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Two-photon absorption holds potential for many practical applications. We theoretically investigate the onset
of this phenomenon in a semiconductor quantum dot–metallic nanoshell composite subjected to a resonant CW
excitation. Two-photon absorption in this system may occur in two ways: incoherent—due to a consecutive
ground-to-one-exciton-to-biexciton transition—and coherent—due to a coherent two-photon process, involving
the direct ground-to-biexciton transition in the quantum dot. The presence of the nanoshell nearby the quantum
dot gives rise to two principal effects: (i) renormalization of the applied field amplitude and (ii) renormalization of
the resonance frequencies and radiation relaxation rates of the quantum dot, both depending on the quantum dot
level populations. We show that in the perturbation regime, when the excitonic levels are only slightly populated,
each of these factors may give rise to either suppression or enhancement of the two-photon absorption. The
complicated interplay of the two determines the final effect. Beyond the perturbation regime, it is found that the
two-photon absorption experiences a drastic enhancement, which occurs independently of the type of excitation,
either into the one-exciton resonance or into the two-photon resonance. Other characteristic features of the two-
photon absorption of the composite, emerging from the coupling between both nanoparticles, are bistability and
self-oscillations.

DOI: 10.1103/PhysRevB.102.045405

I. INTRODUCTION

Two-photon absorption (TPA), although generally a weak
effect compared to the one-photon absorption, has various
practical applications, which makes it a very interesting phe-
nomenon to study and control. The principle of using TPA
processes is based on the fact that many materials, while not
being transparent for radiation in the visible, are transparent
in the infrared. This allows one to penetrate into the bulk with
infrared light, where subsequently, through the TPA process,
the energy of two infrared photons may be used to trigger
processes that require optical energies. Well-known examples
of applications of this principle are microfabrication via 3D
photopolymerization [1,2], bioimaging [3], and optical data
storage [4–6]. Furthermore, TPA is widely used for inter-
nal modification of bulk media (see Ref. [7] and references
therein) as well as for probing electronic states which are
dipole forbidden due to parity [8]. Plasmon-assisted TPA is
used to improve efficiency of silicon photodetectors for opti-
cal correlators in the near infrared [9] as well as to enhance the
TPA in photoluminescent semiconductor nanocrystals [10]
and fluorophores [11].

In this paper, we study TPA in composites that consist of a
semiconductor quantum dot (SQD) and a closely spaced metal
nanoparticle (MNP). It is well established that the presence of
a MNP nearby a SQD strongly affects the optical response of
the SQD as a consequence of the polarizability of the MNP.

Notable phenomena that have been studied in this context
are: bistable optical response [12–16], linear and nonlinear
Fano resonances [17–19], gain without inversion [20], and
several other effects [21–23]. In a recent paper [24], we have
studied theoretically two-photon Rabi oscillations (TPRO)
in a SQD-MNP composite and found a significant influence
of the SQD-MNP coupling on the TPRO. Here, we show
that also the TPA of a SQD may be influenced strongly by
the presence of a nearby MNP. As in Ref. [24], we adopt
for the SQD a ladderlike three-level model which includes
ground, one-exciton, and biexciton states. For the MNP, we
consider a metallic nanoshell (MNS), a spherical nanoparticle
consisting of a dielectric core covered by a thin metallic
layer (usually gold). MNSs are best known in relation to their
usage in cancer therapy [25] and bioimaging [26]. From the
viewpoint of optical applications, MNSs are of great interest
due to their high spectral tunability originating from plasmon
hybridization of the inner and outer surface of the metallic
shell [27,28]. The hybridization gives rise to two plasmon
resonances. The lower-energy one couples strongly to inci-
dent light, whereas the higher-energy one is antibonding and
therefore weakly interacts with light. Thus, MNSs are ideal
partners for combination with quantum emitter to resonantly
enhance the optical response of the latter.

The present study is focused on exploring the plasmonic
effect on the TPA of a SQD-MNS composite. As an example,
we choose an InGaAs/GaAs SQD, absorbing in the infrared,
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in close proximity to an Au-silica MNS tuned in resonance
with the SQD excitonic transitions. We show that the SQD-
MNS coupling strongly affects the TPA of the composite as
compared to an isolated SQD, resulting in bistability, self-
oscillations, and a drastic enhancement of the TPA within a
certain range of the external field magnitude.

