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Unit cell restricted Bloch functions basis for first-principle transport models: Theory and application
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We present the theory and the application of a first-principle transport model employing a basis set obtained
directly from the ab initio Bloch functions. We use a plane-wave density functional theory Hamiltonian and
show that a judicious choice of the reduced basis set can effectively suppress the potentially thorny problem of
the unphysical solutions. Our methodology enables ab initio transport simulations with a huge reduction of the
size of the problem compared to the original ab initio formulation. Moreover, the approach can also be used for
local and nonlocal empirical pseudopotential Hamiltonians, thus promising a wide range of possible applications.
We report results for ab initio simulations of MoS2 field effect transistors, where the transport and electrostatics
equations are solved self-consistently for channel lengths up to about 20 nanometers. The simulation results
rapidly converge with the size of the basis set, so that the blocks of the Hamiltonian matrix can be reduced
to a size below 100. Our methodology is a viable approach for ab initio and semiempirical quantum transport
simulations and, in particular, it offers an alternative to the use of maximally localized Wannier functions.
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I. INTRODUCTION

A quantum transport methodology relying on an ab initio
description of the physical system is, in several respects, the
frontier of the transport modeling in nanoscale systems. One
reason why such an approach has become necessary to steer
the technological developments is that the cross section of
many devices has reached truly nanometric dimensions and
the transistor length has reached the 10 nm range, where
quantum transport effects become important, such as the
source-drain tunneling in metal-oxide-semiconductor field-
effect transistor (MOSFET) [1–3], or the band-to-band tun-
neling (BTBT) in tunnel FETs (TFETs) [4,5]. Moreover, a
quantum transport formalism based on ab initio methods
has become indispensable to explore the potentials of new
device concepts exploiting the recently discovered atomically
thin two-dimensional (2D) materials, and their many possible
combinations in terms of vertical or lateral heterojunction
options [6–8].

The first-principle electronic-structure calculations are typ-
ically based on density functional theory (DFT) and on ei-
ther a plane-wave basis [9,10] or on the linear combination
of atomic orbitals (LCAO) [11]. The former basis may be
considered the most natural option for periodic crystals, while
the latter is closely related to the chemical bonding picture.

The tight-binding method is the most widely used ap-
proximated implementation of the LCAO approach. It is also
the most popular method for quantum transport based either
on a fixed set of orbitals per atom with empirical coupling
parameters (e.g., the sp3d5s∗ model [12,13]) or on maximally
localized Wannier functions extracted as a postprocessing,
sometimes quite delicate and computationally demanding, of
first-principle calculations [14–18].

Plane waves form a complete set of orthogonal functions.
They allow for a good control of accuracy and convergence
in electronic-structure calculations through a cutoff of the
kinetic energy (see, also, Sec. II). However, frequently they
result in a large basis set, particularly for those supercells
that include vacuum regions, where a good description of the
exponential wave-function decay demands a large plane-wave
set. Consequently, a direct use of first-principle calculations
based on plane waves is often considered computationally
prohibitive for electronic transport in technologically relevant
systems. Some contributions have recently appeared for the
empirical pseudopotentials method and use either a quantum-
transmitting-boundary approach [19–22], or a nonequilibrium
Green’s function (NEGF) method [23,24]. Until now, DFT-
based transport calculations in relatively large systems have
been addressed only by using the LCAO basis [25] with the
adoption of equivalent transport model techniques [26].

In this work, we present a method for quantum transport
in nanoscale devices and physical systems, based on a plane-
wave DFT Hamiltonian. This method employs a basis set
of Bloch functions of the underlying system to drastically
reduce the size of the transport problem. Our approach does
not require the solution of any eigenvalue problem besides
those addressed by first-principle calculations [27]; in fact, the
basis set is obtained directly from the Bloch wave functions
determined by the ab initio solver. An appropriate choice of
Bloch functions allows us to effectively avoid the problem
of unphysical solutions, whose filtering can be theoretically
and computationally challenging [25,26]. We found that the
size of the basis set for transport simulations is essentially
independent upon the cutoff energy used in first-principle
calculations, which is extremely beneficial because it allows
one to decouple the size of the transport problem from the
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computational effort necessary to obtain full convergence and
high accuracy in first-principle calculations.

Our results demonstrate that the Bloch functions form an
extremely effective basis set, which enables band structure
and transport calculations using a basis size that is hundreds of
times smaller than the plane-wave basis used to calculate the
Bloch functions in the ab initio solver. The ability of the Bloch
functions to retain most of the physics with a small basis set is
not surprising in consideration of the results obtained for band
structure calculations with empirical pseudopotential models
[28–32], and it is a precious asset for future developments of
quantum transport methods based on a first-principle Hamil-
tonian. Recently, we became aware of a recent contribution
[33], where a basis of Bloch functions was used for quantum
transport simulations based on an empirical pseudopotential
Hamiltonian and a quantum-transmitting-boundary approach.

The paper is organized as follows. In Sec. II, we provide
the necessary information about the first-principle methods
employed in our calculations and, in particular, we clarify
the relevant connections to the transport model. In Sec. III,
we introduce the reduced basis set used in this work, which
consists of unit cell restricted Bloch functions. This section
also illustrates several tests and comparisons which validate
the basis in terms of the reconstruction of the ab initio
electronic structure. Section IV presents the transport model
based on the NEGF formalism, and the procedure to achieve
simulations accounting for a self-consistent description of the
electrostatics via the Poisson equation. Then, in Sec. V, we
illustrate some examples of complete, self-consistent device
simulations for an MoS2-based nanoscale transistor. Finally,
in Sec. VI, we offer some concluding remarks.

II. AB INITIO HAMILTONIAN

Electronic-structure methods from first principles are
typically based on density functional theory, where one-
electron states (“Kohn-Sham orbitals”) are obtained by self-
consistently solving the Kohn-Sham equations,

HKS �n = En �n, HKS = T + Vsc f , (1)

where the Kohn-Sham Hamiltonian HKS is the sum of the
kinetic energy T and the self-consistent potential Vsc f . In turn,
Vsc f = VeI + VH + Vxc, where VeI is the electron-ion interac-
tion potential, VH is the Hartree electrostatic potential, and
VXC is the “exchange-correlation” potential. The two latter
terms depend upon the charge density, which can be written
as the sum of the squares of all occupied Kohn-Sham orbitals.

