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Acoustomagnetoelectric effect in two-dimensional materials:
Geometric resonances and Weiss oscillations

I. G. Savenko ,1,2 A. V. Kalameitsev ,2 L. G. Mourokh ,3 and V. M. Kovalev 2,4

1Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea
2Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia

3Physics Department, Queens College of the City University of New York, Flushing, New York 11367, USA
4Novosibirsk State Technical University, Novosibirsk, 630072 Russia

(Received 27 April 2020; revised 18 June 2020; accepted 22 June 2020; published 6 July 2020)

We study electron transport in two-dimensional materials with parabolic and linear (graphene) dispersions
of the carriers in the presence of surface acoustic waves and an external magnetic field using semiclassical
Boltzmann equations approach. We observe an oscillatory behavior of both the longitudinal and Hall electric
currents as functions of the surface acoustic wave frequency at a fixed magnetic field and as functions of the
inverse magnetic field at a fixed frequency of the acoustic wave. We explain the former by the phenomenon of
geometric resonances, while we relate the latter to the Weiss-like oscillations in the presence of the dynamic
superlattice created by the acoustic wave. Thus we demonstrate the dual nature of the acoustomagnetoelectric
effect in two-dimensional electron gas.
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I. INTRODUCTION

Two-dimensional (2D) electronic systems have attracted
great interest of researchers for several recent decades. Ini-
tially, two-dimensional electron gas (2DEG) was realized in
the inversion layer at the interface of two semiconductors
with different band gaps [1]. Subsequently, other structures
based on graphene [2,3] and metal dichalcogenides [4] were
created. One of the primary motivations to design a system
containing 2DEG is that it represents an ideal platform for
the studies of magnetotransport which led to the observa-
tions of quantum Hall [5] and fractional quantum Hall [6,7]
effects.

Other prominent phenomenology is related to magneto-
oscillations of various types. Some of them are connected
to quantum effects at relatively high magnetic fields when
the Landau quantization causes the Shubnikov-de Haas ef-
fect and associated oscillations [8]. Quantum interference
between trajectories gives rise to Aharonov-Bohm oscillations
in high-mobility GaAs/AlGaAs heterostructures [9]. On the
other hand, semiclassical effects, which can be observed at
smaller fields or higher temperatures, are Weiss [10] and
Brown-Zak (BZ) oscillations [11,12]. The former arises due
to the commensurability between the cyclotron orbit and the
spatial period in the structure, while the latter is related to
the commensurability between the magnetic flux through the
unit cell area and the magnetic flux quantum. Subsequent
Landau quantization of the BZ minibands leads to the fractal
Hofstadter Butterfly (HB) spectrum [13]. Since the area of the
crystal unit cell is small, it is necessary to apply extremely
high fields to detect the associated phenomenology. However,
in bilayer graphene or in monolayer graphene placed on top of
a hexagonal boron nitride, additional moiré patterns appear,

which allows us to observe both HB [14–16] and BZ [17]
oscillations.

There also exist other types of oscillations in 2D systems.
One of them is called the geometric resonances (GRs). Orig-
inally, they revealed themselves in the spectra of electromag-
netic power absorption coefficient of plasmas in gases and
solids in the presence of a uniform magnetic field [18,19]. The
GRs appear as a multipeak structure at frequencies ω = l ωc,
where l is integer, in addition to the conventional cyclotron (or
magnetoplasmon) peak at the cyclotron frequency ωc = eB/m
(or l = 1) with e and m being the electron charge and mass,
and B is the strength of the external magnetic field. The
GRs in 2D systems have been studied theoretically [20,21]
and reported experimentally [22] in samples made of various
materials, such as Si and AlGaAs alloys.

