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Valley caloritronics in a photodriven heterojunction of Dirac materials
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We consider a lateral heterojunction where the left and right leads are made of monolayer graphene and
the middle region is made of a gapped tilted Dirac material (borophene or quinoid graphene) illuminated with
off-resonant circularly polarized radiation. The tilt parameter vt makes the band gap indirect and smaller in
magnitude as compared to Dirac materials without tilt. Exposure to radiation makes the band gaps of the
central region valley dependent, which show their signatures as valley-polarized charge and thermal currents,
thereby causing a valley Seebeck effect. We study the variation of the valley-polarized electrical conductance,
thermal conductance, thermopower, and figure of merit of this junction with chemical potential μ and a tunable
gap parameter η. For nonzero η, all the valley-polarized quantities are peaked at certain values of chemical
potential and then vanish asymptotically. An increase in the gap parameter enhances the valley thermopower
and valley figure of merit, whereas the valley conductances (electrical and thermal) show nonmonotonic
behavior with η. We also compare the valley-polarized quantities with their corresponding charge counterparts
(effective contribution from both valleys). The charge thermopower and the charge figure of merit behave
nonmonotonically with η and the charge conductances (electrical and thermal) depict a decreasing trend with
η. Furthermore, the tilt parameter reduces the effective transmission of carriers through the junction, thereby
diminishing all the charge- and valley-polarized quantities. As the gaps in the dispersion can be adjusted by
varying the intensity of light as well as the Semenoff mass, the tunability of this junction with regard to its
thermoelectric properties may be experimentally realizable.
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I. INTRODUCTION

Thermoelectric materials have attracted immense interest
in energy efficient device applications [1–13]. The efficiency
of power generation in such devices depends on the interplay
between their electronic and thermal performances and it is
characterized by a dimensionless quantity called the figure
of merit, ZT = S2σT/κ , where σ , κ , and S denote electrical
conductivity, thermal conductivity, and the Seebeck coeffi-
cient (thermopower), respectively, with T being the absolute
temperature. In bulk materials, the factors in the expression
of ZT are mutually coupled in such a way that it is difficult to
control them independently, and hence improve ZT . The tech-
niques used to improve the figure of merit rely on enhancing
the power factor (σS2) and lowering the thermal conductivity.
One of the important proposals is the nanostructuring of
materials which enhances thermoelectric efficiency due to
the sharply peaked density of states (DOS) of the carriers
in low-dimensional materials [1,14]. Another useful method
is engineering the band structure [15,16] in conjunction with
nanostructuring to lower the thermal conductivity. Further, the
use of semimetals with a large electron-hole asymmetry can
enhance the thermoelectric coefficients [17].

Advancements in fabrication technologies have opened
up new ways of exploring two-dimensional (2D) materials
for thermoelectric applications [7–11]. Since the realization
of graphene [18,19] there have been numerous experimen-
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tal and theoretical studies of quasi-2D materials supporting
Dirac cones such as silicene [20], germanene [21], and MoS2

[22]. Recently, there has been immense interest in the syn-
thesis of 2D crystalline boron structures, generally known
as borophene [23–25]. One of them is 8-Pmmn borophene,
which is a zero gap semiconductor with tilted anisotropic
Dirac cones [26–28] and can be thought of as topologically
equivalent to quinoid graphene [29,30]. The bulk optical [31],
magnetotransport [32], collective modes [33], Floquet states
[34], and thermoelectric properties [35] of this borophene
structure have been studied extensively. Another experimen-
tally synthesized allotrope of boron is β12 borophene whose
band structure and electronic properties have been extensively
studied [36,37]. In addition, very recent success in integrat-
ing dissimilar two-dimensional (2D) materials [38], which is
essential for nanoelectronic applications, has opened a new
direction for studying the thermoelectricity in junction devices
of different materials. In Ref. [38], the authors have reported
the covalent lateral stitching of borophene-graphene, resulting
in the rare realization of a 2D lateral heterostructure where
the lateral interfaces are atomically sharp despite an imperfect
crystallographic lattice and symmetry matching. Furthermore,
a graphene/quinoid graphene/graphene junction can be re-
alized by taking a single graphene sheet, where the middle
region is deformed (quinoid graphene) by applying a uniaxial
strain.

Recently, the concept of valleytronics [39–42], similar
to spintronics [43–48], has become popular. In valleytronic
devices, the information is carried by the valley degree of
freedom of the charge carriers. The generation of valley
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polarization and optically excited valley-polarized current in
various materials has been studied theoretically as well as
experimentally [49–52]. The harnessing of internal degrees
of freedom such as the spin/valley of the charge carriers by
applying a thermal gradient and the associated phenomena are
called spin/valley caloritronics.

Motivated by the above discussion, we study the thermo-
electric effects of a nanojunction system where the left and
right electrodes are made of graphene and the middle region
is made of a 2D Dirac material having tilted anisotropic Dirac
cones, such as borophene or quinoid graphene. The middle
region has different on-site energies on the two sublattices and
is subjected to circularly polarized electromagnetic radiation.
It results in valley-dependent bands at the two Dirac points
and hence a valley-dependent transmission probability. Thus,
in analogy with the spin caloritronics studies, a thermally
activated quantum transport of the valley degree of freedom
of the charge carriers can be achieved. Our goal is to study
thermally driven valley-polarized properties, known as val-
ley caloritronics, and compare them with that of the charge
caloritronics in detail.

This paper is organized as follows. In Sec. II, we present
the basic information of the lateral junction (Sec. II A) and the
definitions of different thermoelectric coefficients (Sec. II B).
All the numerical results and their corresponding discussions
are presented in Sec. III. Finally, we conclude and summarize
our main results in Sec. IV.

II. MODEL AND THEORETICAL METHODS

Here, we first present the essential information on the
junction characterized by quasiballistic transport. Later, we
will present a general description of the Seebeck coefficient,
electrical conductance, thermal conductance, and figure of
merit for any junction device. The discussions in Sec. II B
are applicable to any junction characterized by quasiballistic
transport.

