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Electromagnetic control of transport across a barrier on a topological insulator surface

Adithi Udupa ,1 K. Sengupta ,2 and Diptiman Sen 1,3

1Center for High Energy Physics, Indian Institute of Science, Bengaluru 560012, India
2School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India

3Department of Physics, Indian Institute of Science, Bengaluru 560012, India

(Received 25 November 2019; accepted 24 June 2020; published 20 July 2020)

We study ballistic transport across a time-dependent barrier present on the surface of a three-dimensional
topological insulator. We show that such a barrier can be implemented for Dirac electrons on the surface of a
three-dimensional topological insulator by a combination of a proximate magnetic material and linearly polarized
electromagnetic radiation. We find that the differential conductance of the system can be tuned by varying the
frequency and amplitude of the radiation and the energy of an electron incident on the barrier, providing us
optical control on the conductance of such junctions. We first study a δ-function barrier which shows a number of
interesting features such as sharp peaks and dips in the transmission at certain angles of incidence. Approximate
methods for studying the limits of small and large frequencies are presented. We then study a barrier with a
finite width. This gives rise to some features which are not present for a δ-function barrier, such as regions of
both large conductance (resonances) and small conductance (dips) at certain values of the system parameters.
We present a Floquet perturbation theory which can explain all these features. Finally, we use a semiclassical
approach to study transmission across a time-dependent barrier and show how this can qualitatively explain some
of the results found in the earlier analysis. We discuss experiments which can test our theory.
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I. INTRODUCTION

Topological insulators (TI) have been studied extensively
both theoretically and experimentally because of their remark-
able physical and mathematical properties (see Refs. [1,2] for
reviews). These are materials in which the bulk states are
separated from the Fermi energy by a finite gap and therefore
do not contribute to electronic transport at low temperatures;
however, there are states at the boundaries which are gapless
(if certain symmetries like time reversal are not broken), and
they participate in transport. In reality, many TIs have some
bulk conductance because the Fermi energy lies within a bulk
conduction band. However, an appropriate amount of doping
can produce ideal TIs where the bulk conductance is very
small [3,4]. Further, the number of boundary states with a
given momentum is given by a topological invariant which
characterizes the bulk states. In three-dimensional topological
insulators such as Bi2Se3 and Bi2Te3, the boundaries are
surfaces, and the surface electrons are typically governed
by the Hamiltonian of a single massless Dirac particle in
two spatial dimensions. Further, the Hamiltonians exhibit
spin-momentum locking, so that the linear momentum and
the spin angular momentum of an electron are perpendicular
to each other. If time-reversal symmetry is not broken (by,
say, magnetic impurities), the spin-momentum locking leads
to ballistic transport; this is because scattering from a non-
magnetic impurities cannot flip the spin of an electron and
therefore cannot change its momentum. The application of an
in-plane magnetic field which has a Zeeman coupling to the
spin or, equivalently, the presence of a proximate magnetic
material which induces in plane Zeeman magnetization, alters

the spin-momentum locking of the Dirac electrons [5,6]. It has
been shown in Ref. [6] that the presence of such proximate
magnetic material over a strip of finite width can cut off
conductance across it for sufficiently strong induced magneti-
zation. This allows one to implement a magnetic switch and
achieve magnetic control over electric current in these materi-
als utilizing spin-momentum locking of Dirac quasiparticles.

The effects of periodic driving of quantum many-body
systems is another subject which has been studied exten-
sively for about a decade from many points of view (for
reviews, see Refs. [7–14]). Such periodic driving can be used
to change the band structure of a material (giving rise to
phenomena such as dynamical freezing [15–21]), generate
boundary modes and induce dynamical topological transitions
by changing a nontopological system to a topological one
[8,10,14,22–42], produce steady states which cannot appear in
time-independent systems [9], and control electronic transport
[13,24,43–48].

In this paper, we will be interested in the last aspect of
periodic driving, namely its effect on charge transport. More
precisely, we will study what happens when a magnetic barrier
which is periodically varying in time is placed on the surface
of a TI like Bi2Se3. Such a barrier can be realized in these ma-
terials by applying an in-plane magnetic field (which induces
a static Zeeman magnetization) and a linearly polarized light
(which provides the time-varying part) over a region of width
L. A schematic picture of the system is shown in Fig. 1. We
will see that the conductance of this system, in the presence
of such a barrier, exhibits a number of interesting features,
such as prominent peaks and dips, as the different system
parameters are varied. Moreover, such a barrier provides a
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FIG. 1. Schematic picture of the system showing the top surface
of a TI, with a static magnetic barrier of strength m0 and electromag-
netic radiation with frequency ω and amplitude V0 which is incident
on the barrier. The barrier has a width L (region II), and an electron
comes in from region I with an angle of incidence θ .

route to optical (electromagnetic) control over electric current
in such junctions; we show that the conductance of such
a junction can be tuned by controlling the amplitude and
frequency of the applied light even in the absence of a static
Zeeman field. We note that an analogous study for the case
of an oscillating potential barrier was carried out in Ref. [46];
however, the optical control of conductance that we find in our
study has not been obtained earlier.

The plan of this paper is as follows. In Sec. II, we study
the effect of a δ-function magnetic barrier which has both
a constant term m0 and a term which oscillates sinusoidally
with an amplitude α and frequency ω; we take the field
to point along the x̂ direction. The δ-function nature of the
barrier allows a simpler analysis of the problem than the more
realistic case of a finite-width barrier, which is discussed in the
next section. We find that the δ function leads to a nontrivial
matching condition for the wave function on the left and right
edges of the barrier. Assuming that an electron is incident
on the barrier from the left with an energy E0 and angle of
incidence θ , we will use the matching condition to derive
the transmission amplitudes in the different Floquet bands
and hence the transmitted current on the right of the barrier.
Integrating this over θ gives the differential conductance G.
We then present our numerical results for the transmitted
current and G as a function of the parameters m0, α, ω, and
E0. Several interesting features are seen, such as kinks in
the transmitted current at certain values of θ for intermediate
values of ω and peaks in G at certain values of m0 for
small values of ω. We provide simple explanations for these
features and for the results obtained in some limits of the
problem such as small and large values of ω. In Sec. III, we
study a time-dependent magnetic barrier which has a finite
width L; the field is taken to consist of a constant m0 and
an oscillating term with an amplitude V0 and frequency ω.
We examine surface plots of G as a function of V0 and m0

for various values of ω. We find that G is peaked along the
line m0 = V0 for small ω and shows resonance-like features
for a discrete set of values of V0 when ω is large and m0

is small. We show that the conductance of a time-dependent
barrier with parameters (m0,V0, ω) can be mapped to that of a
time-independent barrier with a single parameter meff ; we find
that meff approaches a constant for large ω, where the constant
depends on (m0,V0). We also find that when E0 and ω are
large and are related as E0 = h̄ω/2, there are prominent dips
in G. We analyze how the width and magnitude of the dips
depend on the parameters V0 and L. We provide a detailed
study of the behavior of G as a function of m0 and V0 at
both high and low frequencies, and show that for small or
zero m0, one can tune V0 to control G in these systems. This
shows that these junctions can operate as optically controlled
switches. To study this more carefully, we carry out a detailed
investigation of the dependence of G on V0 and ω, for a fixed
value of E0 and L, taking m0 = 0. We find that for ω/V0 �
0.83, there are curves in the (V0, ω) plane along which there
are resonances and G is particularly high; the spacing between
these curves is proportional to 1/L. For ω/V0 � 0.83, the
conductance is small everywhere; however, it is particularly
small along certain lines. We present a Floquet perturbation
theory which can explain both the resonances and the lines
of very small conductance. We summarize our results and
discuss possible experimental tests in Sec. IV. The paper ends
with two Appendixes. In Appendix A, we briefly recall the
basics of Floquet theory and how the Floquet eigenstates
and eigenvalues can be found. In Appendix B, we present
a completely different approach to the problem of a time-
dependent magnetic barrier. While Secs. II and III considered
a spin-1/2 electron, we consider the large-spin limit in this
Appendix and study the semiclassical equations of motion for
the trajectory of such a particle moving in two dimensions in
the presence of an electromagnetic field. Using this approach,
we are able to qualitatively understand some features of the
surface plots of G versus (V0, m0) presented in Sec. III.