In this paper, we examine magnetotransport phenomena in
a 2DEG in the presence of surface acoustic waves (SAWs).
These waves are usually produced by the interdigital transduc-
ers (IDTs)—metallic gates patterned on top of piezoelectric
materials. The spacing of the gates, or pitch, determines
the wavelength of the SAW [23]. When the radio-frequency
(rf) signal is applied to ITDs, there emerges a SAW with
such a wavelength that its product with the rf frequency
equals the sound velocity of the material. Corresponding
piezoelectric field modulates both the electron density and
velocity of the charge carriers. Accordingly, the electric cur-
rent density, which is the product of these two parameters,
acquires a constant component, called the acoustoelectric
current. It can also be explained as a result of SAW drag
of the charge carriers in the direction of the SAW wave
vector [24]. The information obtained by measurements of the
SAW-induced effects is complementary to conventional trans-
port experiments, facilitating a frequent use of SAWs in the
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FIG. 1. Proposed experimental setup: A two-dimensional elec-
tron gas (2DEG) with parabolic or linear (graphene) spectrum lo-
cated on a piezoelectric substrate and exposed to a surface acoustic
wave (SAW) with the wave vector k and an external permanent
magnetic field B. The SAW is created by the interdigital transducers
(IDTs).

studies of low-dimensional electronic structures [25], in-
cluding graphene monolayers [26–30], metal dichalcogenides
[31], and topological insulators [32,33]. Besides, SAWs-
related methods can also be applied to the exciton transport
[34–36]. We also want to mention a recently published com-
prehensive SAW roadmap [37].

In the presence of an external magnetic field directed
perpendicular to the SAW, the Hall component of the electric
current appears. This is referred to as the acoustomagne-
toelectric effect, which was predicted in Refs. [38,39] and
experimentally observed in Ref. [40]. The response of 2DEG-
exposed-to-SAWs to a magnetic field was also examined in
Refs. [41–44], although these studies were focused on the
quantum regime with established Landau levels. A region
of smaller fields was considered in Refs. [45,46], but the
manifestations of Weiss oscillations were only predicted for
the first-order effects, such as the SAW absorption and the
velocity shifts. The longitudinal component of the acousto-
electric current was discussed in Ref. [47].

The experiment described in Ref. [48] is of special interest.
For Dirac electrons in a monolayer graphene, it was reported
that the acoustoelectric current has an additional fine structure
as a function of relatively low magnetic field which is absent
in usual magnetotransport. This result gave the main motiva-
tion for our study. In particular, we consider GRs as a possible
explanation of the observed phenomenology.

The acoustoelectric current is the second-order effect with
respect to the SAW-induced electric field. Consequently, it
is related to a third-order conductivity tensor [49,50]. This
tensor couples components of the drag current to the com-
ponents of the SAW piezoelectric field as jα = χαβγ EβEγ ,
where α, β, γ = x, y, z, similar to the photovoltaic effect
[51]. As the SAW frequency is much smaller than the fre-
quencies of the optical fields reported in Refs. [20–22], GRs
can be expected at much smaller magnetic fields, at which a
semiclassical approach based on the Boltzmann equations is
appropriate for our studies.

We examine the system shown in Fig. 1. The 2DEG is
placed on a piezoelectric substrate, thus the SAWs created
by IDTs produce an electric field in the direction of their
propagation. An external magnetic field is applied perpen-
dicular to 2DEG. Such setup allows for measuring both the
longitudinal and Hall components of the acoustoelectric cur-
rent as functions of the SAW frequency and the magnetic

field. Although we drew a graphene layer in Fig. 1, in this
paper, we also consider a 2DEG with a parabolic dispersion.
For both the linear and parabolic dispersion cases, we obtain
the oscillatory behavior of the current densities as functions
of frequencies. We analyze these oscillations and argue that
in the case of the SAW drag, GRs and Weiss oscillations
represent the same phenomenon; although originally GRs
are related to the optical fields with no spatial periodicity
and Weiss oscillations are usually connected with a static
embedded superlattice. SAWs thus provide a dynamical su-
perlattice merging the GRs and Weiss oscillations phenomena
and making both interpretations possible.