Let us use a plane-wave basis set and pseudopotentials
to represent the valence electron-nuclei interactions. The
solution of the Kohn-Sham equations reduces to a secular
problem, in which the potential is computed self-consistently.
Leaving apart the problem of how to compute the charge
density and the self-consistent potential, the only difference
between Kohn-Sham and empirical-pseudopotential Hamilto-
nians is the presence of a nonlocal term in the Kohn-Sham
Hamiltonian.

Both the Hartree and the exchange-correlation potentials,
with the latter in the typical generalized gradient approxi-
mation (GGA) form, are local functions v(r) of the position
r. The nonlocal term stems from atomic norm-conserving

pseudopotentials, which contain two types of contributions:
(a) a local vL(r) part with the expected asymptotic vL(r) ∼
−Zve2/r behavior at large r (where e is the electron charge
and Zv is the number of valence electrons of the atom), and
(b) a nonlocal, short-ranged vNL(r, r′) part.

For each atom μ, the nonlocal term v
μ
NL can be expressed

as a sum of Nμ projectors, defined via atomic pseudopotential
parameters βn(r) and Dnn′ as follows:

v
μ
NL(r, r′) =

∑
n,n′

βμ
n (r) Dμ

nn′
[
β

μ

n′ (r′)
]∗

, (2)

and, throughout this paper, we use a∗ to denote the complex
conjugate of a scalar a, and M† to denote the adjoint of
a matrix or a vector M. Equation (2) corresponds to the
“separable” form of pseudopotentials. For the simple norm-
conserving pseudopotentials used in this work, the Dnn′ matrix
is diagonal: Dnn′ = Dnδnn′ . The index n is a combined index,
running on angular momentum quantum numbers l and m, up
to the highest angular momentum values present in the atomic
core. Typically, just a few projectors (<10) per atom need to
be taken into account.

The βμ
n (r) functions are short ranged and vanish for r > rc,

where rc is the radius beyond which pseudoatomic and true
atomic Kohn-Sham orbitals are the same. For most atoms,
rc ∼ 0.1 ÷ 0.3 nm.

The nonlocal term in the Kohn-Sham Hamiltonian of a
crystal is thus

VNL(r, r′) =
∑
μ,R

v
μ
NL(r − dμ − R, r′ − dμ − R)

=
∑
μ,R

∑
nn′

βμ
n (r − dμ − R) Dμ

nn′

× [
β

μ

n′ (r′ − dμ − R)
]∗

, (3)

where dμ is the position of atom μ in the unit cell, the R’s are
lattice vectors, and it is understood that

(VNL ψ )(r) =
∫

VNL(r, r′)ψ (r′)dr′. (4)

Kohn-Sham orbitals have the Bloch form and can be ex-
panded into plane waves,

Pk+G(r) = 1√
�

ei(k+G)·r, (5)

where k is the Bloch vector, the G’s are reciprocal lattice
vectors, and � is the volume of the crystal. A finite set is
obtained by choosing plane waves up to a given kinetic energy
value Ew (the “cutoff”): h̄2

2m0
(k + G)2 � Ew, where m0 is the

electron mass. The Kohn-Sham Hamiltonian can be expanded
into plane waves as well:

〈k + G|H |k + G′〉 ≡ Hk(G, G′) = h̄2

2m
(k + G)2δG,G′

+ VL(G − G′) + VNL(k + G, k + G′),
(6)

where VL(G − G′) is the Fourier transform of the local part
of the total potential (local pseudopotential plus Hartree and
exchange potential). The nonlocal contribution, coming from
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the pseudopotential, is

VNL(k + G, k + G′)

= 1

�

∫
VNL(r, r′)e−i(k+G)rei(k+G′ )r′

dr dr′. (7)

In principle, the solution of the secular equation for the Kohn-
Sham Hamiltonian matrix,∑

G′
Hk(G, G′) B(G′) = E B(G), (8)

provides the electronic structure En(k) and the Bloch func-
tions �nk(r), which are completely determined by the eigen-
vectors Bnk(G). In practice, Hk(G, G′) is a very large matrix
and thus it is not stored or directly diagonalized, but rather one
resorts to iterative techniques and to on-the-fly computation
of Hk� products exploiting fast Fourier transform techniques
[34]. The potential and the charge density contain plane waves
up to a cutoff energy Eρ = 4Ew.

In our calculations, we used an orthorhombic unit cell (see
examples in Sec. III B), where the real-space unit vectors can
be written as a1=(ax, 0, 0), a2=(0, ay, 0), a3=(0, 0, az ), with
x being the transport direction. Hence, the unit vectors of
the reciprocal lattice are b1=(2π/ax, 0, 0), b2=(0, 2π/ay, 0),
b3=(0, 0, 2π/az ), and the reciprocal lattice vectors are
G=nxb1+nyb2+nzb3 (with nx, ny, nz = 0,±1,±2, . . .). The
Brillouin zone can be taken as the parallelepiped defined by
the conditions −π/as < ks � π/as (with s = x, y, z), that
has a volume �RZ = (2π )3/�cell, with �cell = axayaz being
the volume of the unit cell. It is understood that for a 2D
crystal in the (x, y) plane, for example, the unit cell includes a
relatively large vacuum region in the z direction that makes
the extension of the reduced zone along z practically neg-
ligible, thus resulting in a 2D electron gas. Ultrathin films
or nanowires consisting of an underlying 3D crystal can be
similarly described as a 2D or 1D system by inserting vacuum
regions in the unit cell.

III. REDUCED BASIS OF UNIT CELL RESTRICTED
BLOCH FUNCTIONS

In our methodology for transport simulations, the expan-
sion volume for G vectors is given by the cube inscribed to
the sphere used in ab initio calculations, namely, the cube set
by the condition h̄2

2m0
G2

s � Eρ/3 with s = x, y, z. The grid of
G vectors naturally defines a corresponding grid of points in
real space and, if we denote by NGs the number of Gs vectors
(with Gx, Gy, and Gz lying, respectively, along the x, y and
z axis), the spacing of the grid in real space is ds = as/Nds,
where Nds = NGs is the number of grid points along s inside
the unit cell.

In the remainder of the paper, we will often refer to the
Hamiltonian matrix in different basis sets. Matrices are de-
noted by using capital letters in square brackets and, whenever
necessary, a subscript indicates the basis. For example, [H]K,
[H]xKyz , and [H]	 denote the Hamiltonian matrix, respec-
tively, in the plane-wave basis used in Sec. II, in the hybrid
xKyz basis described in Sec. III A, and in the reduced basis
of Bloch functions discussed in Sec. III B. The subscript
may be omitted to lighten the notation when there is no

ambiguity about the basis set. When we refer to the elements
of the matrices, instead, we drop the square brackets and the
subscript because the symbols used for the elements identify
the basis: for example, we write H(xKyz, x′K′

yz ) to denote
the elements of the Hamiltonian matrix [H]xKyz in the xKyz

basis. Finally, we use curly brackets to denote column or row
vectors: for example, {�} will be used for the column vectors
representing the wave functions.