A. Basic information on the junction

We consider a two-dimensional junction system placed on
the xy plane at room temperature as shown in Fig. 1. The
left (x < 0) and right (x > L) leads are made of graphene
sheets, while the middle region (0 < x < L) is made of a 2D
material hosting tilted anisotropic Dirac dispersion (it can be
considered as borophene or quinoid graphene) with a mass
gap at low energy. Further, it is assumed that the middle region
is subjected to circularly polarized electromagnetic radiation
where the photon energy satisfies the off-resonant condition,
i.e., the photon energy is much higher than the bandwidth of
the undriven lattice in the middle region of the system. The
off-resonant circularly polarized light induces a gap in the
energy dispersion.

The Hamiltonian for the charge carriers in a graphene sheet
in the vicinity of the Dirac points is given by [29]

HG = ζ h̄vF (σxkx + ζσyky), (1)

where ζ = ± denotes two independent Dirac points, vF =
106 m/s is the Fermi velocity, and σx, σy are the Pauli
matrices denoting the sublattice degrees of freedom. The

FIG. 1. Schematic illustration of the reflection and the transmis-
sion processes across a two-dimensional lateral junction of Dirac
material. The middle region of the junction is illuminated by circu-
larly polarized electromagnetic radiation for the opening of valley-
dependent gaps. The angles φ and θ denote the incident angles at the
first and second interfaces, respectively.

corresponding energy dispersion of the Hamiltonian in Eq. (1)
is given by Eλ(k) = λh̄vF k, independent of the valley pseu-
dospin ζ , where λ = ± denotes the conduction and valence
bands, respectively. The corresponding eigenfunctions are
given by



λ,ζ
G (r) = eik·r

√
2

(
1

ζλeiζφ

)
, (2)

where φ = tan−1 ky/kx.

(c)

FIG. 2. (a), (b) Band structure of borophene around the two Dirac
points for η = 0.5. Here, γζ is the magnitude of the indirect band
gap and χζ is the corresponding shift. The dimensionless variables Ẽ
and q̃y are defined as Ẽ = E/ and q̃y = h̄vF qy/, where  is the
photoinduced mass. (c) The indirect band gaps γζ in units of 2 as a
function of η.

045417-2



VALLEY CALORITRONICS IN A PHOTODRIVEN … PHYSICAL REVIEW B 102, 045417 (2020)

The effective Floquet Hamiltonian, describing the charge
carriers of the middle region (tilted anisotropic borophene
or quinoid graphene) subjected to circularly polarized elec-
tromagnetic radiation, in the vicinity of the two independent
Dirac points can be written as [53] ( see Appendix A)

HB = ζ h̄[vxqxσx + ζvyqyσy + vtσ0qy] + ζσz. (3)

Here, σ0 is the 2 × 2 identity matrix and ζ = M + ζ

is the net valley-dependent mass resulting from the valley-
dependent photoinduced mass ζ [54] and different on-site
energies on the two sublattices ±M [55], with M being the Se-
menoff mass. The photoinduced mass  = (eA0)2vxvy/(h̄ω)
is proportional to the intensity of light, which can be tuned
experimentally. A tunable Semenoff mass has been exper-
imentally achieved in graphene by placing it appropriately
on a hexagonal boron nitride substrate [56] or by applying
an electric field normal to its plane [57] (which breaks in-
version symmetry). Using similar techniques, the creation
of such a mass gap may be possible in borophene as well,
although its experimental realization is still not known. We
define a dimensionless parameter η = M/ such that ζ =
(η + ζ ). Here, (vx, vy, vt ) are the direction-dependent ve-
locities where vt (tilt parameter) is responsible for the tilt
in energy dispersion. The values of these velocities for
borophene are vx = 0.86vF , vy = 0.69vF , and vt = 0.32vF

[27]. The energy dispersion and the corresponding wave func-
tions associated with the Hamiltonian in Eq. (3) are given by

Eλ,ζ (q) = ζ h̄qvt sin θ + λ

√
2

ζ + [h̄q�(θ )]2, (4)

and



λ,ζ
B (r) = eiq·r

√
2

⎛
⎝ 1

ζ h̄q�(θ )eiζ δ

ζ +λ
√

2
ζ +[h̄q�(θ )]2

⎞
⎠, (5)

where δ = tan−1(vyqy/vxqx ) = tan−1(δa tan θ ) with δa =
vy/vx, θ = tan−1(qy/qx ), and �(θ ) =

√
v2

x cos2 θ + v2
y sin2 θ

having a dimension of velocity.
The band structure of borophene in the two valleys with

valley-dependent masses is shown in Fig. 2 for η = 0.5. The
system is an insulator with valley-dependent indirect band
gaps γζ . The shift χζ between maxima of the valence band
and minima of the conduction band in both valleys is along
the qy axis. The magnitude of the indirect gaps and the shifts
are given as

γζ = 2ζ

√
1 − v2

t

v2
y

, χζ = 2vtζ

h̄vy

√
v2

y − v2
t

. (6)

Equation (6) reveals that the band gaps reduce due to tilt and
decrease monotonically with vt for vt < vy while the shifts
corresponding to the gaps increase. For η > 0, the band gap
at the K ′ valley is smaller than at the K valley. So, the effective
band gap of the system is γ−. The direct gaps at the original
Dirac points are equal to 2ζ . The magnitude of the gap at the
K valley monotonically increases with η, whereas for the K ′
valley it initially decreases with η (for η < 1), vanishes at η =
1, and then starts to increase again for η > 1 [see Fig. 2(c)].

The middle region can be reduced to a gapped graphene
by setting vt = 0 and vx = vy = vF , so that the junction
becomes a graphene/gapped-graphene/graphene junction. If
the Fermi energy lies in the gap, the middle region behaves as
a topological insulator when M < , otherwise it is a trivial
insulator. In the topological insulating state, the edge states
contribute to the transport quantities. Since our system is kept
at room temperature, the contribution from the bulk states
would dominate over the edge states’ contribution [58].