This paper is organized as follows. In the next section,
we present the model system and the mathematical formalism
for its description. In Sec. III, the perturbation theory is used
to study the TPA and the effects of the presence of a MNS
nearby the SQD on the TPA (renormalization of the external
field magnitude and exciton energies and relaxation rates)
are explored. In Sec. IV, we report the results of numerical
calculations of the TPA, extending also beyond the pertur-
bation regime, for a set of parameters characteristic for an
InGaAs/GaAs SQD-Au-silica MNS composite and discuss
these. Section V summarizes the paper. In the Appendix, an
exact parametric method of solving the nonlinear steady-state
problem is described.

II. MODELING THE SQD-MNS COMPOSITE

The geometry of our system is shown in Fig. 1(a). We con-
sider a heterodimer comprising a SQD and a closely spaced
MNS subjected to a monochromatic field E(t ) = E0 cos(ω0t )
of amplitude E0 and frequency ω0, polarized along the sys-
tem’s axis. The MNS consists of a core of radius r1, repre-
senting a dispersionless dielectric with the dielectric constant
ε1, and a metallic layer (covering the core) of thickness r2 − r1

and with dielectric function ε2(ω). The dielectric properties of
the SQD are characterized by the dielectric constant εs. The
SQD and MNS are separated by a center-to-center distance
d and embedded in a dispersionless isotropic medium with
permittivity εb. We assume the system’s size small compared
to the optical wavelength, a condition that holds for the
parameters used in our study. This allows one to apply the
quasistatic approximation and neglect retardation effects.

A. MNS

Figure 1(b) (left) shows the level diagram of the MNS.
The resonant incident field excites localized surface plasmons
(LSPs) in the metal. In the case of a MNS, the metallic layer,

MNS
SQD

(a)
MNS SQD

(b)

Q

FIG. 1. (a) Schematics of a SQD-MNS composite subjected to a
monochromatic field E(t ) = E0 cos(ω0t ) linearly polarized along the
system’s axis (indicated by the red arrow). The MNS core of radius r1

represents a dispersionless dielectric with the dielectric constant ε1.
The shell’s metallic layer of thickness r2 − r1 is characterized by the
dielectric function ε2(ω). εs denotes the SQD dielectric constant. The
two nanoparticles are separated by their center-to-center distance d
and embedded in a dispersionless isotropic medium with permittivity
εb. (b) Energy diagrams of the MNS (left) and the ladder-type
three-level SQD (right). The excited state of the MNS represents a
broad continuum centered at the frequency of the LSP’s resonance,
ωLSP (shown by the dashed yellow line). For the SQD, |1〉, |2〉,
and |3〉 are the ground, one-exciton, and biexciton states, respec-
tively. The energies of these states are E1 = 0, E2 = h̄ω2 and E3 =
2h̄(ω2 − �B/2), where h̄�B is the biexciton binding energy. Allowed
transitions with the corresponding transition dipole moments μ21 and
μ32 are indicated by the solid double-headed arrows. The dashed
black line shows the location of the coherent two-photon resonance
ω3/2 = ω2 − �B/2 (with simultaneous absorption of two photons).

covering the dielectric core, supports two plasmon resonances
corresponding to the inner and the outer surface of the layer.
If the layer is thin enough, the resonances strongly interact
with each other, giving rise to two new modes, a bright and a
dark one. The frequency of the former (latter) is shifted down
(up) with respect to the bare position [27]. The shift is highly
sensitive to the layer thickness which results in a broadband
tunability of the MNS’s bright plasmon resonance across
the visible and the near infrared [28]. Within the classical
approach, the MNS optical response is well described by
the MNS’s frequency dependent polarizability α1(ω). In the
quasistatic limit, α1(ω) is given by [29]

α1(ω) = 4πr3
2

[ε1 + 2ε2(ω)][ε2(ω) − εb] + (r1/r2)3[ε1 − ε2(ω)][εb + 2ε2(ω)]

[ε2(ω) + 2εb)[ε1 + 2ε2(ω)] + 2(r1/r2)3[ε2(ω) − εb][ε1 − ε2(ω)]
. (1)

Equation (1) is valid for MNS sizes 2r2 small compared to the
wavelength of the incident field, 2πc/ω0, c being the speed
of light. For the infrared-to-visible range of wavelengths, this
limits the MNS size to �100 nm [30]. The lower bound for 2r2

is dictated by quantum size effects, coming into play for r2 �
5 nm [31]. In our study, we consider MNS sizes for which
Eq. (1) may safely be applied.

