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Nanotechnology has not only provided us the possibility of developing quantum machines but also noncanoni-
cal power sources able to drive them. Here we focus on studying the performance of quantum machines driven by
arbitrary combinations of equilibrium reservoirs and a form of engineered reservoirs consisting of noninteracting
particles but whose distribution functions are nonthermal. We provide the expressions for calculating the
maximum efficiency of those machines without needing any knowledge of how the nonequilibrium reservoirs
were actually made. The formulas require the calculation of a quantity that we term entropy current, which
we also derive. We illustrate our methodology through a solvable toy model where heat “spontaneously” flows
against the temperature gradient.
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I. INTRODUCTION

The tendency toward miniaturization reached nanoscale a
long time ago. This opened up the door to the design and
control of different forms of quantum machines, such as
quantum motors, quantum pumps, quantum heat engines, or
quantum heat pumps [1–15]. These systems have been exten-
sively studied during past years, including their dynamical and
thermodynamical aspects. However, paraphrasing Feynman,
there is still plenty of room at the bottom, and new proposals
keep surprising us. The possibility of using noncanonical
power sources, such as nonequilibrium reservoirs [16–22] or
Maxwell’s demons [23–28], is a tantalizing direction which
may not only offer alternative ways of controlling quantum
machines but also shed light on the thermodynamics of real
and thought experiments.

In the literature, there are different forms of demonlike “en-
gineered reservoirs,” some of them involving subtle quantum
coherences or correlation effects [16,18–20]. Here we focus
on a somewhat simpler kind of engineered reservoir that we
call nonequilibrium incoherent reservoirs (NIRs) [29]. These
reservoirs consist of noninteracting quantum particles (just as
the usual ones in quantum transport [7,8,10,12,13]) but with
distribution functions that are nonthermal. In the context of
quantum transport, nonthermal distributions in mesoscopic
systems have not only been studied theoretically [17,30–33]
but also experimentally observed, e.g., in mesoscopic wires
[34], carbon nanotubes [35,36], quantum Hall edge channels
[37], and graphene [38].

Despite being simpler than other proposals, NIRs can give
rise to fascinating phenomena. For example, it has been shown
that NIRs can act as a sort of Maxwell’s demon that, without
injecting energy or particles into a device, allows it, e.g., to
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pump heat against a temperature gradient [22]. This may have
important applications, as the prospect of a nanorefrigerator
that works without having to inject energy into it, which at
some point should dissipate as heat [13], seems ideal. Beyond
this proposal, other forms of quantum devices, driven by
more general combinations of equilibrium and nonequilib-
rium reservoirs, are also possible and interesting to study.
However, there is not a general thermodynamics description
of this broad class of devices. Therefore, to calculate, e.g.,
the efficiency, one usually needs to know how the NIRs were
made, starting from equilibrium reservoirs. Here we discuss
the thermodynamics and the efficiency of this class of devices
but from a description that only requires the probability
distribution function of the NIRs. Our formulation is based
on the calculation of a quantity that we dub entropy current,
which here is derived within a semiclassical approach. See
also Appendix A for an alternative derivation based on von
Neumann entropy.

II. ENTROPY CURRENT

We start by considering a reservoir with total energy U
and a large number, N , of indistinguishable noninteracting
particles. Let us divide its spectrum into groups of levels
called cells and separated by an energy interval δε. The
number of states of the i cell is gi, the average energy of the
cell is εi, and ni is the number of particles occupying states
within the i cell for a particular configuration of the reservoir.
The entropy S of this reservoir can be calculated from [39]

S = kB ln

⎛
⎝∑

j

W {ni} j

⎞
⎠, (1)

where kB is the Boltzmann constant, W {ni} j is the number
of states of the reservoir corresponding to a particular set j
of occupations {ni}, and the summation runs over all sets of
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occupations compatible with the total energy U and the num-
ber of particles N of the reservoir. Importantly, we are assum-
ing that fluctuations around a given value of ni are negligible,
and thus we can consider it fixed. Therefore,

∑
j W {ni} j ≈

W {ni}0, where {ni}0 is the set of occupation numbers fixed,
either by an external agent or by the maximization of the
entropy of the reservoir.