II. THEORETICAL FRAMEWORK

We start with the Boltzmann equation for the electron
distribution function f , when the system is subject to both
the piezoelectric field of the SAW and the external uniform
magnetic field perpendicular to the 2D layer (Fig. 1). In
the case of the parabolic electron dispersion, the Boltzmann
equation has the form

[
∂

∂t
+ v

∂

∂r
+ e(E(r, t ) + Ei(r, t ))

+ e[v × B]
∂

∂p

]
f = − f − 〈 f 〉

τ
, (1)

where v = p/m is a velocity of a particle (thus the energy
spectrum is given by εp = p2/2m), r is the coordinate, and τ

is an effective electron scattering time. SAWs produce the in-
plane component of a piezoelectric field E(r, t ) directed along
the SAW wave vector k, E(r, t )||k. Ei(r, t ) is the induced field
due to the spatial modulation of 2D electron density in SAW
field, which can be found from the solution of Maxwell’s
equation. 〈 f 〉 is a quasiequilibrium electron distribution func-
tion in the SAW reference frame. This function depends on
time and coordinates via the chemical potential μ(r, t ), which
determines the electron density n(r, t ) in slow-varying SAW
field.

To find the acoustoelectric current, we expand the electron
density and the distribution functions up to the second order
with respect to the total electric field Ẽ(r, t ) = E(r, t ) +
Ei(r, t ). In particular, f (r, t ) = f0 + f1(r, t ) + f2(r, t ) +
o( f3), where f0 is the equilibrium electron distribution
function. The first-order correction to f0 is f1(r, t ) =
[ f1 exp(ik · r − iωt ) + f ∗

1 exp(−ik · r + iωt )]/2, where ω =
s|k| = sk, with s being the sound velocity.

The time-independent acoustoelectric current can be de-
termined from the stationary second-order correction to the
electron distribution function f2 with respect to the SAW field
E(r, t ), as

j = e
∫

dp
(2π h̄)2

v f2. (2)

Furthermore, we consider 2DEG to be highly degenerate, thus
all the parameters are taken at the Fermi energy. The x axis is
chosen along the direction of the SAW propagation. After the
calculations detailed in Appendix A and Appendix B, Sec. 1,
we obtain the longitudinal and Hall acoustoelectric currents in
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the parabolic electron dispersion case, as

(
jx
jy

)
= 1

envF

∣∣∣∣ σ0E0

g(k, ω)

∣∣∣∣
2 1

β2
F (1 + ω2

cτ
2)

× Re
∑

l

Jl (βF )

1 − i(ω − l ωc)τ

[
l + ka0

ωcτ

σxx

ε0(s − Rx )

]

×
(

γ (l + 1)Jl+1(βF ) + γ ∗(l − 1)Jl−1(βF )
iγ (l + 1)Jl+1(βF ) − iγ ∗(l − 1)Jl−1(βF )

)
, (3)

where σ0 = e2nτ/m is a static Drude conductivity, E0 is the
amplitude of the (external) piezoelectric field, and Jl (βF ) are
the ordinary Bessel functions with βF = kvF /ωc. We have
also introduced two auxiliary parameters, γ = 1 + iωcτ and
a0 = 2π h̄2ε0/me2. The xx component of the conductivity
tensor σxx and x component of the generalized diffusion
coefficient Rx are given by

σxx = 2σ0

β2
F

∑
l

l2J2
l (βF )

1 − i(ω − l ωc)τ
(4)

and

Rx = ωc

k

∑
l

l J2
l (βF )

1 − i(ω − l ωc)τ
, (5)

respectively, where

g(k, ω) = 1 + i
1

ε0(εd + 1)

σxx

(s − Rx )
(6)

is the dielectric function of 2DEG, ε0 is the dielectric permit-
tivity of free space, and εd is the dielectric constant of the
substrate. The function of Eq. (6) describes the screening of
SAW piezoelectric field by the mobile electrons of 2D system.