II. δ-FUNCTION MAGNETIC BARRIER

In this section, we will study the effect of a magnetic
barrier present on the top surface of a three-dimensional TI
[1,2]. The Hamiltonian for electrons on the surface (taken to
be the x-y plane) is known to have the form of a massless Dirac
equation with spin-momentum locking, namely,

H = −ih̄v

[
σ x ∂

∂y
− σ y ∂

∂x

]
, (1)

where v is the velocity, σ a denote Pauli matrices, and the wave
function ψ (x, y, t ) has two components. In Bi2Se3, it is known
[2] that h̄v = 0.333 eV nm.

We now consider a magnetic barrier which has the form of
a δ function located along the line x = 0; the barrier strength
will be taken to have both a constant term and a term which
oscillates in time with a frequency ω and an amplitude α. We
will assume that the magnetic field associated with the barrier
points in the x̂ direction; we can then ignore the coupling of
the field to the orbital motion of the electrons since they are
constrained to move in the x-y plane and therefore cannot have
cyclotron orbits perpendicular to the field direction. Hence,
we only have a Zeeman coupling of the field to the electron
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spin. The Hamiltonian will therefore take the form

H = h̄v

(
σ x

{
−i

∂

∂y
+ [m0 + α cos(ωt )]δ(x)

}
+ iσ y ∂

∂x

)
,

(2)

where for an applied field B = B0 + B1 cos(ωt )x̂, m0[α] =
gμBB0[B1]/(h̄vk0), g is the gyromagnetic ratio, μB is the Bohr
magneton, and k0 is the inverse of a typical length scale (for
instance, a typical barrier width of the order of 20 nm as
stated in Sec. III A). We note that m0 and α are dimensionless
quantities. We also point out that the oscillation term may be
generated via coupling of H to linearly polarized vector poten-
tial given by A = A0 cos(ωt )ŷ in which case α = qA0/(h̄vk0),
where q is the electron charge. This is a consequence of the
fact that the coupling to the magnetic barrier appears in Eq. (2)
as an addition to py = −ih̄∂/∂y and therefore acts as a vector
potential in the ŷ direction.

Given that the wave function satisfies

ih̄
∂ψ (x, y, t )

∂t
= Hψ (x, y, t ), (3)

we can derive the matching condition that ψ must satisfy
at x = 0 due to the δ function in Eq. (2). We assume
that

ψ = ψ0(y, t )e f (x) (4)

in the vicinity of x = 0, where f (x) may have a discontinuity
at x = 0. We then integrate the two sides of Eq. (3) from x =
−ε to x = +ε, and take the limit ε → 0. This gives

iσ y[ f (x = 0+) − f (x = 0−)] + σ x[m0 + α cos(ωt )] = 0,

(5)

which implies that

f (x = 0+) − f (x = 0−) = σ z[m0 + α cos(ωt )]. (6)

Thus, the wave function will have a discontinuity at x = 0
given by ψx=0+ = e[m0+α cos(ωt )]σ z

ψx=0− , namely,

ψx=0+ =
(

em0+α cos(ωt ) 0

0 e−m0−α cos(ωt )

)
ψx=0− . (7)

We now use the identity

eα cos θ =
∞∑

n=−∞
In(α)e−inθ , (8)

where In(α) is the modified Bessel function [49]. [These
functions satisfy In(α) = I−n(α) and In(−α) = (−1)nIn(α).]
Equation (7) then takes the form

ψx=0+ =
(

em0
∑∞

n=−∞ In(α)e−inωt 0

0 e−m0
∑∞

n=−∞ In(−α)e−inωt

)
ψx=0− . (9)

A. Transmitted particle current

We now assume that an electron is incident on the magnetic
barrier from the left (x < 0) with energy E0 > 0 (measured
with respect to the Dirac point) and momentum (kx,0, ky).

(These satisfy the dispersion relation E0 = h̄v
√

k2
x,0 + k2

y .) We

will calculate the probabilities of reflection and transmission
from the time-dependent barrier.

We now use the matching condition in Eq. (9). In our
problem, ψx=0+ = ψt is the transmitted wave, while ψx=0− is
given by the sum of the incident wave ψi and the reflected
wave ψr . The incident wave is given by

1√
2

⎛
⎜⎝

1

E0

h̄v(ky + ikx,0)

⎞
⎟⎠, (10)

where kx,0 =
√

(E0/h̄v)2 − k2
y . This gives rise to reflected

and transmitted waves at x = 0 due to the presence of the
δ function. The allowed energies of these are given by the
energies of all the Floquet modes, namely,

En = E0 + nh̄ω, (11)

where n is an integer which can take any value from −∞ to
∞; the modes with n �= 0 are called side bands. (Note that
En may be either positive or negative.) Since the δ function
is independent of the y coordinate, the momentum ky is a
good quantum number. For each energy En, the corresponding
eigenfunction is given by

1√
2

⎛
⎜⎝

1

En

h̄v(ky + ikx,n)

⎞
⎟⎠,

where kx,n = ±
√

(En/h̄v)2 − k2
y . (12)

The ± sign for kx,n in Eq. (12) is fixed by the requirement
that the group velocity vg = ∂En/∂kx,n should be positive for
the transmitted wave in the region x > 0 and negative for the
reflected wave in the region x < 0. (This holds if kx,n is real.
If kx,n is imaginary, we have to choose the ± sign in such a
way that the corresponding wave decays as x → +∞ or −∞.)
Substituting the eigenfunctions in Eq. (12) in Eq. (9), we find
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that at x → 0,(
em0

∑∞
m=−∞ Im(α)e−imωt 0

0 e−m0
∑∞

m=−∞ Im(−α)e−imωt

)[(
1

β+
0

)
e−iE0t/h̄ + rn

(
1

β−
n

)
e−iEnt/h̄

]
= tn

(
1

β+
n

)
e−iEnt/h̄, (13)

where

β±
n = En

h̄v(ky ± ikx,n)
, (14)

and rn and tn are the reflection and transmission amplitudes respectively for the nth Floquet mode with energy En. The superscript
± in β±

n indicates if the wave is traveling in the positive or negative x̂ direction.
Given the Hamiltonian in Eq. (2), we can use the equation of continuity to show that the particle current operator is given

by Jx = −vσ y. The charge current, appearing in Eq. (19) below, will be equal to the particle current multiplied by the electron
charge. Using the wave functions in Eq. (12), we find that the transmitted particle current in the band n is given by

〈Jx〉n = h̄v2|tn|2kx,n

En
(15)

if kx,n is real. (If kx,n is imaginary, we find that 〈Jx〉n = 0. This is because when kx,n is imaginary, both the components of the
corresponding wave function are real and hence the expectation value of σ y vanishes.) Thus, En and kx,n must have the same
sign in the transmitted region in order to have a positive value of 〈Jx〉n. Similarly, En and kx,n must have opposite signs to have
a negative value of 〈Jx〉n in the reflected region. Now, since En = E0 + nh̄ω, and e−inωt form a basis for periodic functions of
t , we can match the coefficients for each n separately in Eq. (13). For each value of n, we obtain two equations since the wave
function has two components. To solve these equations numerically, we must truncate the number of equations. If N is the total
number of values that the integer n can take, we have 2N equations and 2N unknown coefficients (N reflection amplitudes rn

and N transmission amplitudes tn). We can therefore numerically find the values of rn and tn. Incidentally, current conservation
implies that [50,51]

kx,0

E0
=

∞∑
n=−∞

(|tn|2 + |rn|2)
kx,n

En
. (16)

Rearranging Eqs. (13), we obtain the matrix equation⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
...

...
...

. . .
· · · em0 I+

0 em0 I+
−1 em0 I+

−2 · · · −1 0 0 · · ·
· · · em0 I+

1 em0 I+
0 em0 I+

−1 · · · 0 −1 0 · · ·
· · · em0 I+

2 em0 I+
1 em0 I+

0 · · · 0 0 −1 · · ·
...

...
...

...
...

...
...

· · · e−m0β−
−1I−

0 e−m0β−
0 I−

−1 e−m0β−
1 I−

−2 · · · β+
−10 0 0 · · ·

· · · e−m0β−
−1I−

1 e−m0β−
0 I−

0 e−m0β−
1 I−

−1 · · · 0 β+
0 0 · · ·

· · · e−m0β−
−1I−

2 e−m0β−
0 I−

1 e−m0β−
1 I−

0 · · · 0 0 β+
1 · · ·

. . .
...