As we are dealing with noninteracting particles, we have
W {ni}0 = ∏

i wi, where wi denotes the number of ways in
which ni particles can be assigned to the i cell of the reservoir
with gi states. Then, for bosons and fermions, the following
relation holds [39]:

w
(bosons)
i = (ni + gi − 1)!/[ni!(gi − 1)!], (2)

w
(fermions)
i = gi!/[ni!(gi − ni )!], (3)

and hence

ln wi

gi
≈ ni

(
ln

[
1

ni
± 1

]
± 1

ni
ln [1 ± ni]

)
, (4)

where ni = ni/gi is the average occupation, the + sign is for
bosons, and the − sign is for fermions. Notice that we as-
sumed gi � 1 for bosons and used the Stirling approximation.

With the aid of Eq. (4), one can calculate the entropy of a
reservoir α by Sα = kB

∑
i ln wiα . But now, suppose there is a

flux of particles per unit energy ṅα (εi ) entering the reservoir,
where ṅα (εi ) = ṅiα (giα/δε), and we assume the spectrum of
the reservoir remains constant. We want to know the change
per unit time of the entropy as a consequence of that, from
now on the “entropy current.” This is given by

Ṡα = kB

∑
i

∂ ln wiα

∂niα

ṅα (εi )

giα
δε, (5)

where the dot stands for time derivative. Deriving ln wiα and
turning the summation into an integration yields

Ṡα = kB

∫
ṅα (εi ) ln

(
1

fα (ε)
± 1

)
dε. (6)

Here we replace nα (εi ) by fα (ε) to emphasis the fact that
we are considering large reservoirs. There, the number of
states giα within the energy interval δε is so huge that one
can consider nα (εi ) time independent. Note that for equi-
librium reservoirs [ fα (ε) given by the Fermi-Dirac or the
Bose-Einstein distribution functions at temperature Tr and
chemical potential μr], one recovers the well-known formula
Ṡr = Jr/Tr [7,8,10,12,13], where Jr is the heat current:

Ṡr = 1

Tr

∫ ∞

−∞
ṅ(ε)(ε − μr )dε. (7)

The entropy current can also be expressed in terms of an
energy-dependent effective temperature, see Appendix A.

III. EFFICIENCY OF QUANTUM MACHINES DRIVEN
BY NIRs

We will consider a local system connected to a certain
number of reservoirs at equilibrium, denoted by r, but also
connected to several NIRs, denoted by l , see Fig. 1. To add
generality, we will also include the possibility that the local

system
Local

Mechanical
device

nonequilibrium

nonequilibrium

nonequilibrium

Environment

FIG. 1. General scheme of the type of system treated. A local
system, connected (or not) to a mechanical device, interchanges
particles with equilibrium reservoirs (at temperature Ti and chemical
potential μi) and nonequilibrium incoherent reservoirs.

system is connected to a mechanical device. Thus, current-
induced forces (or the possible external forces) should be
taken into account [3,7–10,12,13]. Finally, we will assume
fermionic reservoirs for the derivations. However, the results
can be translated readily for the bosonic case or for mixed
reservoirs (once particle conservation is appropriately taken
into account in the latter).

We start by writing the time derivative of the total energy
Utotal of the reservoirs

U̇total =
∑

r

(TrṠr + ṅrμr ) +
∑

l

U̇l , (8)

where Ul is the internal energy of the reservoir l . Equilibrium
reservoirs are characterized by a temperature Tr , an entropy
Sr , a number of particles nr , and a chemical potential μr .
For them, we used U̇r = Jr + ṅrμr , where we identified the
heat current Jr with TrṠr . Now we define δTr = Tr − T0 and
δμr = μr − μ0, where T0 and μ0 are just reference temper-
atures and chemical potentials but, for convenience, we will
identify them with the temperature and chemical potential of
the surrounding environment, see Fig. 1. Energy conservation
imposes ∑

α=r,l

(U̇α + U̇s,α ) + U̇s = −ẆF , (9)

where ẆF is the power delivered by current-induced forces
(or the external ones) that might be acting on the local system,
U̇s is energy current of the local system, and

∑
α=r,l U̇s,α is the

time-derivative of the couplings between the local system and
the reservoirs. Particle conservation imposes∑

α=r,l

ṅα = −ṅs, (10)

where ṅs is the particle current of the local system. The time
derivative of the entropy of all reservoirs, ṠT = ∑

α=r,l Ṡα ,
is obtained by using all the above on Eq. (8), see, e.g.,
Refs. [7,8,10,12,13]. The quantity ṠT can be divided into a
reversible (Ṡ(rev)

total ) and an irreversible (Ṡ(irrev)
T ) components. The

results for Ṡ(irrev)
T , the rate of entropy production, is

T0Ṡ(irrev)
T = −ẆF −

∑
r

(
ṅrδμr + Jr

δTr

Tr

)

−
∑

l

(U̇l − μ0ṅl − T0Ṡl ), (11)
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while the reversible component of ṠT is given by

T0Ṡ(rev)
T = −

( ∑
α=r,N

U̇s,α + U̇s − μ0ṅs

)
. (12)

The second law of thermodynamics imposes Ṡirrev
T � 0.