A. Hybrid xKyz basis

Let us now consider a system having Ncx unit cells in
the transport direction x and subject to periodic boundary
conditions. The Hamiltonian matrices in the plane-wave basis
are given by Eq. (6) and are identified by k = (kx,kyz), with
kyz = (ky,kz). The corresponding Hamiltonian matrix in the
hybrid basis, xKyz, consisting of real-space grid points along
x and plane waves in the (y, z) directions, can be obtained
by using the unitary transformation described below. Before
discussing the transformation, however, here we notice that
the short-range nature of the nonlocal pseudopotential defined
in Eqs. (2) and (3) implies that the nonlocal terms practically
vanish on distances much smaller than ax, as already men-
tioned in Sec. II. In particular, we numerically verified that
the Hamiltonian in the xKyz basis can be accurately expressed
by the block tridiagonal form,

[H]xKyz =

⎡
⎢⎢⎢⎣

H0,0 H0,1 0 0 · · · H†
0,1

H†
0,1 H0,0 H0,1 0 · · · 0

· · · · · · . . .
...

H0,1 0 · · · 0 H†
0,1 H0,0

⎤
⎥⎥⎥⎦, (9)

where each block describes an ax long region consisting of Ndx

discretization points x j=0, dx, 2dx · · · (ax−dx ), so that blocks
H0,0 and H0,1 have a rank NG = NdxNGyNGz (with Ndx = NGx).

The [H]xKyz in Eq. (9) corresponds to a given kyz and it has
N2

cx blocks. The matrix is sorted so that for each discretization
point x j , we have all the NGyNGz entries corresponding to the
spectral components Kyz = kyz+Gyz [with Gyz = (Gy,Gz)].

According to Eq. (9), the knowledge of [H]xKyz coincides
with the knowledge of H0,0, H0,1. In Appendix A, we discuss
in more detail the structure of [H]xKyz in Eq. (9). In particular,
we argue that the short-range nonlocal pseudopotentials make
the off-diagonal blocks other than H0,1(i, j) negligible, and
result in an H0,1 block that is a lower triangular matrix,
namely, we have H0,1(i, j) 	 0 for j � i.

For a system having Ncx unit cells along x, the [H]xKyz in
Eq. (9) can be obtained by transforming from Kx to x the
Hamiltonian matrices Hk in Eq. (6) for the corresponding
Ncx wave vectors k=(kx, kyz), with kx values spaced by
2π/(Ncxax ). However, we argue that Ncx= 2 is sufficient to
determine H0,0, H0,1. In fact, for Ncx= 2, we can rewrite
Eq. (9) as

[H]xKyz =
[

H0,0 H0,1 + H†
0,1

H†
0,1 + H0,1 H0,0

]
, (10)

and Eq. (10) allows us to unambiguously determine H0,0 and
H0,1 in virtue of the above-mentioned property H0,1(i, j) 	
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0 for j � i. The [H]xKyz in Eq. (10) can be obtained by
transforming the two matrices Hk0 , Hk1 given by Eq. (6) for
k0=(kx0, kyz) and k1=(kx1, kyz), with kx0=0 and kx1=π/ax.

For any k=(kx, kyz), the transformation from Kx to the
home unit cell given by x j = 0, dx, · · · (ax−dx ) is governed
by the NG × NG unitary matrix [35]

[
U0

kx

] = 1√
Ndx

⎡
⎢⎢⎢⎣

I ei(kx+Gx,1 )dx I · · · ei(kx+Gx,1 )(ax−dx )I
I ei(kx+Gx,2 )dx I · · · ei(kx+Gx,2 )(ax−dx )I

· · · · · · . . .
...

I ei(kx+Gx,NGx )dx I · · · ei(kx+Gx,NGx ) (ax−dx )I

⎤
⎥⎥⎥⎦, (11)

where I is an identity matrix with rank NGyNGz = NG/Ndx and Ndx = NGx. Hence, the corresponding transformation to the
unit cell p extending from x j = pax to x j = [(p + 1)ax−dx] (with p = 1, 2, . . . ) is governed by the matrix [Up

kx
]=[U0

kx
] eikx p ax .

Consequently, the transformation from Kx to the two unit cells necessary to calculate [H]xKyz in Eq. (10) can be written as

[
U(2ax )

kx

] = 1√
2

[[
U0

kx

]
,
[
U0

kx

]
eikx ax

]
. (12)

By using Eq. (12), we can express the [H]xKyz in Eq. (10) in terms of the two plane-wave DFT Hamiltonian matrices [Hk0 ], [Hk1 ]
as

[H]xKyz =
∑

k=k0,k1

[
U(2ax )

kx

]†
[Hk]

[
U(2ax )

kx

] = 1

2

∑
k=k0,k1

[ [
U0

kx

]†
[Hk]

[
U0

kx

] [
U0

kx

]†
[Hk]

[
U0

kx

]
eikx ax[

U0
kx

]†
[Hk]

[
U0

kx

]
e−ikx ax

[
U0

kx

]†
[Hk]

[
U0

kx

]
]
, (13)

where, for k0=(0, kyz) and k1=(π/ax, kyz), the exponential terms simply evaluate to ±1. Hence, we can finally identify H0,0 and
H0,1 in the hybrid xKyz basis as [36]

[H0,0] = 1
2

([
U0

kx0

]†[
Hk0

][
U0

kx0

] + [
U0

kx1

]†[
Hk1

][
U0

kx1

])
, (14a)

[H0,1] + [H0,1]† = 1
2

([
U0

kx0

]†[
Hk0

][
U0

kx0

] − [
U0

kx1

]†[
Hk1

][
U0

kx1

])
. (14b)

In Appendix A, we discuss a generalization of Eqs. (12)–
(14) that can be used to build the Hamiltonian in the hybrid
xKyz basis by using any number Ncx of kx Bloch vectors.