It is apparent from equation (1) that α1(ω) experiences
resonant enhancement when the absolute value of the denom-
inator in Eq. (1) reaches its minimum (Fröhlich resonance
condition). The latter determines the frequency of the LSP
resonance, ωLSP. Accordingly, the plasmonic states of the

MNS constitute a ground state and a broad continuum of
excited states, as shown in Fig. 1(b) (left). The LSP resonance
is shown by the dashed yellow line.

Throughout the paper, we will consider silica-Au core-
shell nanoparticles embedded in a silica host, taking, accord-
ingly, ε1 = εb = 2.16, while calculating the gold dielectric
function ε2(ω) by means of the modified Drude model [32].
To illustrate the strong sensitivity of the MNS plasmon res-
onance ωLSP to the geometrical parameters of the MNS, we
present in Fig. 2 the results of calculations of the MNS ab-
sorption cross section Cabs(ω) ∝ Im[α(ω)], keeping the core
radius r1 = 9 nm fixed and varying the outer shell radius r2.
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FIG. 2. Absorption cross section Cabs(ω) of the silica–Au MNS
with a silica core of r1 = 9 nm, calculated from Eq. (1) for three
different shell thickness: r2 − r1 = 1 nm (solid curve), r2 − r1 =
2 nm (dashed curve), and r2 − r1 = 3 nm (dash-dotted curve).

As is seen from the figure, changing the shell thickness from 1
to 3 nm dramatically affects the location of the MNS plasmon
resonance, moving it from the infrared to the visible upon
increasing the shell thickness.

B. SQD

Figure 1(b) (right) shows the level diagram and allowed
transitions of the SQD. The optical excitations in the SQD are
excitons. In such a system, the degenerate one-exciton state
is split into two linearly polarized one-exciton states due to
the anisotropic electron-hole exchange interaction [33–35]. In
this case, the ground state is coupled to the biexciton state
via the linearly polarized one-exciton state. Thus, the system
effectively acquires a three-level ladderlike structure with the
ground (|1〉), one-exciton (|2〉), and biexciton (|3〉) state, as
shown in Fig. 1(b) (right). The energies of these states are
E1 = 0, E2 = h̄ω2 and E3 = h̄ω3 = 2h̄(ω2 − �B/2), respec-
tively, where h̄�B is the biexciton binding energy. Within this
scheme, the allowed transitions induced by the applied field
are |1〉 ↔ |2〉 and |2〉 ↔ |3〉 with corresponding transition
dipole moments μ21(= μ12) and μ32(= μ23), accordingly.
The transition between the ground state |1〉 and biexciton state
|3〉 is dipole forbidden by parity and can only be achieved by
the simultaneous absorption of two photons.

The optical dynamics of the SQD is described by means of
the Lindblad quantum master equation for the density operator
ρ(t ), which in the rotating (with frequency ω0 of the applied
field) frame reads [36,37]

ρ̇(t ) = − i

h̄
[HRWA(t ), ρ(t )] + Lγ {ρ(t )}

+L	{ρ(t )}, (2a)

HRWA(t ) = h̄(�21σ22 + �31σ33) − h̄[�21(t )σ21

+�32(t )σ32 + H.c.], (2b)

Lγ {ρ(t )} = γ21

2
([σ12ρ(t ), σ21] + [σ12, ρ(t ) σ21])

+γ32

2
([σ23ρ(t ), σ32] + [σ23, ρ(t ) σ32]), (2c)

L	{ρ(t )} = 	2([σ22ρ(t ), σ22] + [σ22, ρ(t ) σ22])

+	3([σ33ρ(t ), σ33] + [σ33, ρ(t ) σ33]). (2d)

Here, HRWA(t ) is the SQD Hamiltonian in the rotating frame,
[A, B] denotes the commutator, Lγ {ρ(t )} is the Lindblad
operator describing the radiation relaxation of the SQD states
|2〉 and |3〉 with constants γ21 and γ32, respectively, while
L	{ρ(t )} accounts for dephasing of the states |2〉 and |3〉
with rates 	2 and 	3, respectively, and σi j = |i〉〈 j| (i, j =
1, 2, 3). In Eq. (2b), h̄�21 = h̄(ω2 − ω0) and h̄(�31 =
h̄(ω3 − 2ω0) are the energies of states |2〉 and |3〉 in the
rotating frame, respectively. �21(t ) = μ21 · ESQD(t )/(2h̄) and
�32(t ) = μ32 · ESQD(t )/(2h̄) are the slowly varying Rabi
amplitudes of ESQD(t ) for the corresponding transitions,
where ESQD(t ) is the amplitude of the field acting on
the SQD.