Hence, after integrating Eq. (11) over a cycle of a quantum
machine (with period τ ) working within the local system, the
following inequality holds:

0 � WF + ∑
l �El

τ
+

∑
r

〈ṅr〉δμr + 〈Jr〉
(

δTr

Tr

)
. (13)

Here, WF is the work per cycle done by the current-induced
forces, 〈•〉 = ∫ τ

0 •dt/τ , and we define the quantity

�El = �Ul − μ0�nl − T0�Sl . (14)

To understand the physical meaning of the term �El , instead
of transforming the NIR from an initial to a final state, let us
imagine the following processes: (1) Turn the initial state of
the NIR into an equilibrium reservoir with Tl and μl while
keeping constant Ul and nl . (2) Change the energy and the
number of particles in an amount of �Ul and �nl , respec-
tively. (3) Turn the final state of the “equilibrium” l reservoir
into the desired final state of the NIR while keeping constant
Ul and nl . The change of the energy of the equilibrium l-
reservoir during step 2 is �Seq

l δTl + �nlδμl . The minimum
heat absorbed during steps 1 and 3 by the environment (at
temperature T0) to transform back and forth the nonequilib-
rium l reservoir into its equilibrium counterpart is T0(�Seq

l −
�Sl ). The sum of these two contributions is �E , see also
Appendix B. Finally, note that El is like a grand potential but
for NIRs, where T0 and μ0 are used as the temperature and
chemical potential of the reservoir [5].

Equation (13) sets the limits of the efficiency of a broad
class of quantum machines. For example, for adiabatic quan-
tum motors and adiabatic quantum pumps, Eq. (13) gives,
respectively,

1 � WF

−∑
r τ 〈ṅr〉δμr − ∑

l �El
,

1 �
∑

r τ 〈ṅr〉δμr

−WF − ∑
l �El

. (15)

For adiabatic quantum motors, WF > 0 is the output energy
and

∑
r 〈ṅr〉δμr < 0 is an input energy. For adiabatic quantum

pumps,
∑

r 〈ṅr〉δμr > 0 is the output energy and WF < 0 is
an input energy. In both cases,

∑
r 〈Jr〉( δTr

Tr
) = 0. Similarly, for

quantum-heat engines and quantum-heat pumps, one obtains

1 � WF( − ∑
r τ 〈Jr〉

(
δTr
Tr

) − ∑
l �El

) ,

1 �
∑

r τ 〈Jr〉
(

δTr
Tr

)
( − WF − ∑

l �El
) . (16)

For quantum-heat engines, WF > 0 is the output energy and∑
r 〈Jr〉( δTr

Tr
) < 0 is an input energy. For quantum-heat pumps,∑

r 〈Jr〉( δTr
Tr

) > 0 is the output energy and WF < 0 is an
input energy. In both cases,

∑
r 〈ṅr〉δμr = 0. Note that, except

for the term
∑

l �El , Eqs. (15) and (16) are equivalent to

the known formulas for the efficiency of quantum machines
driven only by equilibrium reservoirs [7,8,10,12,13]. If we
neglect this term, seemingly, violations of the second law
may appear, such as efficiencies of quantum-heat engines
greater than Carnot’s limit (beyond-Carnot efficiencies) or
heat spontaneously flowing against the temperature gradient
(break of the Clausius inequality).

Here we used the convention that having Jα > 0, ṅα > 0,
or U̇α > 0 means that heat, particles, or energy are entering
the reservoir α. Therefore,

∑
l �El < 0 means that the NIRs

are acting like external power sources. Note that even when a
nonequilibrium reservoir does not exchange energy or parti-
cles with the local system, the change of its entropy may still
act as a driving force.

Using Eq. (6) in Eqs. (15) and (16), where �Sl is obvi-
ously τ < Ṡl >, provides the upper bound to the efficiency
of quantum machines. It is an upper bound as, of course,
other processes can contribute to the global rate of entropy
production, e.g., the internal relaxation of the NIR toward its
equilibrium. Besides, if the NIR comes from the steady state
of some mesoscopic device, current leakages could increase
the global rate of entropy production. Interestingly, these two
phenomena become negligible in the limit τ → 0, where the
efficiency of the quantum devices should approach Eqs. (15)
and (16).