B. Unit cell restricted Bloch functions

The blocks H0,0, H0,1 in Eq. (9) have an NG rank so that, for
high-precision ab initio calculations using a relatively large
cutoff energy Eρ , the direct manipulation of such matrices
for transport simulations is practically intractable. A drastic
reduction of the size of H0,0, H0,1 can be achieved by moving
to an appropriate basis set consisting of Bloch functions
restricted to a unit cell. To this purpose, we first argue that
thanks to the block tridiagonal form of the Hamiltonian in
Eq. (9), the corresponding Bloch functions in the unit cell p
[with p=0, 1, · · · (Ncx−1)] take the form [37]

�k(x j + p ax, Gyz ) = �0
k (x j, Gyz ) ei kx p ax , (15)

where the {�0
k} are Bloch functions restricted to the home unit

cell [i.e., for x j = 0, dx, · · · (ax−dx )], which are in turn the
solutions of Ncx eigenvalue problems,

[ H†
0,1 e−ikxax + H0,0 + H0,1 eikxax ]

{
�0

k

} = E (k)
{
�0

k

}
,

(16)
with k=(kx,kyz). Equation (16) requires that the �0

k (x j, Gyz )
functions fulfill the kx-dependent boundary condition
�0

k (ax, Gyz )=�0
k (0, Gyz ) ei kx ax .

The reduced basis employed in this paper is identified as
a single basis set suitable for all the eigenvalue problems in
Eq. (16). In this respect, we recall that the Bloch functions
{�0

k} are in effect known because they are determined by

the eigenvectors Bnk(G) of the secular Eq. (8) solved in ab
initio calculations. We can express the column vectors {�0

nk}
in matrix notation as{

�0
nk

} = [
U0

kx

]†{Bnk}, (17)

where [U0
kx

] is defined in Eq. (11) and k=(kx,kyz). Our reduced
basis set consists of a subset of the {�0

nk} corresponding to
a few kx values in the reduced zone −π/ax < kx � π/ax]
and, for each kx, to some tens of energies En(k). There is
substantial flexibility in such a definition of the basis set,
which can be used to find a good compromise between the
size NB of the basis and the accuracy in the reconstruction of
the electronic structure. In general, the size of the basis can be
written as

NB =
NkB∑
i=1

NE (kx,i ), (18)

where NkB denotes the number of kx values and NE (kx,i )
denotes the number of energies at kx,i included in the basis.

Appendix B offers more details about the choice of the
basis functions. Most of the calculations and simulations
reported in this paper were obtained by using either two
kx values (i.e., kx=0, π/ax) or four kx values (i.e., kx=0,
±0.5 π/ax , π/ax), as exemplified by the results in Fig. 1
discussed below.

Because the {�0
nk} for different kx are not orthogonal

over ax, we apply an orthonormalization procedure. Here,
we remark that the use of an orthonormal basis is not
really necessary, but it is, in fact, very convenient in the
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Ab initio
Hybrid xKyz basis

ky=0

FIG. 1. Left: Cross section and the top view of the unit cell for the single-layer MoS2 employed in this work. Right: Electronic structure
for the single-layer MoS2 vs kx and for ky=0. Ab initio calculations (solid lines) are compared to results obtained by using Eq. (16) in the
hybrid xKyz basis (diamonds).

transformations from the reduced basis to real space that are
necessary, for example, for the calculation of space charge
density in self-consistent simulations (see Sec. IV A). The
orthonormalization procedure simply consists of an appropri-
ate linear combination of the Bloch functions {�0

nk}, but it is
prone to numerical instabilities. We overcame this problem
by employing the modified Gram-Schmidt algorithm, which
is more robust than the standard approach in dealing with
rounding errors [38]. Since the {�0

nk} are column vectors
with NG components and we select only a number NB of
basis functions much smaller than NG, the orthonormalization
procedure can always be successfully completed.

We will denote by 	m(x j, Gyz ) the orthonormalized Bloch
functions restricted to a unit cell, with m = 1, 2, · · · NB and
x j = 0, dx, 2dx · · · (ax−dx ). The rectangular transformation
matrix from the hybrid xKyz basis to the 	 basis is defined
as

[U	] = [ {	1}, {	2} · · · {	NB} ], (19)

and [U	] has NB columns and NG rows. Each {	m} is
a column vector such that for each discretization point
x j=0, dx, 2dx · · · (ax−dx ), we have all the NGyNGz spectral
components. Because the {	m} have been orthonormalized,
we have [U	]† [U	]=[I]NB , with [I]NB being the identity ma-
trix with rank NB.

By recalling the expression in Eqs. (14) for the H0,0 and
H0,1 in the xKyz basis, we can readily write H0,0 and H0,1 in
the reduced basis as

[H0,0]	 = 1
2 ([Wkx0 ]†[Hk0 ][Wkx0 ]

+ [Wkx1 ]†[Hk1 ][Wkx1 ]), (20a)

[H0,1]	 + [H0,1]†
	 = 1

2 ([Wkx0 ]†[Hk0 ][Wkx0 ]

− [Wkx1 ]†[Hk1 ][Wkx1 ]), (20b)

where we have introduced transformation matrices [Wkx0 ] =
[U0

kx0
][U	], [Wkx1 ] = [U0

kx1
][U	].

Equations (20) express [H0,0]	, [H0,1]	 directly in terms
of the two plane-wave DFT Hamiltonian matrices [Hk0 ],
[Hk1 ]. The expressions for [H0,0]	, [H0,1]	, in turn, allow us
to transform the Hamiltonian in Eq. (9) and the eigenvalue
problems in Eq. (16) to the reduced 	 basis, where the size of
such blocks is much smaller than NG, as exemplified below.

Figure 1(a) illustrates the unit cell of the single-layer MoS2

that we used in this work as a baseline material for electronic-
structure calculations and device simulations; the unit vec-
tors are a1=(ax, 0, 0), a2=(0, ay, 0), a3=(0, 0, az ) with ax =
3.18818 Å, ay = 5.52208 Å, and az = 20.2 Å, while the
vertical distance between the Mo and S atoms is 1.564 Å.
This cell was built by expanding the relaxed primitive unit
cell of the monolayer MoS2, whose band structure along
the high-symmetry points of the primitive Brillouin zone
matches very well with the results reported in Ref. [39] (not
shown). Figure 1(b) reports the corresponding band structure
obtained from the DFT Hamiltonian in the plane-wave basis
(solid line). The DFT calculation was performed by means of
the QUANTUM ESPRESSO code [10], using a norm-conserving
pseudopotential [40], and the Perdew-Burke-Ernzerhof [41]
(PBE) approximation to the exchange-correlation functional.
The self-consistent solution was obtained by employing a
15 × 12 × 1 Monkhorst-Pack k-points grid and a cutoff en-
ergy of Ew = 90 Ryd, resulting in a number on plane waves
NG = 26 733. Figure 1(b) also shows the band structure ob-
tained with Eq. (16) in the hybrid xKyz basis (symbols), still
having a size NG = 26 733.