In the case of linear electron spectrum, εp = v0 p, the
Boltzmann equation remains almost the same as Eq. (1) with
the number of changes. First, velocity v is replaced by v0p/p.
Second, even for short-range impurities, the scattering times
of the first and second harmonics of electron distribution func-
tion become energy dependent, as τ1(p) ≡ τ1(εp) = τεF /εp
for the first harmonics, and τ2(p) = τ1(p)/2 for the second
harmonics [52]. Third, the effective cyclotron frequency in the
semiclassical limit is given by ωc(p) = eBv0/p = eBv2

0/εp

[53,54].
Performing the calculations (see Appendix B, Sec. 2),

we obtain the longitudinal and Hall acoustoelectric current
densities in the linear electron dispersion case, as

(
jx
jy

)
= 1

2env0

∣∣∣∣ σgE0

g(k, ω)

∣∣∣∣
2( 1/βpF

1 + ω2
c (pF )τ 2

2 (pF )

)2

× Re
∑

l

Jl (βpF )

1 − i[ω − l ωc(pF )]τ1(pF )

×
[

l + kag

ωc(pF )τ1(pF )

σxx

ε0(s − Rx )

]

×
(−iγ̄ 2(l + 1)Jl+1(βpF ) + iγ̄ ∗2(l − 1)Jl−1(βpF )

γ̄ 2(l + 1)Jl+1(βpF ) + γ̄ ∗2(l − 1)Jl−1(βpF )

)
,

(7)

where σg = e2nv0τ1(pF )/pF is a static Drude conductivity
in graphene and all the momentum-dependent quantities are
taken at p = pF . In particular, γ̄ = 1 + iωc(pF )τ2(pF ) and
ag = 2π h̄2ε0v0/e2 pF . In this case, the xx component of the
conductivity tensor and x component of the generalized diffu-
sion coefficient have the forms

σxx = 2σg

β2
pF

∑
l

l2J2
l (βpF )

1 − i[ω − l ωc(pF )]τ1(pF )
(8)

and

Rx = ωc(pF )

k

∑
l

l J2
l (βpF )

1 − i[ω − l ωc(pF )]τ1(pF )
, (9)

respectively. We immediately see several similarities and dif-
ferences between Eqs. (8) and (9) and Eqs. (4) and (5), which
we discuss below.

III. RESULTS AND DISCUSSION

First of all, we want to stress that the argument βF of the
Bessel functions in Eqs. (3)–(5) and Eqs. (7)–(9) is of special
interest. On one hand, it can be expressed in terms of the
ratio of frequencies, as βF = ωvF /ωcs (in the parabolic case),
resembling the GRs. On the other hand, βF represents the ratio
of the space scales, as βF = krc = 2πrc/λ, where rc is the
cyclotron radius, which is very similar to Weiss oscillations.

To evaluate the electric current densities given by Eqs. (3)
and (7), we use the following set of parameters: E0 =
10 kV/m; n = 5 × 1012 cm−2, which is an experimentally
achievable value [54]; m = 0.44 m0, where m0 is a free
electron mass, and we choose MoS2 as a material with the
parabolic spectrum; and τ = 10−10 s, which corresponds to
moderately clean samples. The parameters of the piezoelec-
tric substrate are εd = 50 and s = 3.5 × 103 m/s, taken for
LiNbO3. For graphene, v0 = 108 cm/s and τ1 = μe pF /ev0,
where μe = 104 cm2/V s is the electron mobility [55,56].

Figures 2 and 3 show (a) longitudinal and (b) Hall com-
ponents of the drag current density as functions of the SAW
frequency ω for the cases of the parabolic and linear disper-
sions of mobile carriers, respectively, at various values of the
external magnetic field. It is evident from these figures that
both components exhibit oscillations, with each maximum
approximately corresponding to the geometric resonance ω =
l ωc. As expected, for relatively small SAW frequencies and
the cyclotron frequency increasing with B, the GRs are pro-
nounced at magnetic fields smaller than 1 T. At higher fields,
the functions are monotonic with no GRs-related oscillations.