IV. LANDAUER-BÜTTIKER APPROACH TO ENTROPY
CURRENT

In the following, we will focus only on the ballistic conduc-
tion of electrons in mesoscopic conductors. In this regime, the
particle current of the reservoir l is well described by [40,41]

ṅl = 1

h

∑
α �=l

∫ ∞

−∞
Tl,α ( fα − fl )dε, (17)

where h is the Planck’s constant and Tβ,α is the transmittance.
In Eq. (17),one can recognize ṅl (ε) = 1

h

∑
α �=l Tl,α ( fα − fl )

as the number of particles per unit energy and unit time
entering the reservoir l . Now, inserting ṅl (ε) into Eq. (6)
and integrating over the period τ gives the Landauer-Büttiker
expression for the change of the entropy of the reservoir l:

�Sl = τkB

h

∑
α �=l

∫ ∞

−∞
〈Tl,α〉( fα − fl ) ln

(
1

fl
+ 1

)
dε. (18)

If the interaction of the NIR with the local system involves
pumped currents, a similar formula can be obtained by using
the expressions derived in, e.g., Refs. [1] or [41] for ṅl (ε).

V. EXAMPLE

Let us consider a local system coupled to two reservoirs h
and c in thermodynamic equilibrium with distribution func-
tions fh and fc, temperatures Th and Tc (with Th > Tc), and
chemical potentials μh and μc (with μh = μc = μ0). The
local system is also coupled to a third reservoir out of equilib-
rium with distribution function fl , which, given its connection
to the local system, works as an intermediary between the
equilibrium reservoirs, see Fig. 2(a). In the problem we are
interested in, the NIR acts as a Maxwell’s demon or, more
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FIG. 2. (a) A local system, consisting of four quantum dots with
one narrow resonance each, at energies εi, is connected to a NIR (the
N demon) and two equilibrium reservoirs, denoted by h and c, for hot
and cold, respectively. Because of the action of the N demon, heat
flows “spontaneously” from the cold to the hot reservoir. (b) Coeffi-
cient of performance (COP) of the device depicted in Fig. 2(a). The
inset shows the power of the device (ε̇h). The parameters used are
kBTh = μh = μc = ε1 = 1, ε2 = 2, and ε3 = 1.5.

appropriately, as an N demon [22]. The “demon” condition
implies that the reservoir seemingly “breaks” the second law
of thermodynamics without exchanging energy or particles
with the local system (ε̇l = 0 and ṅl = 0, respectively). Al-
though the demon condition resembles the voltmeter con-
dition of the fictitious probe model [42,43], it should not
be confused with the measurement-feedback scheme of a
standard Maxwell’s demon [23–28].

Within the Landauer-Büttiker approach, the demon condi-
tion imposes ṅl = 0 to Eq. (17), while the condition ε̇l = 0
implies

ε̇l = 1

h

∫ ∞

−∞
ε
∑

r

Tl,r ( fr − fl )dε = 0. (19)

For simplicity, we assume Tr,l = Tl,r and that the N demon
does not exchange particles in a net way with any of the
equilibrium reservoirs (ṅr = 0), only energy (ε̇r �= 0). The
problem is to find the distribution function fl (if it exists) such
that it produces the nontrivial result ε̇h > 0. To simplify the
problem even further, we will consider that Th,l presents two
resonances centered at energies ε1 and ε2, where |ε1 − ε2| is
much larger than their characteristic width 
. The same is true
for Tc,l , which presents resonances at ε3 and ε4 and where
|ε3 − ε4| � 
 Furthermore, we will consider that transmit-
tances are one at their peaks, and that 
 is much smaller than
the details of the distribution functions fc, fh, and fl . In this
way, the integrals involved in the calculation of all currents
[see, e.g., Eqs. (17) and (19)] turn into summations where the
unknowns are now fl (εi ), i.e., the values of fl at energies εi.
We find that when the local system presents four resonances
(four different values of εi), it is possible to find physical

solutions (0 � fl (εi ) � 1) such that ε̇h > 0. In such a case,
see Appendix C, the set of equations can be written as

fl (ε1,2) = fh(ε1,2) ∓
(

ε3 − ε4

ε1 − ε2

)
[ fc(ε4) − fl (ε4)],

fl (ε3) = fc(ε3) + fc(ε4) − fl (ε4). (20)

This set of three equations is underdetermined and thus has
infinite solutions. However, we find that the choice fl (ε4) =
− fc(ε3) + 2 fc(ε4) guarantees the desired condition ε̇h > 0,
where the energy current yields (see Appendix C)

ε̇h = −


h
(ε3 − ε4)[ fc(ε3) − fc(ε4)]. (21)

Note that not every combination of parameters (Th, Tc, μ0,
and εi) give physical solutions (0 � fl (εi ) � 1), given our
choice of fl (ε4). If unphysical values of fl (εi ) are found, that
means the N demon is unable to pump heat under the studied
conditions.