Figure 2 addresses the reconstruction of the electronic
structure in the reduced basis 	, and in particular it reports the
absolute energy difference 
E (x axis) between the energies
obtained by using Eq. (16), either in the reduced basis (i.e.,
for [H0,0]	, [H0,1]	 with an NB size) or in the complete xKyz

basis (i.e., for [H0,0], [H0,1] with an NG size). The results of
Fig. 2(a) were obtained by using two kx values to build the
reduced basis (i.e., NkB=2 and kx=0, π/ax), while those in
Fig. 2(b) correspond to NkB=4 (i.e., kx=0, ±0.5π/ax, π/ax).
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FIG. 2. Absolute energy difference 
E between the electronic structure calculated either in the hybrid xKyz basis [i.e., Eq. (16) with [H0,0],
[H0,1] blocks] or in the reduced basis [i.e., Eq. (16) with [H0,0]	, [H0,1]	 blocks]. (a) 
E for reduced basis calculations obtained with two kx

values (i.e., kx=0, π/ax) and different number NE of basis functions at each kx . (b) Same as (a), but for reduced basis calculations obtained
with four kx values (i.e., kx=0, ±0.5π/ax , π/ax).

For a given NkB, the accuracy of the reduced basis improves
by increasing the number NE of Bloch functions at each kx. As
it can be seen, the error for NB = 160 is small enough for most
applications in both Fig. 2(a) and Fig. 2(b), which enables
a drastic reduction of the problem size compared to NG =
26 733. For NB=160 and 240, we also see that for a given
NB, the reconstruction of the electronic structure improves
by increasing NkB. This behavior is not unexpected because
the {�0

nk} are continuous functions of kx, so that a linear
combination of the {�0

nk} for a few kx can still approximate
well the remaining Bloch functions. Figure 2 shows, however,
that very few kx values are sufficient to achieve a close
agreement with the reference results.

We finally notice in Fig. 2(b) that for NB =120, the energy
error in the conduction band steeply increases for energies
above about 2 eV. This is because in this system we have
26 valence bands, all of which are included in the reduced
basis set. Consequently, for NE =30, the basis set includes the
Bloch functions for only the four lowest conduction bands,
which results in relatively large errors for higher conduction
bands. In this respect, we verified that by including in the
basis set the Bloch functions for all the valence bands at each
kx, we can effectively suppress the problem of unphysical
solutions [25,26]. Hence, the number of valence bands in the
system sets a lower bound for the size NB of the reduced
basis.

As for the unphysical states that have been observed
sometimes upon the introduction of a reduced basis, we have
extended our analysis by inspecting the transmission across
a single-layer MoS2 in the flat band condition, namely, with
neither built-in nor externally applied potential. The transmis-
sion calculated by using the reduced basis (not shown) is very
steeply, exponentially suppressed in the energy gap. In other
words, we do not observe any feature of the transmission
indicating the presence of evanescent, spurious states in the
energy gap. Moreover, for energies belonging to the valence or
the conduction band, the transmission at a given lateral wave
vector ky equals, as expected, the number of available bands.
The inspection of the transmission is a good complement to
the analysis of the electronic states, and it reinforced our

confidence in an effective suppression of unphysical effects
in our reduced basis calculations.

IV. NEGF BASED TRANSPORT MODEL

In this section, we describe the procedure based on the
NEGF formalism to achieve a self-consistent simulation of
a nanodevice or a mesoscopic system subject to external
bias conditions. All the relevant physical quantities, such as
density of states, carrier concentration, and currents, were
computed in terms of retarded and Green’s function matrices,
which are calculated in the reduced Bloch function basis.

A. Charge, current, and self-consistent calculations

In the Bloch function basis, the retarded (advanced),
[Gr(a)]	, and lesser- (greater)-than Green’s functions,
[G<(>)]	 at a given energy E are defined as

[Gr(a)]	 = [(E + iη)[I]	 − [H]	 − [�r(a)]	]−1 (21)

and

[G<(>)]	 = [Gr]	[�<(>)]	[Ga]	, (22)

where η is a positive (negative) infinitesimal, [�r(a)]	 =
[�r(a)

L ]	 + [�r(a)
R ]	 + [�r(a)

ph ]	 and [�<(>)]	 = [�<(>)
L ]	 +

[�<(>)
R ]	 + [�<(>)

ph ]	 are the retarded (advanced) and the
lesser- (greater)-than self-energies describing the connection
to contacts (i.e., left lead L and right lead R), or possible
interaction with photons or phonons [42]. Thanks to the block-
tridiagonal structure of the Hamiltonian matrix, the subma-
trices of the retarded (advanced) and lesser- (greater)-than
Green’s functions that are needed to calculate carrier concen-
trations and current density can be efficiently computed with
well-known recursive algorithms [43], and by manipulating
matrix blocks of rank NB.

More precisely, in order to calculate the 3D real-space
concentration of mobile carriers, we need to compute the
diagonal terms of the real-space Green’s functions starting
from the Green’s functions in the Bloch functions basis.
To this end, we first transform the Green’s functions from
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the Bloch functions to the xKyz basis, and then compute
the charge in real space. Inside each unit cell, the Green’s
functions in the xKyz basis can be concisely written in ma-
trix notation as [G<(>)]xKyz=[U	] [G<(>)]	 [U	]†, with [U	]
given by Eq. (19). An explicit expression is given by

G<(>)(x jKyz, x jK′
yz; E )

=
NB∑

n,m=1

G<(>)(n, m; E ) 	n(x j, Gyz ) 	∗
m(x j, G′

yz ). (23)

Then, we evaluated the free electron concentration on the
fine mesh grid with discretization steps (dx, dy, dz ) as

n(x j, ryz ) = −i

dxdydz

∫ ∞

E0(x j )

dE

2πNGyNGz

×
∑

Gyz,G′
yz

G<(x jKyz, x jK′
yz; E ) ei(Gyz−G′

yz )·ryz ,

(24)

and, similarly for the free hole concentration,

p(x j, ryz ) = i

dxdydz

∫ E0(x j )

−∞

dE

2πNGyNGz

×
∑

Gyz,G′
yz

G>(x jKyz, x jK′
yz; E ) ei(Gyz−G′

yz )·ryz ,

(25)

with Kyz=(kyz+Gyz ) and with E0(x j ) being the neutrality
point that we assumed to be at the center of the energy band
gap.