Suppose an electron from the left lead is injected with an
energy ε and incident angle φ. The valley-dependent transmis-
sion probability Tζ (ε, φ) = |tζ (ε, φ)|2 of the electron from the
left to right lead is obtained as (see Appendix B)

Tζ (ε, φ) = 4p2
ζ cos2 φ(1 + cos 2δ)(

2
√

2pζ cos φ cos δ
)2 + [

1 + p2
ζ − 2pζ cos(φ − δ)

][
1 + p2

ζ + 2pζ cos(φ + δ)
]
[1 − cos(2qL cos θ )]

, (7)

where pζ is given by

pζ = h̄q�(θ )

ζ +
√

2
ζ + [h̄q�(θ )]2

. (8)

The values of q and θ in the expression of pζ can be obtained
by solving the following two coupled equations,

q sin θ = k sin φ,

q =
ζ εvt sin θ ∓

√
�2(θ )

(
ε2 − 2

ζ

) + (vtζ sin θ )2

h̄[(vt sin θ )2 − �2(θ )]
. (9)

We define the effective transmission coefficient for cur-
rent along the x direction at a given energy ε as Tζ (ε) =∫ π/2
−π/2 Tζ (ε, φ) cos φdφ. In Figs. 3 and 4, Tζ (ε) vs ε is plotted

for two conditions: (i) vt = 0, vx = vy = vF and (ii) vt �= 0,

vx = vy = vF . The oscillations in Tζ (ε) in Fig. 4 appear due to
the cos(2qL cos θ ) term [see Eq. (7)], where q is a function of
ε. In the case of vx = vy = vF , vt = 0, and E � ζ , the val-
ues of the φ and δ become equal and pζ becomes ∼1, which
eventually yields the coefficient of [1 − cos(2qL cos θ )] to be
∼0 and thus Tζ (ε, φ) becomes ∼1 [see Eq. (7)] and Tζ (ε) ∼
2. As a result, no such noticeable oscillations are obtained [see
the red curves of Figs. 3(a) and 3(b)]. The physics behind
this can be explained using the concept of electron wave
interference—when vt = 0, vx = vy = vF , and E � ζ , the
system can be viewed as a single graphene sheet without any
barrier. Thus, almost all the incoming electron waves from
the left lead get transmitted to the right lead, leaving almost
no reflected wave and thereby causing no interference. If the
band gap is further increased, the probability of the reflection
of electron waves from the interface increases; so the reflected
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FIG. 3. Tζ (ε) vs ε for (a) η = 0.5, (b) η = 2 when vt = 0, vx =
vy = vF .

and the transmitted electron waves begin to interfere. This
results in oscillations in the transmission probability for the
vt = 0, vx = vy = vF case as well [see the blue curves in
Figs. 3(a) and 3(b)]. Furthermore, the K valley has smaller
Tζ (ε) as compared to the K ′ valley. It can be understood using
the analogy of transmission through a rectangular potential
barrier. If the middle region is considered as a potential
barrier with a barrier height ζ , the transmission probability
is smaller for a larger barrier height for the considered range
of incident energies above the barrier. Since + > −, the K
valley allows lesser transmission than K ′.

The tilted velocity term diminishes Tζ (ε), and as for vt �= 0
the transmission probability as a function of incident angle
shows more of a deviation from 1 compared to the vt = 0 case
(see Figs. 9–11). Moreover, the Tζ (ε) is almost electron-hole
symmetric (see Figs. 3 and 4), although vt breaks the electron-
hole symmetry in the band structure (see Fig. 2).

B. Thermoelectric coefficients

A detailed derivation of the thermoelectric coefficients is
given in Appendix C. The valley-resolved Seebeck coefficient
Sζ for a small temperature difference dT is given as

Sζ = − dVζ

dT

∣∣∣∣
dIζ =0

= − L(1)
ζ

eT L(0)
ζ

, (10)

where dVζ are the valley-resolved thermoemfs induced be-
tween the cold and hot leads and L(α)

ζ are the kinetic coeffi-
cients for quasiballistic transport given by

L(α)
ζ =

∫ π/2

−π/2
dφ cos φ

∫ ∞

−∞
Tζ (ε, φ)N (ε)(ε − μ)α

×
(

−∂ f

∂ε

)
dε, (11)

FIG. 4. Tζ (ε) vs ε for (a) η = 0.5, (b) η = 2 when vt �= 0, vx =
vy = vF .

with α = 0, 1, 2.
At zero external bias voltage (VB = 0), the valley-resolved

electrical conductance Gζ can be expressed as

Gζ = dIζ
dV

∣∣∣∣
VB=0

= 2e2

h
L(0)

ζ , (12)

where Iζ is the valley-dependent charge current given in
Eq. (C1).

The valley-resolved thermal conductance kel
ζ associated

with the valley-dependent thermal currents Jel
ζ can be ex-

pressed in terms of the kinetic coefficients L(α)
ζ [see Eq. (11)]

as [59,60]

kel
ζ = 2

h

L(2)
ζ

T
+ 2e

h
L(1)

ζ Sζ . (13)

The total charge and thermal conductance are defined as
Gc = G+ + G− and kel

c = kel
+ + kel

−. Similar to Refs. [46,47],
we define the charge Seebeck coefficient as Sc = (S+G+ +
S−G−)/(G+ + G−). The charge Seebeck coefficient can be
viewed as the effective thermoemf generated between the two
leads per unit temperature difference.

In this system, the carriers in the two valleys have unequal
transmission probabilities owing to the distinctive nature of
the valley gaps. So, the heat and particle flux in the two
valleys differ, giving rise to valley-polarized charge currents
(Iv = |I+ − I−|) and thermal currents (Jel

v = |Jel
+ − Jel

−|). This
leads to different induced voltages in the two valleys at
the cold lead. Thus, the two valleys act as two conducting
channels having different thermopowers present within the
same system. Since the transfer of electrons between the
valleys is prohibited due to the large separation of the valleys
in (quasi)momentum space and the absence of any valley-
mixing mechanism, a valley emf (dV+ − dV−) exists. This
phenomenon can be termed as the valley Seebeck effect
analogous to the spin Seebeck effect [43]. It refers to the
generation of a valley voltage resulting from a temperature
gradient.