The efficiency of a quantum heat pump is usually discussed
in terms of a coefficient of performance (COP) [10,12,13].
The value of COP is the ratio of cooling provided to energy
required which, according to the discussions after Eqs. (14)
and (16), is

COP = ε̇h

(T0Ṡl )
(22)

or (see Appendix C)

COP =
[(

kBTh

ε1 − ε2

)
ln

([
1 − fl (ε1)

1 − fl (ε2)

]
fl (ε2)

fl (ε1)

)

+
(

kBTh

ε3 − ε4

)
ln

([
1 − fl (ε4)

1 − fl (ε3)

]
fl (ε3)

fl (ε4)

)]−1

. (23)

Here, we make T0 = Th, Ṡl = �Sl/τ and used Eq. (18). Note
that, according to Eqs. (16), the efficiency of the device is
bounded as 0 � COP � Tc/(Th − Tc).

In Fig. 2, we show the COP and the power of the quan-
tum heat pump discussed above. As expected, the efficien-
cies always lay below the thermodynamic limit COPtherm. =
Tc/(Th − Tc). Moreover, the efficiencies tend to zero when the
temperature of the cold reservoir approaches absolute zero,
in accordance with the third law of thermodynamics. The
typical power/efficiency tradeoff of this kind of machine is
also present [compare the central panel of Fig. 2(b) with
its inset]. In addition, it is interesting that there is a mini-
mum temperature, different from zero, below which the cold
reservoir cannot be cooled further. This limiting temperature
approaches zero only for ε3 → ε4, where (see Appendix C)

COP = Tc

3Th − Tc
. (24)

VI. CONCLUSIONS

We provided a general approach for calculating, in a
thermodynamically consistent way, the upper bound of the
efficiency of NIR-driven quantum machines without relying
on any knowledge of how the NIRs were actually made. This
may contribute to the understanding and development of a
broader class of quantum machines. In particular, including
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entropy currents into their analysis, besides energy and par-
ticle currents, may be key to shedding light on phenomena
such as beyond Carnot efficiencies or breaking of Clausius
inequalities.
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APPENDIX A: ENTROPY CURRENT USING
EFFECTIVE TEMPERATURES

Suppose one has a reservoir α of Nα noninteracting parti-
cles, to which we inject a small number of particles. As we
are dealing with noninteracting particles, we can define the
contribution to the entropy of each particle Sα(1) in terms of
the von Neumann entropy of the single-particle density matrix
ρα:

Sα(1) = −kBTr(ρα ln ρα ). (A1)

Deriving Sα(1) with respect to time, we obtain

Ṡα(1) = −kB

∑
i

ρ̇αi ln ραi. (A2)

Above, we used
∑

i ρ̇αi = 0, and write the density matrix ρα

in the energy basis, which we assume diagonalizes it. The
reservoir α is not necessarily in equilibrium but, for the sake
of convenience, we are going to take the following generic
functional form for ραi, or the probability of finding the
particle in the eigenstate i of the Hamiltonian of the reservoir
α,

ραi ≡ exp [−βα (εi )(εi − εαF )]

Zα

, (A3)

where εi is the ith eigenenergy of the single-particle Hamil-
tonian of the reservoir, βα (εi ) is not a constant but just
some arbitrary function of εi, similarly, εαF is an arbitrary
constant not necessarily with physical meaning, and Zα is the
normalization constant. Using this in Eq. (A2) yields

Ṡα(1) = kB

∑
i

ρ̇αiβα (εi )(εi − εαF ), (A4)

where we again used
∑

i ρ̇αi = 0. Now we wonder how ραi

is related to nαi (the number of particles in the reservoir with
energy within the interval δε around εi). This is given by

ραi ≈ nαi

Nα

. (A5)

