) 2| (qld)?

, 0 =X,
(B4)

and

n(v2lqid)

(Iqld)?

(BS)

X CIxCI=
fort@ = 2nlald 5 | ~F(V2laia) +

The resulting band structure is represented in Fig. 2(d) by
a dotted line, and reproduces quite well the full quasistatic
dispersion in the vicinity of the I' point. In particular, to first
orderin |q|d < 1, we find w1+ (q) ~ wy + Q(=2 — 7 //2 +
27 |qld) and @' (q) ~ wy — Q2 + 7 //2), demonstrating
the presence (absence) of a cusp for the high- (low-) energy
plasmonic branch.

APPENDIX C: COMPARISON OF THE OPEN QUANTUM
SYSTEM APPROACH TO CLASSICAL
ELECTRODYNAMIC CALCULATIONS

In this Appendix we compare our analytical results for the
retarded plasmonic band structure derived from the perturba-
tive open quantum system approach (see Sec. IV) to numerical
calculations based on the solution to Maxwell’s equations
[100,106].

In Ref. [100], Han et al. used the multiple scattering
theory developed in Refs. [47,106] which gives a solution to

3.8

=

L

= 3.6

E{Qﬁ

+

G

g 3.4

‘E poccccccee, o (a0000000000000|
3.2

M r K M

FIG. 10. Retarded plasmonic dispersion relation of the honey-
comb lattice for silver nanoparticles with resonance frequency wy =
3.5eV/h, radius a = 10nm, and interparticle distance d = 35 nm.
The green data points are extracted from Fig. 1(c) in Ref. [100].
The solid lines correspond to the results of our open quantum system
approach.
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Maxwell’s equations including retardation effects in order to
numerically extract the plasmonic dispersion of a honeycomb
array of silver nanoparticles in vacuum, with resonance fre-
quency wy = 3.5eV/h, radius a = 10 nm, and lattice constant
60 nm, corresponding to an interparticle distance d = 35 nm.
The classical calculation by Han et al. requires as an input the
permittivity of the considered metal, which they chose to be of
the Drude type, without Ohmic losses. We note that the use of
a nonlocal dielectric function is not a well defined concept for
a finite-size nanoscale system [139], while the quantum model
developed here is inherently nonlocal. Moreover, the method
of Refs. [47,100,106] is fully numerical and hence is limited
to specific choices of material parameters and geometry of
the metasurface, and involves nonconverging sums that need
to be regularized. In contrast, our perturbative approach is
straightforward to implement and universal, as it allows to
consider any metallic nanoparticles arranged in an arbitrary
Bravais or non-Bravais lattice.

We reproduce in Fig. 10 the results of Ref. [100] (green
dots), which we compare to our analytical results based on
the open quantum system approach (solid lines). Note that
the method of Ref. [100] cannot access the plasmonic modes
inside of the light cone (i.e., for |q| < ko). As can be seen from
the figure, the quantitative agreement between both theories
is rather good for collective modes outside of the light cone,
thus validating our approximate treatment of the light-matter
coupling, at least in this region of the 1BZ.

We also compared our results to the fully retarded classical
calculations by Zhen et al. [106] performed on a square
lattice of silver particles with radius a = 25nm spaced by
an interparticle distance d = 75 nm. There we obtain a qual-
itative agreement with the classical simulations. The lack of
a quantitative agreement in this case can be understood by
the rather large spacing between nanoparticles, for which
kod =~ 1.4, which is clearly out of the range of validity of our
approach (kod < 1).
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