Using the same analogy as in Ref. [48] for the spin
Seebeck coefficient, the valley Seebeck coefficient is defined
as Sv = |S+ − S−|. Similar to the spin Seebeck effect [43],
the valley Seebeck coefficient can be viewed as the potential
difference between charge carriers of the two valleys in the
cold lead per unit temperature difference. Similar to the valley
current, the valley-polarized electrical conductance and the
valley-polarized thermal conductance can be defined as Gv =
|G+ − G−| and kel

v = |kel
+ − kel

−|, respectively.
One of the challenges in fabricating thermoelectric devices

is to obtain optimal conditions which ensure the operation of
the device with maximum power output at the best possible ef-
ficiency. The efficiency of the system depends upon a quantity
called the figure of merit ZcT , which is defined as

ZcT = S2
c Gc

kel
c + kph

T, (14)

where Sc is the charge Seebeck coefficient, Gc is the charge
conductance, kel

c is the thermal conductance of the carriers, kph

is the phonon’s thermal conductance owing to the involvement
of the lattice structure, and T is the absolute temperature.
The possibility of extracting the valley thermoemf for power
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FIG. 5. Variation of (a) valley conductance Gv and (b) charge
conductance Gc as a function of chemical potential μ for different
values of η: η = 0.1 (black solid), η = 0.8 (red dashed), and η = 1.5
(blue dotted).

generation allows us to define the valley figure of merit ZvT =
S2

v Gv

kel
c

of this device using the same analogy as the spin figure
of merit in Refs. [48,61–63].

In the context of a phononic contribution to thermal con-
ductance, we would like to mention that the Debye tempera-
ture in borophene has a high value of about 2000 K [64,65]
due to the strong bonding. Further, graphene has also a higher
Debye temperature θD = 2300 K, approximately an order of
magnitude higher than for typical metals. Thus, the room
temperature (300 K) is safely assumed to be low with respect
to the high Debye temperatures of borophene and graphene.
Due to this reason, the phonon population is expected to be
low at room temperature, which diminishes the possibility
of phonon-phonon inelastic scattering events. Henceforth we
neglect the phonon’s contribution in thermal conductance.

III. RESULTS AND DISCUSSION

Here, we present numerical results of different thermoelec-
tric properties of the junction subjected to the off-resonant
Floquet radiation. For our numerical analysis, we choose
the parameters vx = vy = vF , vt = 0.32vF , and  = 0.05 eV.
The dimensionless parameter η = M/ is varied in the range
[0 : 1.5]. It should be noted that by further increasing the
η value, the conductance in the K valley vanishes in the
low chemical potential region. As our main goal is to study
the valley-polarized properties, to get nonzero values of the
conductance for both the valleys, we choose the maximum
η = 1.5. The temperature of the cold lead is maintained at
T = 300 K and that of the hot lead is T + dT where dT 	 T .
The dimensions of system are taken as (L,W ) = (50, 30) nm.

A. Valley electrical conductance

The variation of Gv and Gc with chemical potential μ

for different values of η are shown in Figs. 5(a) and 5(b),
respectively.

1. Dependence on chemical potential

The valley-polarized conductance Gv has peaks at ±μp(η)
and a local minimum at μ = 0 [Fig. 5(a)]. This feature is
also present when the middle region is gapped graphene with
unequal masses ζ in the two valleys, which indicates that
tilt is not responsible for the peaks. The appearance of peaks
can be explained using an analogy with transmission through

a rectangular barrier. For gapped graphene, the dispersion
can be approximated as Eζ ≈ ζ + h̄2q2

2(ζ /v
2
F )

near the band
minima/maxima. So, the middle region can be viewed as a
potential barrier with valley-dependent barrier heights (Vζ =
ζ ) and effective masses (mζ = ζ/v

2
F ). The rate of increase

of transmission T (ε) with |ε| for smaller mass (−) is higher
than that with larger mass (−) for energies just above the
barrier (see Figs. 3 and 4). Since Gζ (ε) is proportional to
Tζ (ε), G+ increases slowly with μ, resembling a quadratic
growth, while G− rises sharply, resembling almost a linear
growth due to the smaller mass. For a higher value of |μ|, the
effect of mass in the dispersion becomes negligible in both
valleys, which results in an almost similar variation of their
conductances with |μ|. Due to this nature, Gv increases with
|μ| initially, attains a maximum (peak), and then decreases
asymptotically to zero at higher |μ|.

On the other hand, Gc increases monotonically with an
increase in |μ| [Fig. 5(b)]. This is primarily due to the increase
in the number of available conducting channels N (ε) in the
leads with an increase in |ε|. As expected, Gc is always greater
than Gv for a given η.

2. Dependence on gap parameter

The valley conductance Gv increases with the increasing
strength of η for η < 1 and starts to decrease with η for η > 1.
This can be explained as follows: Since a larger gap corre-
sponds to lesser Tζ (ε), the increase in η lowers G+, owing to
the monotonic rise in + with η [see Fig. 2(c)]. Similarly, due
to the nonmonotonic variation of −, G− initially increases
with η, attains a maximum value at η = 1, and then starts to
decrease with η. Since G− increases while G+ decreases with
η for η < 1, their difference gets enhanced with η. For η > 1,
both G+ and G− decrease with η, but the rate of decrease of
G− is more than that of G+. As a result, Gv gets diminished
with η for η > 1. For η → 0, we get ζ → ζ, which yields
T+(ε, φ) = T−(ε,−φ). On integrating out φ, both the valleys
give the same value of transmission at a given energy. Hence,
Gv → 0 as η → 0.

Figure 5(b) reveals that Gc gets diminished (though the
change is small, but noticeable) with increasing η, away from
the low chemical potential regime. Near the low chemical
potential region, there are crossovers in the conductance plots.

The tilt vt diminishes Gζ in each valley, which results in
a lowering of Gc. It is found that Gv also decreases with vt ,
since vt diminishes [T−(ε) − T+(ε)] as well (see Figs. 3 and
4). It is interesting to note that charge and valley conductances
show a high degree of electron-hole symmetry despite the fact
that the spectrum in the middle region is electron-hole asym-
metric due to nonzero vt . Similar behavior is shown in bulk
borophene [35].