The dependencies of the current density components on the
inverse magnetic field are demonstrated in Fig. 4 and Fig. 5
for the parabolic and linear dispersion cases, respectively.
One can see almost perfect oscillations superimposed onto the
monotonic decay to the zero field. They are more pronounced
for the parabolic dispersion of electrons. This result can be
understood as Weiss oscillations in the presence of the spatial
periodic structure of the SAW. It is evident from Fig. 5 that the
functional dependence on the magnetic field is very different
from the results of Ref. [48]. Thus, the observed fine structure
has different origin, not one typical for GRs. We believe that
the experimental structure of Ref. [48] can be used for the
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FIG. 2. Electric current densities as functions of the SAW fre-
quency for the parabolic dispersion case. (a) Longitudinal drag (x
component) and (b) Hall drag (y component). Different colors corre-
spond to different values of the applied magnetic field B, specified in
panel (a).

verification of phenomenology predicted in the present paper.
It is suitable for the measurements of both the longitudinal and
Hall currents in the presence of SAWs and a magnetic field of
arbitrary strength. However, the graphene monolayer should
be cleaner, and a better control of the electron population is
required.

Another prominent feature, which we observe in the plots,
is the change of the sign of the Hall current density in both
the parabolic and linear dispersion cases and the longitudinal
current density in the graphene case. The Hall current vanishes
at zero field and monotonically increases with the increase of
B. In the presence of SAW-induced oscillations of relatively
high magnitude, the current density at small field can achieve
negative values at minima. The longitudinal component of
acoustoelectric current is nonzero even without a magnetic
field. For the parabolic electron dispersion, the magnitude
of the oscillations is not sufficiently large to reach negative
values of the current density, while for graphene it can occur
since the oscillations are more pronounced.

FIG. 3. Electric current densities as functions of the SAW fre-
quency for the linear dispersion case. (a) Longitudinal drag (x com-
ponent) and (b) Hall drag (y component). Different colors correspond
to different values of the applied magnetic field B, specified in
Fig. 2(a).

It should be noted that a similar effect of the sign change
was also observed in the photon drag in graphene [57], where
it was attributed to the energy dependence of the electron
scattering time. We believe that the same phenomenology
leads to the change of the sign of the acoustoelectric current.
We also want to emphasize that the predicted oscillating
behavior of the acoustoelectric current occurs at the range
of field satisfying h̄ωc � EF , where EF is the Fermi energy,
validating the usage of the semiclassical approach.

IV. CONCLUSIONS

To summarize, we have examined acoustoelectric current
in a 2DEG in the presence of an external magnetic field in two
physical systems. First, we have considered 2DEG in which
the electron energy is proportional to its momentum squared
(parabolic dispersion case). In particular, such a situation oc-
curs at the interface of two semiconductors with different band
gaps and in transition metal dichalcogenides. Second, we have
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FIG. 4. Components of electric current density as functions of
inverse magnetic field in the case of parabolic dispersion for the
frequencies specified in panel (a).

studied 2DEG in graphene, where the energy is proportional
to the first power of momentum (linear dispersion case).

The piezoelectric field created by the SAW modulates
both the electron density and electron velocity, resulting in
a permanent electric current as a second-order response of
the system. Using the semiclassical Boltzmann equations ap-
proach, we have calculated and studied both the longitudinal
and Hall current densities. For a fixed magnetic field, both the
components of the acoustoelectric current exhibit oscillations
as functions of the SAW frequency. We have shown that the
Hall component changes its sign in both cases of parabolic
and linear dispersions, while the change of sign of the longi-
tudinal component occurs in graphene only. For a fixed SAW
frequency, the acoustoelectric current oscillates as a function
of the inverse magnetic field.

Mathematically, the oscillations are originating from the
presence of the (ordinary) Bessel functions in the equations.
The argument of Bessel functions can be represented as a
ratio of the SAW and cyclotron frequencies or as a ratio of
the cyclotron radius and the SAW wavelength. The former is
conventionally used to describe optical geometric resonances,
while the latter appears in Weiss oscillations of magnetoresis-

FIG. 5. Components of electric current density as functions of
inverse magnetic field in the case of linear dispersion for the fre-
quencies specified in Fig. 4(a).

tance in the presence of an embedded static superlattice. In
the case of SAWs, both interpretations of this phenomenology
become possible since these two effects merge.
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APPENDIX A: THE FIRST-ORDER CORRECTION
TO THE ELECTRON DISTRIBUTION FUNCTION