For the sake of simplicity, we assume that the transi-
tion dipoles are parallel to each other (μ32 = μμ21) and to
the acting field as well. Then γ32 = μ2γ21 ≡ μ2γ , �32 =
μ�21 ≡ μ�, and all vectorial quantities can be considered as
scalars. Finally, the system of equations for the density matrix
elements ρi j (t ) = 〈i|ρ(t )| j〉 takes the form

ρ̇11 = γ ρ22 + i(�∗ρ21 − �ρ∗
21), (3a)

ρ̇22 = − γ ρ22 + μ2γ ρ33

+ i(�ρ∗
21 − �∗ρ21 + μ�∗ρ32 − μ�ρ∗

32), (3b)

ρ̇33 = −μ2γ ρ33 + iμ(�ρ∗
32 − �∗ρ32), (3c)

ρ̇21 = − (
i�21 + 1

2γ + 	2
)
ρ21 + i(μ�∗ρ31 − �Z21), (3d)

ρ̇32 = − [
i�32 + 1

2

(
1 + μ2)γ + 	2 + 	3

]
ρ32

− i(�∗ρ31 + μ�Z32), (3e)

ρ̇31 = − (
i�31 + 1

2μ2γ + 	3
)
ρ31 + i(μ�ρ21 − �ρ32),

(3f)

where �32 = ω3 − ω2 − ω0 is the detuning away from the
|3〉 ↔ |2〉 transition and Zji = ρ j j − ρii stands for the popula-
tion difference between the states | j〉 and |i〉. In Eqs. (3c)–
(3f), we suppressed the time dependence of all dynamic
variables.

Now, we address the Rabi amplitude � of the field acting
on the SQD. This field consists of the applied field E0 and
the field produced by the MNS at the position of the SQD.
Taking into account the contribution of higher multipoles, the
amplitude of the total field experienced by the SQD reads as
[23,38,39]

ESQD = 1

ε′
s

[
1 + α1(ω0)

2πd3

]
E0 + 1

16π2ε0εbε′
s

×
∑

n

n(n + 1)(n + 1)2

2

αn(ω0)

d2n+4
PSQD, (4)

where ε′
s = (εs + 2εb)/(3εb) is the effective dielectric con-

stant of the SQD, αn(ω) is the MNS’s multipolar polarizability
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of nth order (n = 1, 2, 3, ....) given by the expression [40]

αn(ω) = 4πr2n+1
2

[
ε1 + n + 1

n
ε2(ω)

]
[ε2(ω) − εb] +

(
r1

r2

)2n+1

[ε1 − ε2(ω)]

[
εb + n + 1

n
ε2(ω)

]
[
ε2(ω) + n + 1

n
εb

][
ε1 + n + 1

n
ε2(ω)

]
+ n + 1

n

(
r1

r2

)2n+1

[ε2(ω) − εb][ε1 − ε2(ω)]

, (5)

and PSQD is the SQD’s dipole moment amplitude defined as

PSQD = μ21(ρ21 + μρ32). (6)

As may be inferred from the first term in Eq. (4), the
applied field E0 experiences renormalization (enhancement or
suppression, see below) due to the presence of the nearby
MNS, which is described by the second term in the square
brackets. This originates from the field generated by the
oscillating plasmons in the MNS. Finally, the last term in
Eq. (4) represents the electromagnetic self-action of the SQD
via the MNS: The field acting on the SQD depends on its own
dipole moment PSQD.

Based on the above, the Rabi amplitude � =
μ21ESQD/(2h̄) is expressed as follows:

� = �̃0 + G(ρ21 + μρ32) , (7)

where

�̃0 ≡ �̃0
21 = 1

ε′
s

[
1 + α1(ω0)

2πd3

]
�0, (8)

with �0 = μ21E0/(2h̄) being the Rabi amplitude of the ap-
plied field for the |1〉 ↔ |2〉 transition and

G = μ2
21

16π2h̄ε0εbε′
s

∑
n

n(n + 1)(n + 1)2

2

αn(ω0)

d2n+4
. (9)

The complex-valued quantity G = GR + iGI represents the
feedback parameter, describing the self-action of the SQD via
the MNS [12–16]. It combines all properties of the materials
and the geometry of the constituents, the contribution of
higher multipoles, and it drives the nonlinear SQD-MNS’s
response.