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
r−1

r0

r1
...

t−1

t0
t1
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
em0 I+

−1
em0 I+

0
em0 I+

1
...

e−m0β+
0 I−

−1
e−m0β+

0 I−
0

e−m0β+
0 I−

1
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

where I+
n and I−

n denote the nth modified Bessel function with
arguments α and −α respectively.

The total transmitted particle current is given by a sum over
all bands,

It = 〈Jx〉tot =
∞∑

n=−∞
|tn|2

(
h̄v2kx,n

En

)
, (18)

where the sum only runs over terms in which kx,n is real.
The angle of incidence of the electron coming from the left

of the barrier is given by θ = tan−1(kx,0/ky), where θ lies in
the range [0, π ]; normal incidence corresponds to θ = π/2.
The total transmitted particle current It is a function of θ .
Given It (θ ), the differential conductance G can be calculated
as follows [52]. Suppose that the μL and μR denote the
chemical potentials of the left and right leads assumed to be

at x → −∞ and x → ∞ respectively; the chemical potential
μ in a lead is related to the voltage V applied to that lead as
μ = qV , where q is the charge of the electron. In the zero-bias
limit, μL, μR → E0, the differential conductance is given by

G = dI

dV
= q2W E0

(2πvh̄)2

∫ π

0
dθ It (θ ), (19)

where W is the width of the system in the ŷ direction (as-
sumed to be much larger than the wavelength ∼h̄v/E0 of the
electrons). It is convenient to define a quantity G0 which is
the maximum possible value of G; this arises when the total
transmitted current has the maximum possible value given by
It (θ ) = v2kx,0/E0 = v sin θ . The conductance in this case is
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given by

G0 = q2W E0

2v(π h̄)2
. (20)

The figures presented below will show the dimensionless ratio
G/G0 = (1/2v)

∫ π

0 dθ It (θ ) whose maximum value is 1.

B. Numerical results

We now present our numerical results as a function of
the different parameters of the system. In our calculations,
we have generally taken E0 = 2 in units of 0.01 eV (so that
it is much smaller than the bulk gap of 0.56 eV in Bi2Se3,
ensuring that there is no contribution to the current from

the bulk states). Hence, k =
√

k2
x0

+ k2
y will have the value

E0/(h̄v) = 0.02/0.333 = 0.06 nm−1 in Bi2Se3. The values of
ω will be taken to be in units of 0.01 eV/h̄ 	 15.2 THz.

1. Transmitted particle current as a function of θ

Figure 2 shows the total transmitted particle current as
a function of the angle of incidence θ , for different values
of m0, α, and ω. We observe that there are kinks in some
of the plots. These occur because at those values of θ ,
the value of kx,n changes from real to imaginary for some
value of n; as a result the contribution to the transmitted
current from that side band becomes zero. Given that vh̄kx,n =
±

√
(E0 + nh̄ω)2 − v2h̄2k2

y = ±
√

(E0 + nh̄ω)2 − E2
0 cos2 θ ,

we see that kx,n becomes imaginary when

cos θ = ±
(

1 + nh̄ω

E0

)
. (21)

It can be checked that the kinks appearing in Fig. 2 exactly
coincide with the values of θ corresponding to different values
of n in the above equation. For small and large values of ω,
kinks do not appear. For large ω, there is no value of n which
satisfies the condition in Eq. (21). For small ω, the values of θ

which satisfy the condition lie close to glancing angles (0 and
π ) where the transmitted current is always small; hence, kinks
in the current are not observable.

For m0 = 0, Fig. 2 shows that the transmitted particle
current is symmetric about θ = π/2. This is because of the
following symmetry of the Hamiltonian in Eq. (2) when m0 =
0. Replacing −i∂/∂y → ky = k cos θ , we see that changing
θ → π − θ and shifting the time t → t + π/ω, we get a
new Hamiltonian which is related to the old Hamiltonian
by the unitary transformation H → σ yHσ y. According to
Floquet theory, physical quantities like the transmitted current
are invariant under time shifts. Hence, the current must be
invariant under θ → π − θ .

2. Differential conductance as a function of m0

Figure 3 shows the dimensionless differential conductance
G/G0 as a function of m0, for different values of α. If α is
not too small, we see that there are peaks in the conductance,
and their locations move with α. This can be qualitatively
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FIG. 2. Transmitted particle current as a function of angle of
incidence for different values of m0, E0 = 2, α = 1, and ω equal to
(a) 0.01, (b) 1.1, (c) 2.1, and (d) 5.1.

understood as follows, particularly for the lowest value of
ω = 0.01. The strength of the magnetic barrier is given by
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FIG. 3. G/G0 as a function of m0 for different values of α, with
E0 = 2 and ω equal to 0.01.

m0 + α cos(ωt ). When m0 = ±α, the barrier strength stays
close to zero for a long time since ±1 correspond to the
extreme values of cos(ωt ); this is particularly true if ω is
small. The barrier strength, being close to zero, gives rise to a
large value of the transmitted particle current and therefore of
the conductance.

For large values of m0, we see that the conductance goes to
zero for all values of α and ω. This can be understood from
Eq. (9). Large m0 means that e−m0 and therefore the lower
component of ψx=0+ is small. Hence, the current, which is
proportional to ψ

†
x=0+σ yψx=0+, will be small.

3. Differential conductance as a function of α

Figure 4 shows the dimensionless differential conductance
G/G0 as a function of α, for different values of m0 and ω.
Once again, we see that there are peaks in the conductance
when α is close to m0; this can be understood in the same
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FIG. 4. G/G0 as a function of α for different values of m0, with
E0 = 2 and ω = 1.1.

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

FIG. 5. G/G0 as a function of α. The current obtained by solving
the time-dependent problem is shown by the solid blue curve (for
ω = 0.01) and dashed green curve (for ω = 2.1), while the value
obtained by averaging over N = 100 equispaced values of φ is shown
by the red circles. The averaged results (red) agree well with the
results for ω = 0.01 (blue) which is in the adiabatic regime but do
not agree with the results for ω = 2.1 (green).

way as the peaks in Fig. 3. For large values of α, we see in
Fig. 4 that the conductance approaches a constant value which
is almost independent of m0. This can be understood since
the magnetic barrier strength is m0 + α cos(ωt ); if α 
 m0,
the barrier strength is dominated by the α term. We note that
for both small and intermediate ω and small m0, G can be
substantially reduced by increasing the intensity of the applied
radiation α. This provides optical control over the conduc-
tance; we will analyze this point in more detail in the next
section.

4. Small-ω limit

Next, we look at the adiabatic limit h̄ω � E0. Since the
barrier strength varies very slowly with time in this limit, we
can estimate the total transmitted particle current value by
studying the Hamiltonian at an equispaced sequence of frozen
times covering one time period T and then averaging over
the results for all these times. Thus, by solving a sequence
of problems with no time dependence, we expect to obtain
a good approximation of the time-dependent problem. The
time-dependent term in the barrier strength is α cos(ωt ). De-
noting φ = ωt , we fix φ at N equispaced values, φ j , in the
range 0 to 2π , and find the total transmitted current I (φ j ) for
each value of j. We then calculate the averaged current

Iavg =
∑N

j=1 I (φ j )

N
(22)

and check how well this compares with the result for the time-
dependent problem. The results are shown in Fig. 5. As we can
see from the figure, the averaging approximation works well
for ω = 0.01 which is much smaller than E0/h̄. When ω is
larger than E0/h̄, we observe a significant difference between
the averaged current and the actual current obtained for the
time-dependent system.
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FIG. 6. G/G0 as a function of α. The solid blue and dashed green
curves show the currents obtained by solving the time-dependent
problem for ω equal to 100.1 and 2.1 respectively. The red circles
show the approximate solution obtained by using the wave functions
in Eq. (24). We have taken E0 = 2 and m0 = 1.