Above we assumed δε is small enough, such as ρα (εi −
δε/2) ≈ ρα (εi + δε/2), and Nα is large enough such as the
statistical error implicit in the equation is negligible. Deriving
ραi with respect to time gives

ρ̇αi ≈
[
ṅαi − nαi

Ṅα

Nα

]
Nα

. (A6)

We are interested in the case Ṅα

Nα
≈ 0, which corresponds to the

limit of a large reservoir. Using this, we obtain

Ṡα = kB

∑
i

ṅαiβα (εi )(εi − εαF ), (A7)

where Ṡα = Nα Ṡα(1) is the total change of the entropy of the
reservoir, which we assumed is composed of Nα noninteract-
ing particles. Finally, defining the particle’s current density
ṅα (εi ) = ṅαi/δε and turning the summation into an integral,
we get

Ṡα =
∫

ṅα (ε)
(ε − εαF )

Teff (ε)
dε, (A8)

where Teff (ε) = 1/kBβα (ε) is the energy-dependent effective
temperature. If we compare this formula with Eq. (6) of the
main text, we conclude that Teff (ε) is given by

Teff (ε) = (ε − εαF )

kB ln
(

1
fα (ε) ± 1

) , (A9)

where the + sign is for bosons and the − sign is for fermions.
This expression for the effective temperature is the same as
that derived in Ref. [17] for harmonic-oscillators nonequilib-
rium baths.

APPENDIX B: INTERPRETATION OF THE TERM �E

We start from the expression for �El , Eq. (14) of the main
text:

�El = �Ul − μ0�nl − T0�Sl . (B1)

Now let us impose arbitrary values of temperature Tl and
chemical potential μl to the l reservoir so �Ul ≡ Tl�Seq

l +
�nlμl , where �Seq

l ≡ (�Ul − �nlμl )/Tl . Using this, the
above equation can be rewritten as

�El = Tl�Seq
l + μl�nl − μ0�nl − T0�Sl

= �nlδμl + �Seq
l δTl + T0

(
�Seq

l − �Sl
)
, (B2)

where we used δTl = Tl − T0 and δμl = μl − μ0. The terms
�nlδμl and �Seq

l δTl of the right-hand side of the equation
correspond to the change of the energy of the equilibrium l
reservoir with temperature Tl and chemical potential μl . The
change of the entropy of the third term can be rewritten as

−(
�Seq

l − �Sl
) = (

Seq
l−ini − Sl−ini

) + (
Sl−end − Seq

l−end

)
.

(B3)
The right-hand side of the above equation yields the change
of the entropy of the l reservoir when it is transformed from
the initial nonequilibrium state to the initial equilibrium state,
plus the change of the entropy of the l reservoir from the final
equilibrium state to the final nonequilibrium state. Now, as the
total change of the entropy of the universe is zero during the
whole process, then the change of the entropy of the l reser-
voir is equal in magnitude but opposite in sign to the change
of the entropy of the environment, assumed in equilibrium at
temperature T0. Therefore, the term T0(�Seq

l − �Sl ) can be
interpreted as the heat absorbed by the environment during
the process.
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APPENDIX C: N-DEMON EXAMPLE

Let us consider a local system coupled to two reservoirs in
thermodynamic equilibrium at temperatures Th and Tc (where
Th > Tc) and chemical potentials μh and μc (where μh =
μc = μ0). Each of the reservoirs has associated a Fermi-Dirac
distribution function fr (ε) = (exp [(ε − μr )/(kBTr )] + 1)−1,
where r = h, c. We will introduce a third reservoir out of equi-
librium with a distribution function fl (ε), which represents
the N demon. Due to the configuration of the local system,
the N demon acts as an intermediary between the reservoirs
in thermodynamic equilibrium through two resonances for
each reservoir, see Fig. 2(a) in the main text. With this
configuration, and within the Landauer-Büttiker approach of
quantum transport, the particle and energy currents (ṅ and ε̇,
respectively) are

ṅr = 1

h

∫ ∞

−∞
Tr,l [ fl (ε) − fr (ε)]dε,

ε̇r = 1

h

∫ ∞

−∞
εTr,l [ fl (ε) − fr (ε)]dε,

(C1)
ṅl = 1

h

∫ ∞

−∞

∑
r

Tl,r[ fr (ε) − fl (ε)]dε,

ε̇l = 1

h

∫ ∞

−∞
ε
∑

r

Tl,r[ fr (ε) − fl (ε)]dε,

where h is the Planck’s constant, index r is {h, c}, Tr,l is the
transmittance between the r and l reservoirs (we are assuming
Tr,l = Tl,r). Note that the above equations naturally fulfill
particle and energy conservation laws (ṅh + ṅc = −ṅl and
ε̇h + ε̇c = −ε̇l , respectively).