The essential effects of the SQD self-action can be uncov-
ered after substituting Eq. (7) into Eqs. (3d) and (3e). Doing
so, one obtains

ρ̇21 = − [
i(�21 + GRZ21) + 1

2γ + 	2 − GI Z21
]
ρ21

+ i(μ�̃∗
0ρ31 − �̃0Z21) + i[(μG∗ρ∗

21 + μ2G∗ρ∗
32)ρ31

−μGρ32Z21], (10a)

ρ̇32 = − [
i(�32 + μ2GRZ32) + 1

2 (1 + μ2)γ + 	2 + 	3

−μ2GI Z32]ρ32 − i(�̃∗
0ρ31 + μ�̃0Z32)

− i[(G∗ρ∗
21 + μG∗ρ∗

32)ρ31 + μGρ21Z32]. (10b)

As compared with an isolated SQD (G = 0), these equations
contain additional nonlinear terms. Two of these should get
special attention, namely (i) renormalization of the SQD tran-
sition frequencies, �21 → �21 + GRZ21 and �32 → �32 +
μ2GRZ32, and (ii) renormalization of the damping rates of
the off-diagonal density matrix elements, γ /2 + 	2 → γ /2 +
	2 − GI Z21 and (1 + μ2)γ + 	2 + 	3 → (1 + μ2)γ + 	2 +

	3 − μ2GI Z32, both depending on the corresponding popula-
tion differences. As will be shown below, these two effects
are essential in the formation and understanding of the com-
plicated optical response of the composite.

III. PERTURBATION TREATMENT

Prior to studying the general case of arbitrary external
field magnitude |�0|, we briefly consider the low-field limit
(|�0| 
 �B/2) where the perturbation approach is applica-
ble. This will help us to explicitly explore the effects of the
SQD-MNS interaction on the TPA. At |�0| 
 �B/2, the rate
WTPA of the coherent TPA (�21 = �B/2) is given by the
second order perturbation formula

WTPA = 2π

∣∣∣∣ �̃0
21�̃

0
32

i
(

1
2�B − GR

) + 1
2γ + 	2 + GI

∣∣∣∣2 1
1
2μ2γ + 	3

= 2π
μ2

(ε′
s)4

∣∣∣∣1 + α1(ω0)

2πd3

∣∣∣∣4

× �4
0(

1
2�B − GR

)2 + (
1
2γ + 	2 + GI

)2

× 1
1
2μ2γ + 	3

, (11)

where �̃0
21 ≡ �̃0 is taken from Eq. (8) and �̃0

32 = μ�̃0. Note
that in our case, the intermediate state for the TPA is the one-
exciton state |2〉, which, due to the SQD-MNS interaction, is
shifted in energy and broadened by the amounts h̄GR and h̄GI ,
respectively (see the discussion at the end of the preceding
section). This determines the denominator in Eq. (11). The
last multiplier in Eq. (11) represents the density of the final
states.

The modulus factor as a function of frequency, calculated
by means of Eq. (1) for the MNS with r1 = 9 nm and r2 =
10 nm, is depicted in Fig. 3. As follows from the figure,
depending on ω0, this factor can be both larger and smaller
than unity, thus yielding, respectively, either enhancement or
suppression of the TPA rate.

Also, the effect of renormalization of the energetic and
relaxation characteristics of the one-exciton state on the TPA
may be an enhancement or suppression of the TPA; this de-
pends on the relationship between the constants of an isolated
SQD (�B/2, (1/2)μ2γ + 	2) and the SQD-MNS coupling
(GR and GI ). Enhancement occurs for GR ≈ �B/2, GI 

(1/2)μ2γ + 	3, while suppression takes place if |GR| �
�B/2, GI � (1/2)μ2γ + 	3. Summarizing, the complicated
interplay of the two underlined factors determine the final
effect of the MNS on the TPA of the composite (enhancement
or suppression).
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FIG. 3. Frequency dependence of the modulus factor |1 +
α1(ω0)/(2πd3)| for the Au-silica MNS with r1 = 9 nm and r2 =
10 nm, as follows from Eq. (1).