It is understood that all equations in this section refer to a
given kyz and that if the system is periodic along either y or z,
a sum over kyz is necessary to calculate all physical quantities.

In order to simulate the transport properties of realistic
devices, it is necessary to evaluate the electrostatic potential
induced by external biases, ionized dopants, and mobile car-
riers. Such an electrostatic potential φ(r) can be accurately
described within the Hartree approximation, namely, by self-
consistently solving the equations for the Green’s functions
[that in turn give the carrier concentrations via Eqs. (24) and
(25)], with the 3D Poisson equation

∇ · [ε(r)∇φ(r)] = −e[p(r) − n(r) + ND(r) − NA(r)],
(26)

where ε(r) is the material-dependent permittivity, and n(r),
p(r), NA(r), and ND(r) are the electron, hole, acceptor, and
donor concentration, respectively.

Here, we assume that the electrostatic potential φ(r) varies
over a relatively large spatial scale compared to the discretiza-
tions (dx, dy, dz ) used to calculate the atomistic Green’s func-
tions. Consequently, in order to reduce the size of the Poisson
equation problem in devices with a technologically relevant
size, we transfer the free electron and hole concentrations
computed in Eqs. (24) and (25) on a coarser mesh with a
discretization (
x,
y,
z ) ∼ 0.1 ÷ 0.2 nm. The conversion
from the finer to the coarser mesh is performed so as to
conserve the integral of the carrier concentration. The effect
of external biases was imposed by setting Dirichlet boundary

conditions at the contacts and Neumann boundary conditions
to noncontacted boundary regions.

Finally, once the self-consistent solution has been obtained,
we express the electron current as a function of the Green’s
functions and self-energies computed at the contact L(R) as

IL(R) = − i
e

h̄

∫
dE tr

{
[�L(R)]

[([
Gr

L(R)

]
− [

Gr
L(R)

]†)
fL(R) + [G<

L(R)]
]}

, (27)

where [�L(R)] = i([�L(R)] − [�L(R)]†), tr{· · · } is for the trace
operation, and fL(R) is the Fermi-Dirac distribution. The cal-
culation of the current can be carried out by using the Green’s
functions in the reduced Bloch functions basis, where the size
of the matrices is the smallest.

B. Implementation and computational burden

Our simulation procedure takes full advantage of the first-
principle calculations carried out by the ab initio solver [10].
In fact, after a duly converged ab initio simulation has been
achieved for the unit cell of the physical system, our approach
can be summarized in the following steps.

(i) Assuming NkB = 2, for example, select a subset of the
Bloch states for k0=(0,kyz) and k1=(π/ax,kyz) obtained by
DFT calculations and transform them to the xKyz basis using
Eq. (17). Then orthogonalize the basis functions so as to
obtain {	k0}, {	k1} with n=1, 2, · · · NB and assemble the U	

in Eq. (19).
(ii) Calculate [H0,0]	, [H0,1]	 in the reduced Bloch func-

tion basis by using Eq. (20).
(iii) Solve for the Green’s functions in the reduced basis by

using an initial guess of the electrostatic potential φ(r).
(iv) Calculate carrier concentrations from Eqs. (24) and

(25) and then solve the Poisson equation for a new guess
of φ(r). Loop between steps (iii) and (iv) until a specified
convergence is reached and, finally, calculate the current using
Eq. (27).

Here it should be mentioned that for any physical system or
nanoscale device, steps (i) and (ii) above have to be performed
only once. In fact, they correspond to material properties, so
that the relevant quantities calculated in these steps can be
stored and reused in subsequent simulations corresponding
to different bias conditions. The number NB of Bloch basis
functions is the most important parameter affecting the com-
putational load of the Green’s functions equations.

Several important optimizations are possible and have been
introduced in the implementation of our methodology. For
example, it is apparent from Eqs. (24) and (25) that the sums
over Gyz, G′

yz for any couple of basis functions 	n, 	m can
be carried out only once for a given physical system. In other
words, we can introduce the new quantity Kn,m(x j, ryz ) defined
as

Kn,m(x j, ryz ) = 1

NGyNGz

∑
Gyz,G′

yz

	n(x j, Gyz )

× 	∗
m(x j, G′

yz ) ei(Gyz−G′
yz )·ryz , (28)
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FIG. 3. Left: Sketch of the single-gate MOSFET simulated in this work and consisting of a single-layer MoS2 channel material. The length
of the source and drain extensions is LS = LD 	 9 nm and LG indicates the top gate length. Right: Simulated drain current IDS vs top gate
voltage VT G characteristics at VDS=0.6 V for n-type MoS2 MOSFETs featuring different gate lengths LG 	 20, 10, and 5 nm. The IDS curves
reported in semilogarithmic scales have been VT G shifted so as to have the same IDS=1 μA/μm at VT G = 0 V for all gate lengths, whereas the
curves in the linear scales have not.

and then notice that the free electron concentration can be
written in terms of Kn,m(x j, ryz ) as

n(x j, ryz )= −i

dxdydz

∫ ∞

E0(x j )

NB∑
n,m=1

G<(n, m; E ) Kn,m(x j, ryz )
dE

2π
.

(29)

A similar expression holds for the free hole concentration
p(x j, ryz ).

As it can be seen, once Kn,m(x j, ryz ) has been calculated
for a given physical system, the carrier concentrations during
self-consistent simulations can be obtained by using Eq. (29),
that is, by skipping the sums over Gyz, G′

yz.

V. SIMULATION RESULTS

We present in this section an example of a nanoscale tran-
sistor that we could efficiently simulate by using the reduced
basis of Bloch functions computed directly from plane-wave
DFT calculations.

The device under investigation is composed by the mono-
layer MoS2 n-MOSFET sketched in Fig. 3(a), where the

2D semiconductor is sitting on a 10-nm-thick back oxide
having a dielectric constant εox = 3.9ε0 (with ε0 being the
vacuum permittivity). Source and drain regions are considered
chemically doped with a donor concentration of 1020 cm−3

and the top gate oxide has an equivalent oxide thickness of
about 1 nm. The lateral direction was assumed to be periodic
and was described by including a discrete sampling of the
wave vector ky with a constant 
ky = 0.1 π/ay.