The demon condition imposes the requirements ṅl = 0
and ε̇l = 0 to Eqs. (C1). To simplify the problem, we also
added the conditions ṅr = 0 and adopted the following simple
functional form for the transmittances:

Th,l =
∑
i=1,2

�

[
ε −

(
εi − 


2

)]
− �

[
ε −

(
εi + 


2

)]
,

Tc,l =
∑
i=3,4

�

[
ε −

(
εi − 


2

)]
− �

[
ε −

(
εi + 


2

)]
, (C2)

where �(ε) is the Heaviside step function, εi is the center
of the resonance i, and 
 is the characteristic width of the
resonances. Finally, we assumed 
 is sufficiently small such
as 
 < |ε1 − ε2|, 
 < |ε3 − ε4|, and the distribution functions
[ fc(ε), fh(ε), and fl (ε)] can be considered constant within
the energy intervals (εi − 
/2) � ε � (εi + 
/2). Using all
these into Eqs. (C1) gives

0 = fl (ε1) − fh(ε1) + fl (ε2) − fh(ε2),

0 = fl (ε3) − fc(ε3) + fl (ε4) − fc(ε4),

0 = ε1[ fl (ε1) − fh(ε1)] + ε2[ fl (ε2) − fh(ε2)]

+ ε3[ fl (ε3) − fc(ε3)] + ε4[ fl (ε4) − fc(ε4)], (C3)

where we also used particle and energy conservation. After
some simple algebraic manipulations, the above equations

turn into Eqs. (20) of the main text:

fl (ε1) = fh(ε1) −
(

ε3 − ε4

ε1 − ε2

)
[ fc(ε4) − fl (ε4)],

fl (ε2) = fh(ε2) +
(

ε3 − ε4

ε1 − ε2

)
[ fc(ε4) − fl (ε4)],

fl (ε3) = fc(ε3) + fc(ε4) − fl (ε4),

fl (ε4) = − fc(ε3) + 2 fc(ε4). (C4)

Note that we included above our choice for fl (ε4).

1. Power

Within the Landauer-Büttiker approach, the power of the
refrigerator in the example is

ε̇h = 


h
(ε1[ fl (ε1) − fh(ε1)] + ε2[ fl (ε2) − fh(ε2)]). (C5)

If we insert Eqs. (C4) into the above equation, we obtain
Eq. (21) of the main text:

ε̇h = −


h
(ε3 − ε4)[ fc(ε3) − fc(ε4)]. (C6)

Since fc(ε) is an equilibrium distribution function, if ε3 > ε4,
then fc(ε3) < fc(ε4), while if ε3 < ε4, then fc(ε3) > fc(ε4).
Therefore, the desired condition, heat flowing against the
temperature gradient (ε̇h � 0), is guaranteed.

2. COP

As discussed in the main text, the COP in the example is

COP = ε̇h

T0Ṡl
. (C7)

The expression for ε̇h is given in Eq. (C6), while the expres-
sion for Ṡl can be derived by using Eq. (18) of the main text
on the example treated here. That gives

Ṡl = kB

h

∑
r

∫ −∞

∞
(Tl,r[ fr (ε) − fl (ε)]dε) ln

(
1

fl (ε)
− 1

)
dε

� 
kB

h

(
[ fh(ε1) − fl (ε1)] ln

(
1

fl (ε1)
− 1

)

+ [ fh(ε2) − fl (ε2)] ln

(
1

fl (ε2)
− 1

)

+ [ fc(ε3) − fl (ε3)] ln

(
1

fl (ε3)
− 1

)

+ [ fc(ε4) − fl (ε4)] ln

(
1

fl (ε4)
− 1

)]
. (C8)

Now, inserting Eqs. (C4) and (C6) into the above expression,
and using 1

fl (ε1 ) − 1 = 1− fl (ε1 )
fl (ε1 ) yields
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Ṡl � 
kB

h

((
ε3 − ε4

ε1 − ε2

)
[ fc(ε4) − fl (ε4)] ln

(
1

fl (ε1)
− 1

)
−

(
ε3 − ε4

ε1 − ε2

)
[ fc(ε4) − fl (ε4)] ln

(
1

fl (ε2)
− 1

)

−[ fc(ε4) − fl (ε4)] ln

(
1

fl (ε3)
− 1

)
+ [ fc(ε4) − fl (ε4)] ln

(
1

fl (ε4)
− 1

))

� −ε̇hkB

(
1

ε1 − ε2

[
ln

(
1

fl (ε1)
− 1

)
− ln

(
1

fl (ε2)
− 1

)]
+ 1

ε3 − ε4

[
ln

(
1

fl (ε4)
− 1

)
− ln

(
1

fl (ε3)
− 1

)])
.