B. Valley Seebeck coefficient (thermopower)

The valley and charge Seebeck coefficients Sv and Sc (in
units of kB/e) as a function of the chemical potential μ

for various values of η are shown in Figs. 6(a) and 6(b),
respectively.
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FIG. 6. Variation of (a) valley Seebeck coefficient Sv , (b) charge
Seebeck coefficient Sc, and (c) ratio of S+ and S− as a function of
chemical potential μ for different values of η: η = 0.1 (black solid),
η = 0.8 (red dashed), and η = 1.5 (blue dotted).

1. Dependence on chemical potential

Both Sv and Sc display a local maxima (minima) at μs ∼
0.04 (−0.04) eV on variation with μ. The value of μs

is roughly independent of η. The maxima/minima in the
thermopower arises due to the term (ε − μ)(− ∂ f

∂ε
) in the

numerator of the Seebeck coefficient [see Eq. (10)]. There is a
change in sign of S while there is a change in sign of μ [due to
the (ε − μ) term in the numerator of S]. It indicates the change
in the electrical nature of the charge carriers as μ changes
sign. When μ lies in the conduction (valence) band, thermally
activated electrons (holes) propagate opposite (parallel) to
the temperature gradient, which results in negative (positive)
thermopower. Similar to the conductance, the electron-hole
symmetry is nearly perfect in the absolute value of Seebeck
coefficients.

2. Dependence on gap parameter

The absolute values of Sv increase with η at a given
chemical potential. This can be explained as follows: From

the definition of the Seebeck coefficient Sζ ∼ L(1)
ζ

Gζ
, we can say

that an increase in L(1)
ζ and a decrease in Gζ with η aids

in enhancing the value of Sζ . Since L(1)
+ increases and G+

decreases with η, S+ starts to gain weight as we increase η.
Similarly, S− initially decreases with η, attains minimum at
η = 1, and again starts to increase. Though S+ and S− show
a different nature of variation with η, their difference as a
function of η is mainly dictated by S+. This happens because
the K valley’s contribution in thermopower changes more
rapidly with η as compared to the K ′ valley. The behavior of
the valley thermopower as a function of η can be understood
from Fig. 6(c) also. As the ratio of S+ and S− increases with
η, the valley thermopower gets enhanced with an increasing
strength of η. The reason behind this can be understood from
Fig. 4, as it reveals that with increasing η from 0.5 to 2.0, the

rate of change in T (ε) in the K valley is more than that in the
K ′ valley.

For the chemical potential |μ| < 0.08 eV, the charge ther-
mopower Sc decreases with η for η < 1, attains minima
around η = 1, and then starts increasing again. For |μ| >

0.08 eV, an increase in η aids in enhancing Sc, though the
enhancement is quite small. So Sv and Sc behave differently
with η which is mainly due to the different weights of the K
and K ′ channels’ contribution in their definitions. It seems that
on increasing the strength of η even more, one can achieve a
higher valley thermopower. But it is not possible, as for such a
higher value of η, there will be no available channel to conduct
in the low chemical potential regime.

It is worth mentioning that Sv decreases with vt . Though vt

diminishes Gζ (denominator of Sζ ), it lowers L(1)
ζ (numerator

of Sζ ), too. Hence, the contribution of ( L(1)
+

G+
− L(1)

−
G−

) (see the
definition of Sv) decreases as we increase vt . The charge
thermopower also behaves similarly as a function of vt .

The materials with large electron-hole asymmetry are
known to enhance the thermoelectric coefficient. So more
thermopower is expected when the middle region is made of
a tilted Dirac material instead of graphene. But vt does not
break the electron-hole symmetric nature in Tζ (ε) as shown
in Fig. 4. Hence, it cannot aid in enhancing the thermopower
of the system. It is to be noted that if the middle region is
also monolayer graphene, then for a higher value of η, we
do not get any thermopower in the low chemical potential
regime, whereas if the middle region is borophene or quinoid
graphene, we get finite values of thermopower for those low
values of the chemical potential. The physics behind this
is as follows: For graphene, in the case of ε < |ζ |, there
is no transmission because of imaginary momentum, and
thus no channel to conduct. But for borophene or quinoid
graphene, due to the indirect gap for the tilted velocity term,
the momentum is real until ε > |γζ /2|, and hence few chan-
nels are available to conduct, although ε < |ζ | [see Eq. (6)
and Fig. 2]. Thus for a low chemical potential, the highly
gapped graphene-borophene-graphene junction is a good can-
didate with respect to the highly gapped graphene-graphene-
graphene junction as a thermoelectric device.

C. Valley thermal conductance

The valley-polarized thermal conductance kel
v and charge

thermal conductance kel
c as a function of μ are shown in

Figs. 7(a) and 7(b), respectively, for different values of η.

1. Dependence on chemical potential

As the valley-resolved thermal conductance kel
ζ arises due

to the energy flow carried by the charge carriers, kel
v/c as a

function of μ shows almost similar features as Gv/c except
for the region where μ is close to zero. In the case of kel

v/c
[see Figs. 7(a) and 7(b)] there is a bump near μ = 0, while for
Gv/c there is no such thing. This bump in kel

c arises due to the
(kel )V term as shown in the inset of Fig. 7(b), whereas valley
(kel )T [in addition to valley (kel )V ] is also responsible for the
bump in kel

v [see the inset of Fig. 7(a)]. Moreover, the valley
thermal conductance kel

v has peaks at ±μp(η) and then starts
decreasing with μ (similar to Gv), as opposed to kel

c .
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FIG. 7. Variation of (a) electrical valley thermal conductance kel
v

and (b) electrical thermal conductance kel
c as a function of chemical

potential μ for different values of η: η = 0.1 (black solid), η = 0.8
(red dashed), and η = 1.5 (blue dotted).

2. Dependence on gap parameter

As expected, kel shows the same nature as the electrical
charge conductance as a function of η, which is depicted in
Fig. 7. The reason behind this nature is the same as for the
charge conductance.

Not surprisingly, kel as a function of vt shows similar
behavior as the electrical charge conductance, indicating that
electrical thermal conductance is diminished by vt . Here, we
would like to mention that in our system, the Wiedmann-
Franz law which states that σc/κc = LT , where L = 2.44 ×
10−8 W � K−1 is the Lorentz number, σc is electrical charge
conductivity, and κc is the electrical thermal conductivity,
holds well for low temperature, though it deviates near μ = 0.
This law is valid in the case of valley-polarized conductivities
as well under the same conditions.