Figure 3 shows the drain current IDS versus the top gate
voltage VT G that is characteristic for a gate length of LG =
64ax 	 20 nm, 32ax	 10 nm, and 16ax	 5 nm. The large
IDS values are due to the fact that neither scattering nor
series resistance is included in the simulations. Thanks to the
subnanometer thickness of the MoS2 layer, the IDS versus VT G

characteristics of the transistor are still well behaved for a
channel length of about 5 nm, even if a degradation of the
subthreshold swing is observed with respect to longer FETs.
The onset of short channel effects also manifests itself in a
significant left shift of the IDS versus VT G characteristic in the
shortest gate lengths.

The subthreshold swing degradation in the shortest device
is mainly due to the onset of a sizable source-to-drain quantum

FIG. 4. Color map of the current density spectrum and profile of the lowest conduction band at ky = 0 (red line) for a single-layer MoS2

MOSFET having a gate length of either LG 	 5 nm (left) or 10 nm (right). Both devices have VDS = 0.6 V and a gate bias corresponding to
approximately the same subthreshold current IDS 	 5 nA/μm.
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FIG. 5. Self-consistently calculated drain current for the LG =
10 nm single-layer MoS2 MOSFET sketched in Fig. 3 (left) for
the bias point corresponding to VT G = 0.6 V and VDS = 0.6 V, and
plotted vs the number NB of reduced basis functions. The right y
axis reports the corresponding wall-clock simulation time. For this
specific bias point, 11 iterations were necessary to obtain the self-
consistent solution of the Poisson-NEGF equations. Calculations
were performed by using a parallelization of the energy points over
10 cores (Intel Xeon Gold 6150 CPU at 2.70 GHz).

tunneling, as illustrated in Fig. 4, reporting the current spectra
and the profile of the lowest conduction band along the
transport direction for the MOSFET with either LG = 5 or 10
nm. For the shortest gate length, the spectral current is spread
over energies well below the top of the barrier, thus confirming
a significant source-to-drain tunneling contribution to the off
current in this specific bias condition. In the longer transistor,
instead, the off current is dominated by thermionic emission
above the top of the barrier.

Figure 5 illustrates, for the device in Fig. 3(a) subject to a
specific external bias, the dependence of the self-consistently
calculated IDS on the number NB of Bloch states in the reduced
basis. The corresponding CPU time versus NB is also reported.
It can be observed that for the case at study, the self-consistent
solution of the Poisson-NEGF equations rapidly converges
to a stable value for NB � 90, which in turn enables the
simulation of one bias point with a wall-clock computation
time slightly longer than one hour by using only 10 CPU
cores.

VI. CONCLUSIONS

We presented theoretical developments and a sound imple-
mentation for a first-principle transport model based on the
NEGF formalism, and on a basis set obtained directly from
the ab initio Bloch functions. Differently from previous papers
proposing a similar approach for DFT calculations based on
an LCAO basis, we used plane-wave ab initio calculations
and we argue that thanks to an appropriate choice of the
basis functions, we could effectively suppress the problem of
unphysical solutions, whose treatment is delicate and compu-
tationally demanding [25,26].

We found that the unit cell restricted Bloch functions
basis enables band structure and transport calculations with
hundreds-of-times reductions of the size of the problem com-

pared to the original DFT formulation. Moreover, while here
we have reported results only for a homogeneous system con-
sisting of a single-layer MoS2, we envision that our approach
can also be used for heterostructures, thus paving the way for
a number of technologically and physically important appli-
cations, such as contacts between metals and 2D materials,
as well as vertical or horizontal heterojunctions between 2D
semiconductors.

The methods of this work can also be applied to first-
principle calculations based on an LCAO basis; however, we
think that the herein reported demonstration for plane-wave
DFT Hamiltonians is particularly promising for future devel-
opments concerning the electron-phonon interaction. In fact,
the NEGF formalism can naturally include electron-phonon
scattering [42] and, moreover, the plane-wave DFT approach
is especially suitable for the calculation of phonon spectra [44]
and electron-phonon coupling coefficients [45].

The benefits of a Bloch function basis are not confined
to first-principle methods; on the contrary, they also directly
apply to empirical pseudopotential Hamiltonians in both their
local and nonlocal formulation [46,47], and promise large
computational advantages compared to the methods recently
proposed by some of the present authors [23,24].

We believe that the results of this work qualify the method-
ology based on unit cell restricted Bloch functions as a viable
approach for ab initio and semiempirical quantum transport
simulations and, in particular, as an alternative to maximally
localized Wannier functions. In this respect, while the direct
use of Bloch functions is attractive in that it circumvents the
a posteriori determination of the Wannier functions basis,
further work is admittedly needed to demonstrate the general
applicability of the methods of this paper, and the feasibility
of the above-mentioned extensions to heterostructures and
dissipative transport.
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APPENDIX A: HAMILTONIAN MATRIX IN
THE xKyz BASIS

In Sec. III, the Hamiltonian in the hybrid basis was built
by using two DFT Hamiltonian matrices [Hk0 ], [Hk1 ], but the
extension of the methodology to more than two k values is
quite natural. To this purpose, we first generalize Eq. (12) and
define the transformation matrix[

U(Ncx )
kx

] = 1√
Ncx

[[
U0

kx

]
,
[
U0

kx

]
eikx ax , · · · ,

[
U0

kx

]
eikx (Ncx−1)ax

]
,

(A1)
where [U0

kx
] has been defined in Eq. (11). Then we can use

Eq. (A1) and reformulate Eq. (13) as

[H]xKyz =
∑

k

[
U(Ncx )

kx

]†
[Hk]

[
U(Ncx )

kx

]
, (A2)

where the sum runs over Ncx Bloch vectors k=(kx,kyz), with
kx taking Ncx values in the range −π/ax < kx � π/ax with
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a spacing 2π/(Ncxax ) and including kx=0. Equation (A2)
allows us to calculate [H]xKyz for any value of Ncx and the
matrix [H]xKyz has a rank NcxNG.

Equation (A2) is useful in several respects. First, we see
that according to the assumption for [H]xKyz in Eq. (9), the
blocks [H0,0] and [H0,1] can be determined from the element
(1,1) and (1,2) of the matrix [H]xKyz , so that Eq. (A2) allows
us to write

[H0,0] = 1

Ncx

∑
k

[
U0

kx

]†
[Hk]

[
U0

kx

]
, (A3a)

[H0,1] = 1

Ncx

∑
k

[
U0

kx

]†
[Hk]

[
U0

kx

]
eikxax . (A3b)

Equation (A3) is a generalization of Eq. (14) for Ncx � 3,
which immediately leads to the corresponding extension of
Eq. (20) for the Hamiltonian blocks in the reduced basis.