IV. NUMERICAL RESULTS

In what follows, we analyze the effect of the SQD-MNS
coupling on the TPA of the composite beyond the perturbation
regime. Recall that the direct ground-to-biexciton transition
is dipole forbidden. It can be achieved either via consecutive
|1〉 → |2〉 → |3〉 transitions or via simultaneous absorption of
two photons of energy close to E2 − h̄�B/2.

In our numerical calculations, we use parameters typical
for an isolated InGaAs/GaAs quantum dot [33,35], which
absorbs light in the infrared. More specifically, the energies
of the one-exciton and biexciton transitions are, respectively,
E2 = 1.34 eV and E3 = 2E2 − h̄�B with h̄�B = 2.75 meV,
and the radiation decay constants of the corresponding transi-
tions are h̄γ21 ≡ h̄γ = 1.13 μeV and h̄γ32 = 0.91 μeV (μ =

√
γ32/γ21 = 0.81) [35]. As inferred from γ21, μ21 = 0.6 e nm.

The dielectric constant of the SQD is taken to be εs = 13.9.
For the MNS, we chose the inner and outer radius to be
r1 = 9 nm and r2 = 10 nm, respectively, which, according
to Eq. (1), gives the energy of the LSP resonance h̄ωLSP =
1.41 eV, which is around the energies of the ground-to-one-
exciton and one-exciton-to-biexciton transitions as well as the
peak position of the factor |1 + α1(ω0)/(2πd3)|, Fig. 3. As a
measure of the TPA efficiency, the population of the biexciton
state ρ33 is considered.

A. Steady-state analysis

First, we examine the steady-state regime of the TPA
setting the time derivatives in Eqs. (3a)–(3f) to zero. To
solve the resulting system of nonlinear equations, we use the
exact parametric method developed in Ref. [41] (see also
the Appendix). The stability of the steady-state solution is
uncovered by making use of the standard Lyapunov exponent
analysis [42]. To this end, we calculate the eigenvalues λk

(k = 1 . . . 8) of the Jacobian matrix of the right hand side of
Eqs. (3a)–(3f) as a function of |�|. The exponent with the
maximal real part, maxk Reλk , determines the stability of the
steady-state solution: If maxk Reλk � 0 the solution is stable,
while it is unstable otherwise.

Figure 4 illustrates the |�0| dependence of the total field
Rabi magnitude |�| and the populations of the one-exciton
and biexciton states, ρ22 and ρ33, respectively, calculated
for the case when the external field is in resonance with
the one-exciton transition (ω0 = ω2). Three values of the
dephasing rates 	2 and 	3 where considered: 	2 = 	3 = γ

100 102 103 105

100

102

103

105

100 102 103 105

100

102

103

105

100 102 103 105

100

102

103

105

100 102 103 105

0

0.15

0.3

0.45

100 102 103 105

0

0.15

0.3

0.45

100 102 103 105

0

0.15

0.3

0.45

100 102 103 105

0

0.1

0.2

0.3

100 102 103 105

0

0.1

0.2

0.3

100 102 103 105

0

0.1

0.2

0.3

101 102

0

5

10
10-5

FIG. 4. Steady-state solutions for the total field Rabi magnitude |�| and populations of the one-exciton and biexciton states, ρ22 and ρ33,
respectively, as a function of the external field Rabi magnitude |�0| calculated for the case of one-exciton resonance excitation (ω0 = ω2) for
three values of the dephasing rates 	2 and 	3: left column—	2 = 	3 = γ ; middle column—	2 = 	3 = 101.13γ ; right column—	2 = 	3 =
300γ . Solid (dashed) curves show the results obtained for the SQD-MNS hybrid setting the SQD-MNS center-to-center distance d = 16 nm
(isolated SQD). The other parameters are described in the text. Dotted fragments of the curves indicate the unstable parts of the steady-state
solutions. The insets blow up details of the curves.
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FIG. 5. Same as in Fig. 4, but for the case of two-photon resonance excitation (ω0 = ω3/2) and three other values of the dephasing rates
	2 and 	3: left column—	2 = 	3 = γ ; middle column—	2 = 	3 = 4.6γ ; right column—	2 = 	3 = 100γ .