5. Large-ω limit

We now look at the opposite limit where h̄ω 
 E0. Since
the energy in the nth band is given by En = E0 + nh̄ω, the gap
between successive side bands is much larger that E0 in this
limit. Hence, we do not expect the side bands to contribute
much to the current. Also, the momenta kx,n and ky are related

to En as kx,n = ±(1/v)
√

E2
n − v2k2

y ; we can ignore ky in this

expression if En is very large. Thus, kx,n ≈ ±En/v. Equation
(12) then implies that the eigenfunctions of the side bands
become independent of n, and we get

ψn = 1√
2

⎛
⎝ 1

En

ivkx,n

⎞
⎠, (23)

for n �= 0, where we have ignored ky. Simplifying this, we
obtain

ψn,t = 1√
2

(
1

−i

)
and ψn,r = 1√

2

(
1

i

)
(24)

as the approximate wave functions in the large-ω limit for
the transmitted and reflected waves respectively for n �= 0.
Using these wave functions, we solve the equations analogous
to Eq. (13) to find rn and tn and hence the total transmit-
ted particle current. [Note that since the wave functions in
Eq. (24) do not depend on ω, the transmitted current and
conductance become independent of ω in the large ω limit.]
Figure 6 shows a comparison between the results obtained
by this approximation and the exact result. We see that the
agreement is very good when ω = 100.1 
 E0/h̄ but deviates
significantly when ω = 2.1 is comparable to E0/h̄.

III. FINITE-WIDTH MAGNETIC BARRIER

In this section, we study the effects of a time-dependent
magnetic barrier which has a finite width; we will assume
that the barrier lies in the region 0 � x � L. The incident
and reflected waves lie in region I, where x < 0, while the
transmitted wave lies in region III, where x > 0. In region II,
where 0 � x � L, the wave function satisfies the equation

ih̄
∂ψ

∂t
= h̄v

{
kyσ

x + iσ y ∂

∂x
+ [m0 + V0 cos(ωt )]σ x

}
ψ.

(25)

We note that m0 = gμBB0/(h̄v) and V0 = eA0/(h̄v) have the
dimensions of inverse length. We now assume that the solution
of Eq. (25) is of the form

ψ =
∞∑

n=−∞

(
αn

βn

)
ei(k′

xx+kyy−Ent/h̄), (26)

where En = E0 + nh̄ω, and k′
x will be determined as described

below. Equating coefficients of e−inωt on the two sides of
Eq. (25), we obtain the following equations:

h̄vk′
xαn = −ih̄vk′

yαn − ih̄vV0

2
(αn+1 + αn−1) + iEnβn,

h̄vk′
xβn = ih̄vk′

yβn + ih̄vV0

2
(βn+1 + βn−1) − iEnαn, (27)

where k′
y = ky + m0. If we truncate the above equations by

keeping only N bands, then Eqs. (27) give an eigenvalue
equation for k′

x with 2N possible eigenvalues. The eigenvalue
equation looks as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
...

...
...

. . .

· · · −ih̄vk′
y iE−1 − ih̄vV0

2 0 0 0 · · ·
· · · −iE−1 ih̄vk′

y 0 ih̄vV0
2 0 0 · · ·

· · · − ih̄vV0
2 0 −ih̄vk′

y iE0 − ih̄vV0
2 0 · · ·

· · · 0 ih̄vV0
2 −iE0 ih̄vk′

y 0 ih̄vV0
2 · · ·

· · · 0 0 − ih̄vV0
2 0 −ih̄vk′

y iE1 · · ·
· · · 0 0 0 ih̄vV0

2 −iE1 ih̄vk′
y · · ·

. . .
...

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

α−1

β−1

α0

β0

α1

β1

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= h̄vk′
x

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

α−1

β−1

α0

β0

α1

β1

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)
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After finding the different eigenvalues k′
x, denoted by k′

x, j ,
and the corresponding values of αn and βn denoted by αn, j

and βn, j , we proceed to find the reflection and transmission
amplitudes by matching wave functions at x = 0 and L. At
x = 0, we have(

1
e−iθ

)
δn,0 + rn

(
1

β−
n

)
=

2N∑
j=1

Cj

(
αn, j

βn, j

)
, (29)

while at x = L, we get

2N∑
j=1

Cj

(
αn, j

βn, j

)
eik′

x, j L = tn

(
1

β+
n

)
eikx,nL, (30)

where kx,n and β±
n are given in Eqs. (12) and (14) respectively,

Cj’s are the coefficients of the wave functions corresponding
to different values of k′

x, j in region II, and n takes N possible
values. The above equations give us a total of 4N conditions,
since we have N equations at both x = 0 and L, and each wave
function has two components. We have to use these conditions
to determine 4N quantities, namely, the 2N values of Cj and
N values of both rn and tn. We can therefore calculate all these
quantities and thus determine the transmitted particle current
in the region x > L using Eq. (18).

A. Numerical results

We now present our numerical results for the transmitted
particle current and conductance. In our numerical calcula-
tions, we will take the incident energy E0 = 2 in units of
0.01 eV, the barrier width L in units of h̄v/(0.02 eV) 	 17
nm, ω in units of 0.01 eV/h̄ 	 15.2 THz, and m0 and V0 will
be given in units of 0.01 eV/(h̄v) 	 0.03 nm−1.

1. Transmitted particle current as a function of θ

We recall that θ = tan−1(kx,0/ky) is the angle of incidence
in region I . Figure 7 shows the transmitted particle current
as function of θ , for different values of V0 and ω, with E0 =
2 and m0 = 0 and 1. If ω is not too large, we see kinks for
certain values of θ for the same reasons as discussed for the
δ-function barrier. The plots are symmetric about θ = π/2 for
m0 = 0 [Fig. 7(a)], but there is no symmetry when m0 �= 0
[Fig. 7(b)].

2. Transmitted particle current as a function of m0 and V0

It is interesting to look at surface plots of the dimension-
less differential conductance G/G0 for different values of
ω, with E0 = 2 and L = 1. These are shown in Fig. 8 for
ω = 0.01, 1.1, 10.1, and 40.1.

For the smallest value of ω = 0.01, we see that the current
is maximum around the line m0 = V0. This can be understood
by an argument similar to the one used to understand the
positions of the peaks in Fig. 3. If ω is small, the strength
of the magnetic barrier, given by m0 + V0 cos(ωt ), stays close
to its extreme values of m0 ± V0 for a long time. For in-
stance, if m0 = V0, an expansion of t around the time t0 =
π/ω gives h̄v[m0 + V0 cos(ωt )] 	 h̄vm0w

2(t − t0)2/2, which
is much smaller than the incident energy E0 for a duration of
time |t − t0| which is of the order of (1/ω)

√
E0/(h̄vm0). If

this time is much larger than the time taken by the electron
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FIG. 7. Transmitted particle current as a function of angle of
incidence for different values of V0, with E0 = 2, L = 1, ω = 1.1,
and m0 equal to (a) 0 and (b) 1.

to go across the barrier region, namely, L/v, we expect the
conductance would be large since the electron sees a very
small barrier strength.

For large values of ω as shown in Figs. 8(c) and 8(d),
we observe that another phenomenon emerges. Namely, we
find that close to the line m0 = 0, the conductance oscillates
significantly with V0. In particular, there are peaks in G/G0

for certain values of V0 which are reminiscent of resonances
in transmission through a barrier. Since the peaks appear for
small values of m0, we will set m0 = 0 and analyze the prob-
lem in more detail in order to obtain a better understanding of
the peaks.

Figure 9 shows a surface plot of G/G0 as a function of
V0 and ω, for m0 = 0, E0 = 2, and (a) L = 1 and (b) L =
0.5. In the upper left parts of the figures, we see prominent
oscillations in the conductance, while in the lower right parts,
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FIG. 8. Surface plots of G/G0 as a function of V0 and m0, for
E0 = 2, L = 1, and ω equal to (a) 0.01, (b) 1.1, (c) 10.1, and (d) 40.1.
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FIG. 9. Surface plots of G/G0 as a function of V0 and ω, for E0 =
2, m0 = 0, and (a) L = 1 and (b) L = 0.5.

we see that the conductance is small everywhere but there are
lines along which the conductance is particularly small. We
will provide an analytical understanding of both these features
below.