By using Eq. (A3), we verified that the reconstruction of
[H0,0], [H0,1] from the plane-wave DFT Hamiltonian matrices
[Hk] is practically independent of Ncx for Ncx > 2. Namely,
any further increase of Ncx has a negligible effect on the

electronic structure calculated in the xKyz or in the 	 basis
that has been analyzed, for example, in Figs. 1 and 2.

In the remainder of this Appendix, we discuss in more
detail the assumption in Eq. (9) about the structure of the
Hamiltonian in the xKyz basis.

As discussed in Secs. II and III A, the nonlocal pseudopo-
tential VNL(r, r′) defined in Eq. (3) is the dominant nonlocal
term of the Hamiltonian matrix in the xKyz basis. However,
[H]xKyz has to be calculated numerically by using Eq. (13)
for Ncx=2 or Eq. (A2) for larger Ncx values. Consequently,
while it is expected that the short-range nature of the non-
local pseudopotential results in a single off-diagonal block
of the Hamiltonian matrix as assumed by Eq. (9), we have
no analytical expression for VNL(x j, Gyz ) ensuring a priori
that, for example, a second off-diagonal block H0,2 is indeed
negligible. Hence, we carried out a numerical analysis of this
aspect.

In this respect, we first notice that if we hypothesize that
H0,2 is not negligible, then, in order to identify H0,0, H0,1,
and H0,2, it is necessary to write the [H]xKyz across at least
four unit cells and, thus, by using four kx values (i.e., kx=0,
±0.5 π/ax , π/ax). In fact, for Ncx=4, we can extend Eq. (10)
and write

[H]xKyz =

⎡
⎢⎢⎣

H0,0 H0,1 H0,2 + H†
0,2 H†

0,1

H†
0,1 H0,0 H0,1 H0,2 + H†

0,2

H†
0,2 + H0,2 H†

0,1 H0,0 H0,1

H0,1 H†
0,2 + H0,2 H†

0,1 H0,0

⎤
⎥⎥⎦, (A4)

which allows us to identify H0,2 (besides H0,0 and H0,1) by assuming that the H0,2 block is a lower triangular matrix [namely,
H0,2(i, j) 	 0 for j � i]. In the presence of H0,2, the secular Eq. (16) can be rewritten as

[H†
0,2 e−ikx (2ax ) + H†

0,1 e−ikxax + H0,0 + H0,1 eikxax + H0,2 eikx (2ax )]
{
�0

nk

} = En(k)
{
�0

nk

}
, (A5)

and Eq. (A5) allows one to determine the electronic structure
in the xKyz basis and duly accounting for H0,2.

For the single-layer MoS2 studied in this work, we calcu-
lated [H]xKyz for Ncx=4 by using Eq. (A2) and we verified that
the electronic structure obtained with Eq. (A5) and accounting
for H0,2 is practically identical to the results of Eq. (16) that
instead neglect H0,2. This means that H0,2 can be neglected
in the case at study, which legitimates the tridiagonal form of
[H]xKyz in Eq. (9) and implies that the H0,1 block is a lower
triangular matrix. This latter observation, in turn, allows us to
determine H0,0, H0,1 from Eq. (10).

We reiterate that the negligibility of H0,2 is an expected
result from a physical perspective, in virtue of the relatively
short-range nature of the nonlocal pseudopotential discussed
in Sec. II.

APPENDIX B: SELECTION OF BLOCH FUNCTIONS FOR
THE REDUCED BASIS

As already mentioned in Sec. III B, there exists a sig-
nificant flexibility in the definition of the Bloch functions
basis set, so that we add a few conceptual and practical
remarks about the choice of the basis. The first is that
the basis set cannot be formed by using the �0

nk(x j, Gyz )

corresponding to a single kx value [with k=(kx,kyz)] be-
cause all such functions fulfill the same boundary condition
�0

nk(ax, Gyz )=�0
nk(0, Gyz ) ei kx ax for their specific kx value,

so that it is impossible to build solutions of Eq. (16) for a
different kx value.

Quite interestingly, the �0
nk(x j, Gyz ) for two differ-

ent kx values appear to be sufficient to obtain so-
lutions of Eq. (16) fulfilling the boundary condition
�0(ax, Gyz )=�0(0, Gyz ) ei kx ax for any kx value. In order to
show this, we first recall the standard notation for Bloch func-
tions �0

nk(x j, Gyz )=un,k(x j, Gyz ) ei kxx j [where un,k(x j, Gyz ) is
the periodic part of �0

nk], and then we expand the unknown �0

for a generic kx value in terms of the �0
nk0

and �0
nk1

for k0=(0,
kyz) and k1=(π/ax, kyz). By recalling Eq. (17), we write

�0(x j, Gyz ) =
M0∑

n=1

Cn,k0 un,k0 (x j, Gyz )

+
M1∑

m=1

Cm,k1 um,k1 (x j, Gyz ) ei π
ax

x j , (B1)

where x j=0, dx, 2dx · · · (ax−dx ) and M0, M1 denote the num-
ber of, respectively, �0

nk0
and �0

nk1
functions included in

the expansion. Because un,k0 and un,k1 are periodic over
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ax, it is straightforward to see that the boundary condition
�0(ax, Gyz )=�0(0, Gyz ) ei kx ax becomes

(1 − ei kx ax )
M0∑

n=1

Cn,k0 un,k0 (0, Gyz )

= (1 + ei kx ax )
M1∑

m=1

Cm,k1 um,k1 (0, Gyz ). (B2)

For kx=0, Eq. (B2) can be fulfilled by taking all Cm,k1 = 0 so
that, as expected, �0 can be obtained by using only the �0

nk0

functions. Likewise, for kx=π/ax, we can take all Cm,k0 = 0
and build the solution by using only the �0

k1
functions. For any

other kx value, Eq. (B2) provides the relation between the Cn,k0

and Cm,k1 coefficients, ensuring that �0 fulfills the boundary
condition �0(ax, Gyz )=�0(0, Gyz ) ei kx ax , and hence it can be
a solution of Eq. (16).

While two kx values appear to be sufficient to build a basis,
we found that sampling the reduced zone with more than two
kx values can improve the accuracy in the reconstruction of
the electronic structure for a given overall number of basis
functions, as exemplified in Fig. 2. Moreover we found that
by including in the basis set the Bloch functions for all the
valence bands at each kx, we can effectively suppress the un-
physical solutions sometimes observed upon the introduction
of a reduced basis [25,26].
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