D. Valley figure of merit

The variation of the valley and charge figures of merit ZvT
and ZcT with μ are shown in Figs. 8(a) and 8(b), respectively,
for different values of η.

1. Dependence on chemical potential

Both figures of merit show similar behavior as a function of
μ and have maxima close to μ ∼ ±0.06 eV. The occurrence
of maxima can be explained as follows: From the definition
of ZT , we see that ZT varies as S2. Since Sv and Sv attain
extrema near μ ∼ ±0.06 eV (see Sec. III B 1), ZvT and ZcT
are also peaked around those values for the given set of

FIG. 8. Variation of (a) valley figure of merit ZvT and (b) charge
figure of merit ZcT as a function of chemical potential μ for different
values of η: η = 0.1 (black solid), η = 0.8 (red dashed), and η = 1.5
(blue dotted).

parameters. The positions of the peaks are almost insensitive
to the gap parameter η.

2. Dependence on gap parameter

An increase in η enhances ZvT , because ZvT mainly varies
as S2

v which shows an increasing trend with η. For η → 0,
ZvT → 0 as the valley thermopower Sv vanishes. The charge
figure of merit behaves nonmonotonically with η for |μ| <

0.1 eV, while for |μ| > 0.1 eV it increases with η, thereby
depicting the trend of S2

c . For |μ| < 0.1 eV, the ZcT decreases
with η (for η < 1), becomes minimum at η = 0, and starts to
increase again for η > 1.

It is observed that both ZvT and ZcT get reduced with an
increase in vt . This is attributed to the fact that an increase in vt

reduces the thermopower (see Sec. III B) while the ratio of G
and kel does not vary appreciably with vt . For the parameters
used in the problem, the maximum values of ZvT and ZcT are
2.2 and 0.82, respectively. With the inclusion of the phonon’s
thermal conductance using the value in Ref. [66], (ZvT )max

and (ZcT )max are reduced to ∼1.84 and ∼0.67, respectively.
However, the value mentioned in Ref. [66] is for pristine
borophene, whereas our system is a heterojunction with a
band gap in the dispersion of the middle region. Thus the
values are not accurate, but rather an estimation.

Here, we would like to mention that the structure of
borophene is anisotropic along the x and y directions and it
affects the transport properties in two directions differently.
For the bulk borophene cases in Ref. [35], the electrical and
thermal conductances in two directions differ quantitatively
rather than qualitatively, while the results obtained for the
thermopower and figure of merit are almost direction inde-
pendent. Since the results in both directions are qualitatively
the same, we have presented the results for the isotropic case.

IV. CONCLUSION

We propose a graphene/gapped tilted Dirac
material/graphene junction which may exhibit a valley
Seebeck effect when the middle region is irradiated with
off-resonant circularly polarized light. The effect arises due
to unequal gaps at the two valleys caused by a combination
of the Semenoff mass M and photoinduced mass ζ,
where ζ is the valley index. Valley-polarized thermoelectric
properties arise in the device owing to unequal transmission
probabilities in the conducting channels of the nondegenerate
valleys. We have studied the valley caloritronics of this
junction device in a systematic framework and compared
the results with the corresponding charge caloritronics. In
particular, we have studied the dependence of the chemical
potential μ and the role of a tunable gap parameter η = M/

in the electrical and thermal conductances, the Seebeck
coefficient (thermopower), and the figure of merit of
this junction. Since the renormalized radiation amplitude
β(=eA0a/h̄) ∼ 0.1 	 1 under an off-resonant approximation
(see Appendix A), the contributions from the nonzero order
Floquet sidebands in the transport properties of the system
have been neglected.

The valley-polarized electrical conductance Gv attains a
maximum and then decreases asymptotically to zero while
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the total charge conductance Gc increases monotonically with
the chemical potential (μ). Furthermore, Gv increases with η

for η < 1 and decreases with η for η > 1, while Gc shows a
decreasing trend with η. The electrical thermal conductance
κel as a function of η and μ shows almost similar behavior
as the charge conductance, as it is proportional to the amount
of heat energy carried by the charge carriers. Both valley (Sv)
and charge Seebeck coefficients (Sc) attain maximum values
at μ ∼ ±0.04 eV, which is roughly independent of η. But Sv

increases with η, while Sc shows a nonmonotonic nature for
|μ| < 0.08 eV. For |μ| < 0.08 eV, the Sc shows minimum
values at η = 1 and starts to gain weight as we decrease
(for η < 1) or increase η (for η > 1). For |μ| > 0.08 eV, an
increase in η leads to a small enhancement in Sc.

Since the ratio of G and κ does not show any significant
change with η, the figure of merit as a function of η shows
a variation similar to the square of thermopower and its
maximum value is obtained at μ = ±0.06 eV. We have also
analyzed the effect of tilting in the thermoelectric proper-
ties. The tilt parameter vt reduces the effective transmission
through the junction, thereby diminishing all the charge- and
valley-polarized quantities.

The exploitation of the valley thermoemf for thermoelec-
tric power generation may serve as another development in
the field of valley caloritronics. Since the photoinduced mass
 and Semenoff mass M can be adjusted by varying the
intensity of the light source and the strength of the inversion
symmetry-breaking electric field, respectively, the tuning of
the gap parameter η may be achievable in an experimental
setup.
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APPENDIX A: FLOQUET HAMILTONIAN OF A TILTED
DIRAC MATERIAL SUBJECTED TO CIRCULARLY

POLARIZED RADIATION

The Hamiltonian for quasiparticles with massive tilted
anisotropic Dirac dispersion in the vicinity of two indepen-
dent Dirac points in materials such as borophene or quinoid
graphene is given by [27–29,37]

HB(q) = ζ h̄[vxσxqx + ζvyσyqy + vtσ0qy] + Mσz, (A1)

where σx, σy are the Pauli matrices, σ0 is the 2 × 2 identity
matrix, and ζ = ± denotes the two independent Dirac points.
Mσz is the mass term due to different on-site energies (±M)
of the two sublattices. The energy dispersion and the corre-
sponding wave functions associated with the Hamiltonian in
Eq. (A1) are given by

Eλ,ζ (q) = h̄ζvt q sin θ + λ
√

M2 + [h̄q�(θ )]2 (A2)

and



λ,ζ
B (r) = eiq·r

√
2

(
1

ζ h̄q�(θ )eiζ δ

M+λ
√

M2+[h̄q�(θ )]2

)
, (A3)

where δ = tan−1[vyqy/(vxqx )], θ = tan−1(qy/qx ), �(θ ) =√
(vx cos θ )2 + (vy sin θ )2, and λ = ± denotes the conduction

and valence bands, respectively. Note that the vt �= 0 term tilts
the Dirac spectrum and is responsible for the electron-hole
symmetry breaking, even for the vx = vy case.