The first-order corrections to the equilibrium electron
distribution function and the electron density, f1(r, t ) and
n1(r, t ), satisfy the Boltzmann equation [derived from
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Eq. (1)], (
1

τ
+ ik · v − iω + e[v × B] · ∂

∂p

)
f1

= −e(E + Ei )
∂ f0

∂p
+ n1

τ

∂ f0

∂n
. (A1)

To find this equation, we used the expansions

n(r, t ) = n + n1(r, t ) + n2(r, t ) + o(n3),

f (r, t ) = f0 + f1(r, t ) + f2(r, t ) + o( f3),

〈 f (r, t )〉 = f0 + [n1(r, t ) + n2(r, t ) + ...]
∂ f0

∂n

+ [n1(r, t ) + n2(r, t ) + ...]2

2

∂2 f0

∂n2
.

(A2)

Following the approach described in Ref. [58], we switch to
the polar system of coordinates, in which Eq. (A1) reads(

1

τ
− iω + ikv cos φ − ωc

∂

∂φ

)
f1(p, φ)

= −eẼ0v cos φ
∂ f0

∂εp
+ n1

τ

∂ f0

∂n
, (A3)

where we have accounted for the fact that εp = εp, where p =
|p|, and ∂p f0 = (∂pεp)(∂εp f0) = v∂εp f0 with ∂BA = ∂A/∂B.
We have also chosen the direction of E0 along the x axis. Then
Ẽ0 = E0 + Ei

0 is also directed along the x axis (since E0 and
k are collinear). Then Ẽ0 · v = Ẽ0v cos φ and kx = k = ω/s.

Eq. (A3) can be rewritten in the form

∂ f1

∂φ
+ i(α − β cos φ) = Q(φ), (A4)

where

α = ω + i/τ

ωc
, β = kv

ωc
= ωv

sωc
,

Q(ϕ) =
(

eẼ0v

ωc
cos φ + n1

ωcτ

∂μ

∂n

)
∂ f0

∂εp
,

(A5)

which (all) evidently represent functions of frequency. In
Eq. (A5), we used the relation ∂n f0 = (∂μ f0)(∂nμ) and ∂μ f0 =
−∂εp f0, which holds for the Fermi distribution function.

From Eqs. (A4) and (A5) we find

f1(p, φ) = −eiβ sin φ

∫ ∞

0
dψe−iβ sin(φ+ψ )+iαψQ(φ + ψ ).

(A6)

Using the expansion of the exponents over the cylindrical
harmonics,

eiβ sin ϕ =
∑

l

Jl (β )eilϕ, (A7)

we find∫ ∞

0
dψe−iβ sin(φ+ψ )+iαψ

=
∑

l

Jl (β )eilφ
∫ ∞

0
ei(α−l )ψdψ =

∑
l

Jl (β )e−ilφ

i(l − α)

(A8)

and
∫ ∞

0
dψe−iβ sin(φ+ψ )+iαψ cos(φ + ψ )

= i

β

∂

∂φ

∫ ∞

0
dψe−iβ sin(φ+ψ )+iαψ

= 1

iβ

∑
l

lJl (β )e−ilφ

l − α
. (A9)

Then Eq. (A6) transforms into

f1(p, φ) = eiβ sin φ

iωc

(
−∂ f0

∂εp

)

×
∑

l

[
eẼ0v

β
l + n1

τ

∂μ

∂n

]
Jl (β )

l − α
e−ilφ. (A10)

The conductivity tensor and the diffusion vector can be
calculated using the standard definition of the first-order cor-
rection to the current density,

j (1)
α = e

∫
dp

(2π h̄)2
vα f1(p, φ) = σαβ Ẽβ + en1Rα, (A11)

where v(φ) = v(cos φ, sin φ), and

σxx = e2

ωc

∫
dp

(2π h̄)2
v2 cos φeiβ sin φ

(
−∂ f0

∂εp

)
(A12)

×
∫ ∞

0
dψe−iβ sin(φ+ψ )+iαψ cos(φ + ψ )

and

Rx = 1

ωcτ

∂μ

∂n

∫
dp

(2π h̄)2
v cos φeiβ sin φ

(
−∂ f0

∂εp

)

×
∫ ∞

0
dψe−iβ sin(φ+ψ )+iαψ (A13)

are the first (xx) matrix element of the conductivity tensor and
the x component of the diffusion vector [59,60], respectively.
Taking integrals in (A12) and in (A13), we find the conductiv-
ity and the diffusion coefficient of a degenerate electron gas at
zero temperature, Eqs. (4) and (5) in the main text.