Inside the barrier (region II), the Hamiltonian is given by
Eq. (25),

H (t ) = h̄v[kyσ
x − k′

xσ
y + V0 cos(ωt )σ x], (31)

where k′
x denotes one of the possible values of the momentum

of an electron inside the barrier. We can numerically find
the Floquet operator U defined in Eq. (A1) and find its
eigenvalues which have the form e±iθ1T , where we take θ1T
to lie in the range [0, π ]. A plot of θ1T versus k′

x is shown
in Fig. 10 for E0 = 2, ky = 1, ω = 40, V0 = 10, and m0 = 0.
The horizontal dotted line lies at the value E0T/h̄ 	 0.314.
Since the Floquet eigenvalue inside the barrier must match
the eigenvalue outside (regions I and III), the intersections of
the horizontal line with the plot of θ1T shows the values that
k′

x can take. We note from the figure that the three smallest
possible values of k′

x lie near zero and ±ω/v. We will now
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FIG. 10. Plot of θ1T as a function of k′
x obtained from a nu-

merical evaluation of the Floquet operator U , for E0 = 2, ky = 1,
ω = 40, V0 = 10, and m0 = 0. The horizontal dotted line lies at
E0T/h̄ 	 0.314.

derive these values analytically using Floquet perturbation
theory [53].

To develop the perturbation theory, we write the Hamilto-
nian in Eq. (31) as

H (t ) = H0(t ) + V (t ), (32)

where H0 is much larger than V . We will assume that H0(t )
commutes with itself at different times; hence, its eigenstates
are time independent although its eigenvalues may vary with
time. In our problem described by Eq. (25), we will consider
two cases given by

H0 = h̄vV0 cos(ωt )σ x,

V = h̄v(kyσ
x − k′

xσ
y), (33)

where we assume V0 
 ky, k′
x, and

H0 = −h̄vk′
xσ

y,

V = h̄v[ky + V0 cos(ωt )]σ x, (34)

where we assume k′
x 
 ky, V0. We now consider the two cases

in turn.
For the case given in Eq. (33), the unperturbed problem

given by ih̄∂ψ/∂t = H0ψ has solutions of the form

ψ1(t ) = φ1 exp[−i(vV0/ω) sin(ωt )],

ψ2(t ) = φ2 exp[i(vV0/ω) sin(ωt )],

where φ1 = 1√
2

(
1
1

)
and φ2 = 1√

2

(
1

−1

)
, (35)

and the corresponding eigenvalues of H0(t ) are given by
E1(t ) = h̄vV0 cos(ωt ) and E2(t ) = −h̄vV0 cos(ωt ) respec-
tively. Since these satisfy the condition

e(i/h̄)
∫ T

0 dt[E1(t )−E2(t )] = 1, (36)

we have to use degenerate perturbation theory [53]. Assuming
that the wave function has the form

ψ (t ) =
2∑

p=1

Cm(t )e−(i/h̄)
∫ t

0 dt ′Em (t ′ )φm, (37)

and solving for the equation ih̄∂ψ/∂t = H (t )ψ , we obtain a
differential equation for Cm(t ). Integrating from t = 0 to T ,
we have, to first order in V ,

C(T ) = (I − iM )C(0), (38)

where C(t ) = [C1(t ),C2(t )] is a column, and the matrix M has
elements

Mmn = 1

h̄

∫ T

0
dtψ†

mV ψnei
∫ t

0 dt ′(Em (t ′ )−En (t ′ )). (39)

In our problem, M is a 2 × 2 matrix with elements

M11 = vkyT, M22 = −vkyT,

M12 = iJ0

(
2V0

ω

)
vk′

xT, M21 = −iJ0

(
2V0

ω

)
vk′

xT .

(40)

Up to first order in V , the eigenvalues of M are given by

λ± = ±vT
√

k2
y + [J0(2V0/ω)k′

x]2. (41)

Hence, we can find eigenstates of M such that

C±(T ) = eiλ±C±(0). (42)

Since the Hamiltonian is periodic, Floquet theory implies that

ψn(T ) = e−iθnT ψn(0). (43)

This gives a relation between θ± and λ±; in our case it is

θ± = ±v

√
k2

y + [J0(2V0/ω)k′
x]2. (44)

Since the Floquet eigenvalues in regions I and III given by
e−iE0T/h̄ (where E0 is the energy of the incident electron) must
be equal to the Floquet eigenvalue in region II (the barrier),
we obtain an expression for two of the allowed values of k′

x,
namely,

k′
x = ±

√
(E0/h̄v)2 − k2

y

J0(2V0/ω)
. (45)

This gives an expression for k′
x of the order of E0/(h̄v), which

lies near zero in Fig. 10 since we have taken E0 � h̄ω in that
figure.

Equation (45) implies that if J0(2V0/ω) = 0, there is no
value of k′

x for which the Floquet eigenvalue in region II will
match the Floquet eigenvalues in regions I and III, except for
the special case ky = ±E0/(h̄v) which corresponds to grazing
incidence where the transmission probability is always zero.
Hence, it is not possible to an electron to transmit through
region II if the parameters (V0, ω) lie on one of the lines where
J0(2V0/ω) = 0. The first five zeros of J0(z) are given by z =
2.405, 5.520, 8.654, 11.792, and 14.931, which give ω/V0 =
0.832, 0.362, 0.231, 0.170, and 0.134. We see in Fig. 11 that
the conductance is indeed particularly small on the white lines
whose slopes correspond to zeros of J0(2V0/ω).
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FIG. 11. Surface plots of G/G0 as a function of V0 and ω, for
E0 = 2, m0 = 0, and (a) L = 1 and (b) L = 0.5. These are the
same as Figs. 9(a) and 9(b), but we have added some white lines
corresponding to J0(2V0/ω) = 0; from top to bottom, these lines have
slopes given by 0.832, 0.362, 0.231, 0.170, and 0.134.

We now turn to the case given in Eq. (34). The unperturbed
problem given by ih̄∂ψ/∂t = H0ψ has solutions of the form

ψ1(t ) = φ1e−ivk′
xt ,

ψ2(t ) = φ2eivk′
xt ,

where φ1 = 1√
2

(
1
−i

)
and φ2 = 1√

2

(
1
i

)
, (46)

and the corresponding eigenvalues of H0 are given by E1 = k′
x

and E2 = −k′
x respectively. These do not satisfy the condition

in Eq. (36) if k′
x �= nω/(2v) for any integer value of n. We can

then use nondegenerate perturbation theory [53]. Assuming
that the wave function has the form

ψ (t ) =
2∑

p=1

Cm(t )e−(i/h̄)
∫ t

0 dt ′Em (t ′ )φm, (47)

and solving for the equation ih̄∂ψ/∂t = H (t )ψ , we obtain the
following coupled differential equations

dC1

dt
= ei2vk′

xtv[ky + V0 cos(ωt )]C2,

dC2

dt
= −e−i2vk′

xtv[ky + V0 cos(ωt )]C1. (48)

To solve these equations, we have to choose the initial
conditions [C1(0),C2(0)]. To find the change in the Floquet
eigenvalue e−iθ1T of a Floquet eigenstate which lies close to
ψ1(t ), we choose C1(0) = 1 and C2(0) to be small and of order
ky, V0. Demanding that ψ (T ) = e−iθ1T ψ (0), we discover that
θ1 differs from k′

xT only at second order in the perturbation,
namely,

θ1 = v

[
k′

x + k2
y

2k′
x

+
(

V0

2

)2 1

2k′
x + ω/v

+
(

V0

2

)2 1

2k′
x − ω/v

]
, (49)

modulo integer multiples of ω since θ1 is a periodic variable
with period ω. A similar calculation for a Floquet eigenstate
which lies close to ψ2(t ) shows that θ2 = −θ1. Equation (49)
shows that the second-order correction is small except around
the points k′

x = 0 and ±ω/(2v).
Next, we can study what happens if k′

x = nω/(2v) where
the condition in Eq. (36) is satisfied. We then have to use
degenerate perturbation theory as described in Eqs. (37)–
(39). We discover that the matrix M defined in Eq. (39) is
identically equal to zero if k′

x �= 0,±ω/(2v). We can therefore
use nondegenerate perturbation theory and go up to second
order as in Eq. (49). We thus conclude that Eq. (49) holds for
any value of k′

x except around 0 and ±ω/(2v).
We now study the region around k′

x = ±ω/v, where we
have pairs of solutions for θ1T = E0T/h̄ as we see in Fig. 10.
We can find an expression for the two solutions near k′

x = ω/v

by replacing k′
x by ω/v in the last three terms in Eq. (49)

(which are of second order in the perturbation) but not in the
first term. Equation (49) then implies that the two possible
values of k′

x which yield θ1 = E0/h̄ modulo ω are given by

k′
x = ω

v
± E0

h̄v
− vk2

y

2ω
− vV 2

0

3ω
. (50)