Consider the borophene sheet is illuminated normally by
intense circularly polarized electromagnetic radiation. The
vector potential corresponding to the circularly polarized ra-
diation is given by A(t ) = A0(î sin ωt + ĵ cos ωt ), where A0 =
E0/ω, with E0 being the amplitude of the electric field vector
and ω is the frequency of the radiation. The vector potential
is time periodic since A(t + Tω ) = A(t ), with the time period
Tω = 2π/ω.

The time-periodic Hamiltonian in the presence of electro-
magnetic radiation is given by

HB(q, t ) = ζ h̄[vxσxQx(t ) + ζvyσyQy(t ) + vtσ0Qy(t )] + Mσz,

(A4)

where Qi = qi + eAi(t )/h̄ with i = x, y. It is known that a
gap in the Dirac spectrum can be induced in graphene, on
the surface states of a topological insulator, silicene, semi-
Dirac systems, MoS2, etc., by off-resonant radiation. The off-
resonant condition is achieved when the photon energy (h̄ω) is
much higher than the bandwidth (6τ with τ being the nearest-
neighbor hopping energy) of the undriven borophene. In the
off-resonant condition, the band structure is modified by the
second-order virtual photon absorption-emission processes.
The effective time-independent Floquet Hamiltonian in the
off-resonant limit can be expressed as [67–69]

HF (q) � HB(q) + [H−1(q), H+1(q)]

h̄ω
, (A5)

where the terms in the commutator are the Fourier compo-
nents of H (q, t ),

H±1(q) = 1

Tω

∫ Tω

0
dte∓iωt H (q, t ). (A6)

Using Eq. (A6) we find the commutator [H−1, H+1] as given
below,

[H−1(q), H+1(q)]

h̄ω
= ζe2A2

0vxvy

h̄ω
σz = ζσz, (A7)

where  = (eA0)2vxvy/(h̄ω) is the gap at the Dirac points, an
experimentally tunable parameter. The gap parameter  does
not depend on the tilt parameter vt .

Here, we would like to mention that the scattering by
the Floquet sidebands are neglected in our study due to the
off-resonant condition of light. For off-resonant light, the nth-
(n �= 0) order Floquet sidebands are separated from zeroth-
order bands (static modes) by large quasienergies (∼nh̄ω). As
discussed in Ref. [54], the inelastic scatterings, i.e., photon
absorptions and emissions between the sidebands, are sup-
pressed by a factor of β2, where β = eA0a/h̄ is the renor-
malized radiation amplitude, with a being the lattice constant.
Also, the transmission coefficients for sidebands of order
n �= 0 are small ∼O(β2n). In our system, the value of β

for the chosen parameters to evaluate  is ∼0.1. Thus, the
modification in transmission probability due to the scattering
by the Floquet sidebands is negligibly small.
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APPENDIX B: TRANSMISSION PROBABILITY

In this Appendix, we provide the derivation of the trans-
mission probability of the electron along with some plots
of transmission probability (as a function of incident angle)
which are required to justify the results presented in Figs. 3
and 4.

The wave functions in the three different regions,

1(x, y), 
2(x, y), and 
3(x, y), will have the same y de-
pendence: 
i(x, y) = 
i(x)eikyy with i = 1, 2, 3. The wave
functions 
1(x), 
2(x), and 
3(x) for the three different
regions for A and B sublattices can be written in the following
forms: for x < 0,



ζ
1 (x) =

(
eikxx

ζeikxx+iζφ

)
+ rζ

(
e−ikxx

−ζe−ikxx−iζφ

)
, (B1)

for 0 < x < L,



ζ
2 (x) = aζ

(
eiqxx

ζ pζ eiqxx+iζ δ

)
+ bζ

(
e−iqxx

−ζ pζ e−iqxx−iζ δ

)
, (B2)

and for x > L,



ζ
3 (x) = tζ

(
eikxx

ζeikxx+iζφ

)
. (B3)

Here, the expression for pζ is given by

pζ = h̄q�(θ )

ζ +
√

2
ζ + [h̄q�(θ )]2

. (B4)

The valley-dependent reflection amplitude rζ and the trans-
mission amplitude tζ are obtained by matching the wave
functions at the interfaces x = 0 and x = L,



ζ
1 (x = 0) = 


ζ
2 (x = 0), 


ζ
2 (x = L) = 


ζ
3 (x = L). (B5)

From the above conditions, the valley-dependent transmission
probability Tζ (ε, φ) = |tζ (ε, φ)|2 is obtained as

Tζ (ε, φ) = 4p2
ζ cos2 φ(1 + cos 2δ)(

2
√

2pζ cos φ cos δ
)2 + [

1 + p2
ζ − 2pζ cos(φ − δ)

][
1 + p2

ζ + 2pζ cos(φ + δ)
]
[1 − cos(2qL cos θ )]

. (B6)

Here, it should be noted that there is no mechanism present
in the junction that mixes states of opposite valleys. The
system can be reduced to a gapless single graphene sheet
by setting ζ = 0, vt = 0, and vx = vy = vF . In this limiting
case, it can be easily checked that Tζ (ε, φ) = 1.

To understand the behavior of Tζ (ε) (Figs. 3 and 4), plots
for Tζ (ε, φ) for different conditions as a function of the
incident angle φ for a fixed energy ε = 0.5 eV and L = 50 nm
are shown in Figs. 9–11.