� −ε̇hkB

(
ln

[( 1− fl (ε1 )
1− fl (ε2 )

) fl (ε2 )
fl (ε1 )

]
(ε1 − ε2)

+
ln

[( 1− fl (ε4 )
1− fl (ε3 )

) fl (ε3 )
fl (ε4 )

]
(ε3 − ε4)

)
. (C9)

Using the above expression, we obtain the final result for the
COP:

COP =
[(

kBT0

ε1 − ε2

)
ln

([
1 − fl (ε2)

1 − fl (ε1)

]
fl (ε1)

fl (ε2)

)

+
(

kBT0

ε3 − ε4

)
ln

([
1 − fl (ε3)

1 − fl (ε4)

]
fl (ε4)

fl (ε3)

)]−1

. (C10)

3. COP for limε4→ε3

We start by rewriting the logarithmic functions of
Eq. (C10) as

ln

[(
1 − fl (ε1)

1 − fl (ε2)

)
fl (ε2)

fl (ε1)

]

= 2arctanh

⎛
⎜⎜⎜⎝

tanh
(

ε1−ε2
2kBTh

){
1 − 2 Ac

Ah

}
tanh

(
ε1−ε2
kBTh

)(
ε1−ε2
kBTh

) Ac
{ Ac

Ah
− 1

} + 1

⎞
⎟⎟⎟⎠,

ln

[(
1 − fl (ε4)

1 − fl (ε3)

)
fl (ε3)

fl (ε4)

]

= 2arctanh

⎛
⎜⎜⎜⎝

−3 tanh
(

ε3−ε4
2kBTc

)
2

tanh
(

ε3−ε4
2kBTc

)(
ε3−ε4
2kBTc

) Ac + 1

⎞
⎟⎟⎟⎠, (C11)

where we used Eqs. (C4), the relation

tanh

(
ε − μ0

2kBTc,h

)
= 1 − 2 fc,h(ε), (C12)

and we defined the auxiliary functions

Ac =
(

ε3 − ε4

2kBTc

)[
tanh

(
ε3 − μ0

2kBTc

)
− tanh

(
ε4 − μ0

2kBTc

)]
(C13)

and

Ah =
(

ε1 − ε2

2kBTh

)[
tanh

(
ε1 − μ0

2kBTh

)
− tanh

(
ε2 − μ0

2kBTh

)]
,

(C14)
just to make the formulas more compact.

Before analyzing the limit, we are interested in
lim�→0 COP, where � = (ε3 − ε4)/(2kBTc), we will consider

the following asymptotic behaviors:

lim
�→0

[
tanh

(
ε3 − ε4

2kBTc

)]
�

(
ε3 − ε4

2kBTc

)
and

lim
�→0

Ac � 0. (C15)

Using the above into Eqs. (C11), we arrive to

lim
�→0

[
1

ε1 − ε2
ln

((
1 − fl (ε1)

1 − fl (ε2)

)
fl (ε2)

fl (ε1)

)]

� lim
�→0

[
1

ε1 − ε2
2arctanh

(
tanh

(
ε1 − ε2

2kBTh

))]

� 1

kBTh
(C16)

and

lim
�→0

[
1

ε3 − ε4
ln

((
1 − fl (ε4)

1 − fl (ε3)

)
fl (ε3)

fl (ε4)

)]

� lim
�→0

[
1

ε3 − ε4
2arctanh

(
−3 tanh

(
ε3 − ε4

2kBTc

))]
.

(C17)

Finally, with the aid of the expression

2arctanh[−3 tanh (x)] = −6x + O(x3), (C18)

we find

lim
�→0

[
1

ε3 − ε4
ln

((
1 − fl (ε3)

1 − fl (ε4)

)
fl (ε4)

fl (ε3)

)]
� −3

kBTc
. (C19)

Now we are in a condition of evaluating the asymptotic
behavior of COP for ε3 → ε4 which, assuming T0 = Th and
using the above results, gives

lim
�→0

[COP] �
(

Tc

3Th − Tc

)
. (C20)
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