APPENDIX B: THE SECOND-ORDER RESPONSE
AND THE AME CURRENT

1. Parabolic dispersion case

Since we chose the SAW EM field to be directed along the
x axis, the AME current is given by the formula

jα = − e2

2ωc

∫
dp

(2π h̄)2
vα (φ)

∫ ∞

0
dψe− ψ

ωcτ

× Re

{
Ẽ∗

0 v cos(φ + ψ )
∂ f1(p, φ + ψ )

∂εp

}
. (B1)
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Expressing the p integrals via the integrals over the energy
and angle, we perform partial integrations to find(

jx
jy

)
= Re

e2Ẽ∗
0

ωc(2π h̄)2

∫ ∞

0
dεp

∫ ∞

0
dψe− ψ

ωcτ

×
∫ 2π

0
dφ

(
cos φ

sin φ

)
cos(φ + ψ ) f1(p, φ + ψ ).

(B2)

Substituting here the first-order electron distribution function
(A10), we come up with the φ and ψ-angle integrals,∫ 2π

0
dφ cos(φ + ψ )

(
cos φ

sin φ

)
eiβF sin(φ+ψ )e−il (φ+ψ )

= π

βF

(
(l + 1)Jl+1(βF )eiψ + (l − 1)Jl−1(βF )e−iψ

i(l + 1)Jl+1(βF )eiψ − i(l − 1)Jl−1(βF )e−iψ

)
,

×
∫ ∞

0
dψe− ψ

ωcτ
±iψ = ωcτ

1 ± iωcτ

1 + (ωcτ )2
.

The integral over energy can be easily taken for a degenerate
electrons gas, where −∂εp f0 = δ(εp − μ). Summing up, we
find Eq. (3) from the main text.

2. Linear dispersion case

Following similar steps as for the parabolic dispersion case,
integrating by parts via energy, and taking into account that
now the cyclotron frequency and the electron relaxation time
depend on energy, we find(

jx
jy

)
= Re

e2Ẽ∗
0

(2π h̄)2

×
∫ ∞

0

dεp

ωc(p)

∫ ∞

0
dψe− ψ

ωc (p)τ2 (p)

(
1 − ψ

ωc(p)τ2(p)

)

×
∫ 2π

0
dφ

(
cos φ

sin φ

)
cos(φ + ψ ) f1(p, φ + ψ ),

(B3)

where

f1(p, φ) = eiβp sin φ

iωc(p)

(
−∂ f0

∂εp

)

×
∑

l

[
eẼ0v0

β
l + n1

τ1(p)

∂μ

∂n

]
Jl (βp)

l − αp
e−ilφ. (B4)

The integration over φ is similar to the parabolic dispersion
case, thus we find

∫ 2π

0
dφ cos(φ + ψ )

(
cos φ

sin φ

)
eiβp sin(φ+ψ )e−il (φ+ψ )

= π

βp

(
(l + 1)Jl+1(βp)eiψ + (l − 1)Jl−1(βp)e−iψ

i(l + 1)Jl+1(βp)eiψ − i(l − 1)Jl−1(βp)e−iψ

)
,

whereas for ψ integrals, we use

∫ ∞

0
dψe− ψ

ωc (p)τ2 (p) ±iψ
(

1 − ψ

ωc(p)τ2(p)

)

= ∓iωc(p)τ2(p)

[1 ∓ iωc(p)τ2(p)]2
.

The remaining integral over energy is much simpler in
the case of the degenerate electron gas due to the relation
−∂εp f0 = δ(εp − μ), using which we find Eq. (7) in the main
text.
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