Since E0 � h̄v|ky|, and we are working in the regime h̄ω 

E0, we can ignore the term vk2

y /(2ω). We then get

k′
x = ω

v
± E0

h̄v
− vV 2

0

3ω
. (51)

In problems involving transmission through a barrier, we
typically find that the condition for resonances is given by
eik′

xL = ±1, where k′
x is the momentum inside the barrier (see,

for instance, Ref. [54]). This requires that k′
x = pπ/L, where

p = 1, 2, 3, . . . . Since the last two terms in Eq. (51) are small,
we obtain the approximate expression

ω = π pv

L
± E0

h̄
+ vLV 2

0

3π p
. (52)

This implies that in a plot of the conductance versus (V0, ω),
the resonance regions (large conductance) will have a spacing
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FIG. 12. Surface plot of G/G0 as a function of V0 and ω, for E0 =
2, m0 = 0, and L = 1. This is the same as Fig. 9(a), but we have
added black and red lines which are given by Eq. (52), where the
second term is ±E0/h̄ respectively, and the integer p increases as we
go up from the bottom to the top.

given by πv/L when V0 = 0 and will curve up as V 2
0 when

V0 is increased, provided that V0/ω is small. This is exactly
what we see in Fig. 12 where the black and red lines are given
by Eq. (52), the second term is ±E0/h̄ respectively, and the
integer p increases as we go up from the bottom to the top.
In the figure, we see that the spacing between either the black
lines or the red lines is πv/L = π at V0 = 0. The black and red
lines go up quadratically with increasing V0 with the correct
curvatures as given in Eq. (52).

To summarize, Floquet perturbation theory shows that
when ω/V0 � 0.83 [corresponding to the smallest zero of
J0(2V0/ω)], the conductance is small everywhere in the plane
(V0, ω), but it is particularly small along the lines J0(2V0/ω) =
0. Note that this condition does not depend on the barrier
width L, as we can see by comparing Figs. 11(a) and 11(b).
When ω/V0 � 0.83, there are curves along which the conduc-
tance is especially high. These correspond to resonances and
their locations are given by Eq. (52), which has a significant
dependence on L. In particular, the spacing between the curves
is given by πv/L at V0 = 0, and is therefore twice as large in
Fig. 9(b) as compared to Fig. 9(a).

3. Effective time-independent magnetic barrier

In this section, we will map the time-dependent system
with a given set of parameter values (m0, V0, ω) to a time-
independent system with a magnetic barrier which has only
the term m0σ

x; we do the mapping by demanding that the
two systems should have the same value of the differential
conductance (we will take the incident energy E0 and the
barrier width L to be the same in the two systems). The
procedure is as follows. On the one hand, we will calculate
the conductance of the time-dependent system and find its
dependence on ω, keeping m0 and V0 fixed. On the other hand,
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FIG. 13. G/G0 as a function of ω for V0 = 1.1, m0 = 0, E0 = 2,
and L = 1.

we will calculate the conductance for the time-independent
system and find its dependence on the single parameter
m0. We will then use the condition of equal conductance
to find an effective value of m0, called meff , of the time-
independent system as a function of ω of the time-dependent
system.

As an example, we consider a time-dependent system and
calculate the conductance as a function of ω, for m0 = 0
and V0 = 1.1. This is shown in Fig. 13. Next, we consider
a time-independent system with a barrier strength m0. The
Hamiltonian in region II of this system is given by

ih̄
∂ψ

∂t
= h̄v[kyσ

x − k′
xσ

y + m0σ
x]ψ. (53)

The conductance of this system as a function of m0 is shown
in Fig. 14.
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FIG. 14. G/G0 as a function of m0 in a time-independent system
with E0 = 2 and L = 1.
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FIG. 15. meff of the time-independent problem as a function of
ω, for V0 = 1.1 and m0 = 0 in the time-dependent system. We have
taken E0 = 2 and L = 1.

Finally, we can use Figs. 13 and 14 to map the time-
dependent system with some values of ω, m0, and V0 to a
time-independent system with a barrier strength meff , by de-
manding that the two systems should have the same conduc-
tance. Figure 15 shows meff as a function of ω, for V0 = 1.1
and m0 = 0 in the time-dependent system. We have set E0 = 2
and L = 1 in all cases. In Fig. 15, we see that meff approaches
a constant as ω becomes large. This can be understood using
the fact that when m0 and V0 are fixed, the conductance of
time-dependent system tends to a constant when ω becomes
much larger than all the other energy scales in the problem.
The reason for this is similar to the one given in Sec. II B 5 for
the case of a δ-function magnetic barrier. We note from Fig. 15
that meff is large for small frequencies whereas it goes to zero
for large frequencies. This allows for a frequency-induced
control over the barrier conductance for a fixed amplitude. For
large frequencies, one expects the junction to be conducting
(since meff 	 0) while for small frequencies one has large meff

which will lead to G → 0.

4. Conductance as a function of E0

Finally, we study the conductance as a function of the
incident energy E0 for different values of ω and some fixed
values of m0 and V0. We find an interesting result that
there is a dip in the conductance around E0 = h̄ω/2; the
dips are quite prominent when ω is large. This is shown in
Fig. 16.

These dips can be understood as follows. When E0 =
h̄ω/2, we have E−1 = E0 − h̄ω = −E0, namely, the energies
of the bands n = 0 and −1 become equal in magnitude.
We then find numerically that the maximum contribution to
the conductance comes from only these two bands. Hence,
ignoring the contributions from all the other bands, we can
proceed to study this problem analytically. To find the allowed
values of k′

x inside the barrier, we have to solve the eigenvalue
equation as in Eq. (28), but now with just two bands. The
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FIG. 16. G/G0 as a function of E0 for different values of ω, with
L = 1, m0 = 0, and V0 = 1.1.

equation then takes the form⎛
⎜⎜⎝

−ih̄vky iE−1 − ih̄vV0
2 0

−iE−1 ih̄vky 0 ih̄vV0
2

− ih̄vV0
2 0 −ih̄vky iE0

0 ih̄vV0
2 −iE0 ih̄vky

⎞
⎟⎟⎠

⎛
⎜⎝

α−1

β−1

α0

β0

⎞
⎟⎠

= h̄vk′
x

⎛
⎜⎝

α−1

β−1

α0

β0

⎞
⎟⎠. (54)

(We have taken m0 = 0, hence k′
y = ky.) We then find that the

values of k′
x are given by

h̄2v2k′2
x = 1

2

[
E2

0 + E2
−1 − h̄2v2V 2

0

2
− 2h̄2v2k2

y

±
√(

E2
0 −E2

−1

)2− h̄2v2V 2
0 (E−1−E0)2+4h̄4v4V 2

0 k2
y

]
.

(55)

Assuming that V0 is small, we see that if E0 is not equal to
h̄ω/2, the change in k′2

x is of the order of V 2
0 , but if E0 = h̄ω/2,

we get

k′2
x = k2

x,0 ± iV0kx,0, (56)

giving a change in k′2
x of the order of V0. Thus, for V0 small,

E0 = h̄ω/2 gives a much larger change in k′
x as compared to

E0 �= h̄ω/2. Next, Eq. (56) implies that k′
x = kx,0 ± iV0/2 has

an imaginary part given by iV0/2. Hence, the wave function
eik′

xL decays exponentially as e−V0L/2 as we go across the
barrier region from x = 0 to L; this reduces the transmitted
particle current and hence the conductance. We can find the
width of the region of low conductance around E0 = h̄ω/2 by
using Eq. (55) to determine when k′

x becomes complex. We
find that this happens when

∣∣∣∣E0 − h̄ω

2

∣∣∣∣ <
h̄vV0

2

√
1 − 4v2k2

y

ω2
, (57)
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FIG. 17. G/G0 as a function of E0 for m0 = 1, (ω, L) = (25.1, 1)
(red dashed line), (25.1,9.1) (blue solid), (13.1,1) (green dotted), and
(13.1,9.1) (black dash-dotted), keeping V0L = 4.55 fixed in all cases.

which is proportional to V0. Thus, the width of the dip in the
conductance is expected to be proportional to V0 while the
magnitude of the dip (which is related to the transmission
probability) should be proportional to e−V0L since the trans-
mission amplitude is proportional to e−V0L/2. If we hold V0L
fixed and vary L, the magnitude of the dip should remain the
same but the width should be proportional to V0 and therefore
inversely proportional to L. This agrees with Fig. 17 where
we have plotted the differential conductance as a function of
E0 for two values of ω and two values of L, with m0 = 1,
keeping V0L = 4.55 fixed. Thus by varying E0, ω and V0, we
can tune the conductance and achieve a switching behavior
close to E0 = h̄ω/2.