Figures 9 and 10 show plots of Tζ (ε, φ) as a function of
φ for (i) vt = 0, vx �= vy and (ii) vt = 0, vx = vy = vF for
two values of η with  fixed at 0.05 eV. On the other hand,
Fig. 11 shows a plot of Tζ (ε, φ) as a function of φ for vt �= 0,
vx �= vy. All the figures show that the transmission probability
is close to unity around the normal incidence (φ → 0) for both
valleys. This is a manifestation of perfect tunneling when the
incident wave vector is normal to the interface. Figure 9 shows
that the transmission is allowed over the full range of the
incident angle (−π/2 � φ � π/2), whereas for Fig. 10 the
transmission is restricted below the lower critical angle and
above the upper critical angle. Further, in Fig. 11, the trans-

FIG. 9. Transmission probability Tζ (ε, φ) as a function of inci-
dent angle φ for (a) η = 0.5, (b) η = 2 when vt = 0, vx �= vy.

mission probability for ζ = +/− ceases to zero above/below
some critical incident angles. This is because of sin θ > 1, as
shown in the inset of Fig. 11, for which above or below the
critical angles the wave vector in the middle region becomes
complex, which leads to an evanescent wave. Figures 10 and
11 reveal that the allowed range of incident angles for ζ = −1
is bigger than that for ζ = 1, as for the latter one, the band gap
is wider. It is clear that the value of the critical angles depends
on all the three velocities vx, vy, and vt . Similar critical angles
exist in other semiconductor junction devices [70,71].

APPENDIX C: THEORY OF THERMOELECTRICITY

In this Appendix, we present the derivation of ther-
mopower and the electron’s thermal conductance in terms of
the transmission probability.

Assuming that the graphene leads are independent electron
reservoirs, the chemical potential and the temperature of the
left/right graphene leads are μL/R and TL/R, respectively. The
population of electrons at the left/right leads is described by
the Fermi-Dirac distribution function fL/R = f (μL/R, TL/R) =
[1 + e(ε−μL/R )/(kBTL/R )]−1. Employing the Landauer-Buttiker

FIG. 10. Transmission probability Tζ (ε, φ) as a function of inci-
dent angle φ for (a) η = 0.5, (b) η = 2 when vt = 0, vx = vy = vF .
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FIG. 11. Transmission probability Tζ (ε, φ) as a function of inci-
dent angle φ for (a) η = 0.5, (b) η = 2 when vt �= 0, vx �= vy.

formalism in a quasiballistic regime, the valley-dependent
charge current is given by

Iζ = 2e

h

∫ π/2

−π/2
dφ cos φ

∫ ∞

−∞
N (ε)Tζ (ε, φ)( fL − fR)dε,

(C1)

where N (ε) = W |ε|/(π h̄vF ) is the energy-dependent number
of transverse modes in the graphene sheet of width W [72].
Here, it has been used that TL,ζ (ε, φ) = TR,ζ (ε, φ) = Tζ (ε, φ)
with TL,ζ (ε, φ) [TR,ζ (ε, φ)] is the transmission probability of
an electron with energy ε and incidence angle φ from the left
(right) graphene leads.

In the absence of any external bias voltage (VB), the
chemical potentials of the two leads are taken to be the
same as μL = μR = μ. Due to the applied temperature dif-
ference (dT ) between the two leads, there will be a small
voltage difference (dV ) between the leads. The currents in-
duced by dT and dV are given by (dIζ )T = Iζ (μ, T ; μ, T +
dT ) and (dIζ )V = Iζ (μ, T ; μ + edV, T ), where the currents
Iζ (μ, T ; μ, T + dT ) and Iζ (μ, T ; μ + edV, T ) can be calcu-
lated from Eq. (C1). Since in an open circuit condition the
current cannot flow, one can write

dIζ = (dIζ )T + (dIζ )V = 0. (C2)

Expanding the Fermi-Dirac distribution functions in Eqs. (C1)
and (C2) in the linear response regime, i.e., up to the first-
order terms in dV and dT , one can get the valley-resolved

Seebeck coefficient Sζ as

Sζ = − dV

dT

∣∣∣∣
dIζ =0

= − L(1)
ζ

eT L(0)
ζ

, (C3)

where the kinetic coefficients L(α)
ζ for the quasiballistic trans-

port regime are given by

L(α)
ζ =

∫ π/2

−π/2
dφ cos φ

∫ ∞

−∞
Tζ (ε, φ)N (ε)(ε−μ)α

(
−∂ f

∂ε

)
dε,

(C4)

with α = 0, 1, 2.
The flow of electrons can also transport thermal energy

through the junction, which is responsible for the thermal
current. The electron’s thermal current is the energy current
carried by electrons traveling between leads driven by dT =
TR − TL and dV = (μR − μL )/e. Analogous to the charge
current, the electron’s valley-resolved thermal current can be
written as

Jel
ζ = 2

h

∫ π/2

−π/2
dφ cos φ

∫ ∞

−∞
N (ε)Tζ (ε, φ)(ε − μ)( fL − fR)dε.

(C5)

Analogous to the charge current driven by dT and dV , the
electron’s valley-resolved thermal current can be written as

dJel
ζ = (

dJel
ζ

)
T

+ (
dJel

ζ

)
V
, (C6)

where (dJel
ζ )T = Jel

ζ (μ, T ; μ, T + dT ) and (dJel
ζ )V =

Jel
ζ (μ, T ; μ + edV, T ). Note that dV is generated by the

Seebeck effect due to the temperature difference dT . Both
Jel
ζ (μ, T ; μ, T + dT ) and Jel

ζ (μ, T ; μ + edV, T ) can be
calculated using Eq. (C5). Similarly, the electron’s thermal
conductance kel

ζ = dJel
ζ /dT has two components,

kel
ζ = (

kel
ζ

)
T + (

kel
ζ

)
V , (C7)

where (kel
ζ )T = (dJel

ζ )T /dT and (kel
ζ )V = (dJel

ζ )V /dT are the
portions of the electron’s thermal conductance driven by dT
and dV , respectively. The electron’s valley-resolved thermal
conductance can be expressed in terms of the kinetic coeffi-
cients L(α)

ζ [as given in (C4)] [59,60] as

kel
ζ = 2

h

L(2)
ζ

T
+ 2e

h
L(1)

ζ Sζ . (C8)
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