IV. DISCUSSION

In this work, we have studied transport across a magnetic
barrier placed on the top surface of a three-dimensional TI,
where the barrier strength varies sinusoidally with time in
addition to having a constant term. Such a situation arises if
a ferromagnetic strip is placed on top of the TI surface and a
periodically driven magnetic field is applied to the ferromag-
net; then the magnetization of the ferromagnet would oscillate
in time. If the magnetization points along the x̂ direction and
has a Zeeman coupling to the spin of the electrons on the TI
surface, it would lead to the time-dependent Hamiltonian that
we have studied in this paper. Alternatively, the ferromagnetic
strip could have a time-independent magnetization along the
x̂ direction, and a electromagnetic field (which is linearly
polarized along the ŷ direction) can be applied to the same
region of the surface of the TI. The vector potential of the
electromagnetic field would point along the ŷ direction and
vary periodically in time; this would lead to the same time-
dependent Hamiltonian.

We have studied two kinds of time-dependent magnetic
barriers: a δ-function barrier and a barrier which has a finite
width L. The δ-function barrier leads to a discontinuity of the

wave function of a specific kind. For the finite-width barrier,
we have to match the wave function at the two edges of the
barrier. In both cases, we have to take into account a large
number of Floquet bands. We consider what happens when an
electron is incident on the barrier from the left with an energy
E0 and an angle of incidence θ . We numerically calculate the
transmitted current as a function of θ ; integrating this over θ

gives the differential conductance G when a voltage equal to
E0 is applied to the leads. We have studied these quantities as
a function of E0, the driving frequency ω, and the constant m0

and the oscillation amplitude V0 of the barrier strength.
Our main results are as follows. For the transmitted current,

we find kinks at certain values of θ . These arise because the
momentum in the direction of propagation changes from a real
to a complex value in some side band at those values of θ ; the
corresponding wave function changes from a plain wave to
an exponentially decaying wave which then leads to a drop in
the transmitted current. For small values of ω (the adiabatic
limit), one can approximate the results well by averaging over
a sequence of time-independent values of the barrier strength.
We then find that there are peaks in the conductance when
m0 is equal to ±V0 since the barrier strength stays close to
zero for long periods of time. For large values of ω, we
find numerically that the transmission is dominated by three
Floquet bands; the central band n = 0 and the first two side
bands n = ±1. This allows us to calculate the conductance
more easily. We have shown that the time-dependent barrier
problem can be mapped to a time-independent magnetic bar-
rier with an effective strength meff whose value depends on
the driving parameters. Thus, the conductance of the driven
system can be effectively characterized by a static parameter.

Next, we have analyzed surface plots of the conductance
as a function of V0 and m0, for different values of ω. When
ω and V0 are large compared to E0, and m0 is small, we find
that the conductance has peaks at a discrete set of values of
V0. To understand this better, we have made a detailed study
of the conductance as a function of V0 and ω, keeping E0

and L fixed and taking m0 = 0. We find that the behavior of
G is quite different depending on whether ω/V0 lies above
or below a value equal to 0.83 [this is related to the first
zero of the Bessel function J0(z)]. When ω/V0 � 0.83, the
conductance is large along certain curves in the (V0, ω) plane;
these curves correspond to resonances, and their spacing is
proportional to 1/L. When ω/V0 � 0.83, the conductance is
generally small; however, it is particularly small along certain
lines whose slopes are related to the successive zeros of J0(z).
We present a Floquet perturbation theory which can explain
both the resonances and lines of very small conductance. We
have then studied the conductance as a function of the incident
energy E0. We find that this shows a prominent dip when
E0 is close to h̄ω/2 when these quantities are much larger
than m0 and V0. We can understand this as follows. When
E0 = h̄ω/2, the energy in one of the side bands, E−1, becomes
equal in magnitude to E0. We then find numerically that the
conductance is dominated by only the two bands, n = 0 and
−1. This allows us to analytically estimate the width and
magnitude of the conductance dips. We find that the width
is proportional to V0, in agreement with the numerical results.

Our results can be experimentally tested as follows. As
mentioned in Sec. II B, an energy of 0.01 eV corresponds to a
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frequency scale of about 15 THz. This gives an estimate of the
required frequency ω if electromagnetic radiation is used to
produce the time-dependent magnetic barrier. The strength V0

of the magnetic barrier is proportional to the vector potential
A; this is related to the electric field E (as E = ωA) and hence
to the intensity of the radiation. Our most important result is
that when ω is much larger than the energy E0 of the electrons
(ω 
 E0/h̄), the conductance across the barrier has a striking
dependence on V0 and ω as indicated in Fig. 9. For instance,
increasing the intensity of the radiation keeping the frequency
fixed or decreasing the frequency keeping the intensity fixed
should reduce the conductance sharply as we cross a line in
the (V0, ω) plane. Thus, one can turn the conductance on or
off in our setup by controlling the amplitude of radiation in
the large-ω regime where heating effects should be negli-
gible. This demonstrates the possibility of designing optical
switches using such a device. Further, the conductance shows
resonance-like features when the conductance is large, and
these features depend sensitively on the width of the barrier.
Another interesting feature appears when ω is of the order
of E0/h̄; namely, there is a prominent dip in the conductance
when ω crosses 2E0/h̄, and this dip becomes sharper as the
barrier length is increased.

Finally, we have used a semiclassical approach to study
this problem in the limit where the spin of the particle is very
large instead of being 1/2. This allows us to use classical
equations of motion to study the motion of the particle in the
presence of a time-dependent magnetic barrier, assuming that
at time t = 0 it is incident on the left edge of the barrier at a
normal angle of incidence. We find that although the motion
of the particle can be quite complicated inside the barrier,
it eventually escapes either to the left or to the right of the
barrier. To connect this with the study of spin-1/2 electrons
done in the earlier sections, we interpret escaping to the left
(right) as reflection (transmission) and therefore as small and
large conductances, respectively. With this interpretation, we
find that the behaviors of the system as a function of the barrier
parameters ω, m0, and V0 show a qualitative match between
spin-1/2 and the large spin limit.

We have not considered the effects of disorder and have
only studied ballistic transport in this work. If there is strong
disorder, the mean free path of the electrons becomes less than
the width of the magnetic barrier, and the effect of disorder
would have to be considered. This would be an interesting
problem to study in the future. However, our results should
hold with minor modifications in the weak disorder limit [55].
Moreover, we have not addressed the effects of interactions
between the Dirac electrons which may lead to heating effects,
especially at low drive frequencies. However, we do not ex-
pect this effect to be severe at high frequencies where optical
control seems to be possible. A detailed study of this problem
is left as a subject of future study.
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APPENDIX A: BASICS OF FLOQUET THEORY

In this Appendix, we briefly recapitulate Floquet the-
ory [13,14]. Given a Hamiltonian which varies periodi-
cally in time with a time period T = 2π/ω, namely, H (t +
T ) = H (t ), we want to find the solutions of the equation
ih̄∂ψ (t )/∂t = H (t )ψ (t ). To this end, we define the Floquet
operator which time evolves the system through one time
period,

U = T exp

[
− i

h̄

∫ T

0
dtH (t )

]
, (A1)

where T denotes time ordering. Thus, ψ (T ) = Uψ (0). Since
U is a unitary operator, its eigenvalues must be phases; denot-
ing the nth eigenvalue and eigenstate as e−iθnT and ψn(0), we
have

Uψn(0) = e−iθnT ψn(0). (A2)

We can find θn and ψn(0) as follows. Equation (A2) implies
that ψn(T ) = e−iθnT ψn(0). We can therefore write

ψn(t ) = e−iθnt
∞∑

m=−∞
e−imωtψn,m, (A3)

so that ψn(0) = ∑∞
m=−∞ ψn,m. Next, the periodicity of the

Hamiltonian in time means that we can write

H (t ) =
∞∑

m=−∞
Hme−imωt , (A4)

where Hm is given by Hm = (1/T )
∫ T

0 dtH (t )eimωt . The equa-
tion ih̄∂ψ (t )/∂t = H (t )ψ (t ) then leads to the infinite set of
coupled time-independent equations,

∞∑
p=−∞

(Hm−p − mh̄ωδm,p)ψn,p = h̄θnψn,m, (A5)

where m runs over all values from −∞ to ∞. We can solve
these equations to find θn and ψn(0); a numerical solution
typically requires upper and lower cutoffs for the values
of p.

APPENDIX B: SEMICLASSICAL APPROACH

In the main part of the paper, we studied the transmission of
spin-1/2 electrons through a time-dependent magnetic barrier.
It may be instructive, however, to look at the more general
problem of the transmission of a spin-S particle whose spin
angular momentum operators �S satisfy �S2 = S(S + 1)h̄2. In
particular, we will study the semiclassical limit S → ∞ and
see if this can give a qualitative understanding of some of the
phenomena that we have discovered for the spin-1/2 case.

In this Appendix, we investigate the semiclassical dynam-
ics of a charged particle with spin [56] which is moving in
two dimensions in the presence of a time-dependent magnetic
barrier with a finite width. The dynamics involves two two-
dimensional vectors, namely, the position of the particle �r =
(x, y) and the canonically conjugate momentum �p = (px, py).
In addition, the dynamics also involves a three-dimensional
unit vector �n = (n1, n2, n3) which is related to the spin vector
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�S as �n = �S/(Sh̄); in the limit S → ∞, �n becomes a unit vector.
For convenience, we will denote M = Sh̄.

Classically, the different dynamical variables describing
the particle satisfy the following Poisson bracket relations:

{ri, p j}PB = δi j and {ni, n j}PB = 1

M

∑
k=x,y,z

εi jknk, (B1)

where εi jk is the totally antisymmetric tensor with ε123 = 1.
All other Poisson brackets such as {ri, n j} and {pi, n j} vanish.
We now consider a Hamiltonian of the form [56]

H = v�n · �� + qφ,

�� = �p − q �A, (B2)

where �A is the vector potential and φ is the electrostatic po-
tential. [We note that in two dimensions, the electric field �E =
−�∇φ − ∂ �A/∂t has two components and the magnetic field
B = ∂Ay/∂x − ∂Ax/∂y has one component.] Using Eq. (B1),
we find that {�x,�y}PB = B. The Hamiltonian that we have
studied earlier, given in Eq. (25), has the form v �σ × �� while
the Hamiltonian given in Eq. (B2) has the form v�n · ��. The
two are related by first rotating by π/2 which transforms
σ x → σ y and σ y → −σ x, and then going from spin-1/2 to
the large spin limit.

Now, the classical equations of motion of a dynamical
variable O is given by

dO
dt

= ∂O
∂t

− {H,O}PB. (B3)

Using Eqs. (B1), we obtain the following equations:

ẋ = vn1, ẏ = vn2,

�̇x = q[Ex + vn2B], �̇y = q[Ey − vn1B],

ṅ1 = v

M
n3�y, ṅ2 = − v

M
n3�x,

ṅ3 = v

M
(n2�x − n1�y). (B4)

Note that these equations preserve the constraint �n2 = 1.
Before proceeding further, we present a simple case of

Eqs. (B4). In the absence of electromagnetic fields, i.e., for
a free particle, we find that Eqs. (B4) are invariant under
rotations in the x-y plane. We then find that after a suitable
rotation, the solution of the equations can be written as

�x = p, �y = 0,

n1 = μ, n2 =
√

1 − μ2 cos

(
vpt

M
+ α

)
,

n3 =
√

1 − μ2 sin

(
vpt

M
+ α

)
,

x = vμt + x0,

y = M
√

1 − μ2

p
sin

(
vpt

M
+ α

)
+ y0, (B5)

where p, μ, α, x0, and y0 are constants, and μ must lie in
the range [−1, 1]. Note that the particle moves with constant
velocity vμ in one direction (x̂) but oscillates in the transverse
direction (ŷ). The velocity vμ can take any value from +v to
−v. This agrees with the fact that if a spin-S particle has a

Hamiltonian of the form H = (v/h̄S)�S · �p, the group velocity
is given by vg = (v/h̄S)�S · p̂. Then the fact that eigenvalues
of (1/h̄)�S · p̂ are quantized as S, S − 1, . . . , −S, implies that
vg can take 2S + 1 values in the range [−v, v]. In the limit
S → ∞, vg can take all values in the above range.

Returning to our problem described by Eq. (25), φ and Ax

are equal to zero, while the term multiplying vσ x in the barrier
region is equal to h̄ky + h̄{m0 + V0 cos(ωt )}. To identify this
with �y = py − qAy, we must take

qAy = −h̄{m0 + V0 cos(ωt )} for 0 < x < L, (B6)

and zero for other values of x. However, such a step function
form for Ay(x, t ) would mean that the magnetic field B would
blow up as a δ function at x = 0 and L. We will therefore
approximate Ay to have the continuous and piecewise linear
form

qAy(x, t )

= 0 for x < 0,

= x

δ
{m0 + V0 cos(ωt )} for 0 < x < δ,

= m0 + V0 cos(ωt ) for δ < x < L − δ,

= L − x

δ
{m0 + V0 cos(ωt )} for L − δ < x < L,

= 0 for x > L, (B7)

where δ is a small distance (δ � L) over which Ay changes
between zero and the value that it has inside the barrier. We
note that the parameters m0, V0 in the above equations are not
identical to the same parameters in Eq. (25); they differ by a
factor of h̄.

We can now study the time evolution given by Eqs. (B4),
where

qEx = 0, qEy = −q∂Ay/∂t, qB = q∂Ay/∂x, (B8)

and qAy is given in Eq. (B7). We have to choose some initial
conditions at time t = 0. We will assume that the particle
comes in from x = −∞ with an energy E > 0 and arrives at
x = 0, y = 0 at a normal angle of incidence. Hence, x(0) =
0 (i.e., the left edge of the barrier), y(0) = 0, while �x =
px = E/v and �y = py − qAy = 0 at t = 0. Finally, the spin-
momentum locking implied by the Hamiltonian in Eq. (B2)
implies that since �x(0) > 0 and �y(0) = 0, we must take
choose the components of the unit vector �n as n1(0) = 1 and
n2(0) = n3(0) = 0. To summarize, the initial conditions are

x(0) = 0, y(0) = 0, �x(0) = E

v
, �y(0) = 0,

n1(0) = 1, n2(0) = 0, n3(0) = 0. (B9)

We can now use Eqs. (B4) to numerically find how the
different dynamical variables change with time. Since we are
specifically interested in transmission through the barrier, we
will concentrate on the variable x.

Figures 18 and 19 show x as a function of t for different
values of ω, m0, and V0. We have taken E = 2 and v = 1
in Eq. (B9) and the barrier width L = 1 and δ = 0.1 in
appropriate units. In these figures, we see that depending on
the various parameters, the particle may have a complicated
trajectory while it is inside the barrier region (0 < x < L),
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FIG. 18. x as a function of t for ω = 0.01 and different values of
m0 and V0.

but eventually it always escapes either to the left (x < 0)
with constant negative velocity or to the right (x > L) with a
constant positive velocity. In order to compare with the results
obtained in the main paper, we can interpret escape to the left
as reflection (hence zero or small conductance) and to the right
as transmission (large conductance).

In Fig. 18, we see that for small and intermediate equal
values of m0 and V0 (dash-dotted red and dotted green lines),
there is transmission which maps to the m0 − V0 plane in
Fig. 8(a). But as we increase m0 keeping V0 fixed, or increase
V0 keeping m0 fixed, we see in Fig. 18 (solid blue and dashed
magenta lines) that there is reflection. This maps to regions in
Fig. 18, where there is no conductance. Also in Fig. 18 (solid

FIG. 19. x as a function of t for ω = 40.1 and different values of
m0 and V0.

blue line), where we have fine tuned the value of V0, we see
that the particle remains in the barrier region for a relatively
longer time.

In Fig. 19, we see that the value of V0 = 41.8 is a cutoff,
below which there is transmission and above which there is
reflection. For small m0, a comparison of Figs. 18 and 19
shows that as ω is increased, the value of V0 beyond which
there is reflection increases. This maps qualitatively to the
surface plot in Fig. 8(c), where we see that for larger ω, the
value of V0 up to which there is large conductance increases.
Although the cutoff values of V0 do not match between the
surface plots and the semiclassical analysis, we see that there
is a qualitative mapping between the two as a function of ω.
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