(left column), 	2 = 	3 = 101γ (middle column), and 	2 =
	3 = 300γ (right column). In the calculations, the SQD-
MNS center-to-center distance was chosen to be d = 16 nm.
For this value, the feedback parameter is found to be h̄G =
(1.23 + 0.28 i) meV = (1.09 + 0.25 i) × 103h̄γ , i.e., of the
same order as �B. The results are presented by solid curves.
For comparison, shown by the dashed curves are the results of
similar calculations for an isolated SQD.

From Fig. 4, we observe that the system’s response, first,
exhibits bistability which disappears upon increasing the de-
phasing rates, with 	2 = 	3 = 101.13γ being the threshold
for bistability to break down (middle column). The dot-
marked branch with negative slop is unstable. Second, within
the range of existence of bistability, the biexciton state is
almost unpopulated. This is because, due to the destructive
interference of the external and secondary fields, the Rabi
magnitude |�| is small, namely |�| 
 �B. The biexciton
population becomes notable and large compared to that of
an isolated SQD (enhancement effect) in the pre-saturation

regime, |�| ∼ �B, occurring around |�0| ∼ 100γ . In the
deep saturation regime, |�| � �B, no enhancement of the
TPA is observed.

Finally, in a narrow interval of changing |�0| (shown in the
inset), the steady-state regime is again unstable (left column).
The character of this instability will be discussed in Sec. IV B.

In Fig. 5, we present the results for the same quantities
but now calculated assuming that the external field is tuned
to the two-photon resonance, ω0 = �3/2. In contrast with
the previous type of excitation (ω0 = ω2), the response is
single valued within the whole range of the external field Rabi
magnitude |�0| and dephasing rates 	2 and 	3 considered.
However, for 	2 = 	3 = γ (left column), there exists a wide
range of |�0|, where the system is unstable. This region
shrinks upon increasing 	2 and 	3 and for 	2 = 	3 > 4.7γ

it disappears (see the middle column). Also we observe a
peak value in the overall drastic enhancement of the TPA
within approximately a range of |�0| ∈ [10, 100]γ , before the
transitions become saturated.
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1.88
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2.15

2 4 6 8
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0.15

FIG. 6. Sustained dynamics (after transients are gone) of the SQD populations ρnn(t ) (n = 1,2,3) (left panel) and the SQD dipole moment
magnitude |PSQD(t )| = μ21|ρ21(t ) + μρ32(t )| (middle panel) of the SQD-MNS composite calculated for the case when the external field is in
resonance with the one-exciton transition (ω0 = ω2). Right panel—the Fourier spectrum of PSQD(t ). Calculations where performed for the set
of parameters of Fig. 4 (left column) at |�0| = 615γ residing within the instability region shown in the inset in Fig. 4 (left column, upper plot).
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FIG. 7. Same as in Fig. 6 but for the case of two-photon resonance excitation (ω0 = ω3/2) and the set of parameters of Fig. 5 (left column)
at |�0| = 85γ residing within the instability region.

B. Dynamics

As is deduced from the steady-state analysis, there are win-
dows of instability in the TPA of the SQD-MNS composite. In
this section, we explore the nature of the TPA instabilities. To
this end, we solve the dynamic equations (3a)–(3f) and (7),
considering the SQD initially in the ground state [ρ11(0) = 1]
for a given external field Rabi magnitude |�0| within the
instability window (specified in the figure captions). The
results of calculations are shown in Figs. 6 and 7, which
were obtained for two conditions of excitation: Fig. 6—the
external field is in resonance with the one-exciton transition
(ω0 = ω2) and Fig. 7—the external field is in resonance with
the two-photon transition (ω0 = ω3/2).

The left panel in each figure displays the population dy-
namics after the transient stage is gone, the middle panel—
the dynamics of the SQD’s mean dipole moment mag-
nitude |PSQD(t )|, and the right panel—the Fourier spec-
trum of the SQD’s mean dipole moment, |P̃SQD(ω)| =
| ∫ dt exp(iωt )P(t )| (only the positive-frequency part is
shown). The dynamics in both cases looks like self-
oscillations, which is confirmed by the signal’s Fourier spec-
tra, having a well defined discrete structure of equidistantly
spaced harmonics. Thus, self-oscillations are the only type of
instabilities exhibited by these InGaAs/GaAs SQD-silica-Au
MNS composites.

V. SUMMARY

We conducted a theoretical study of the two-photon ab-
sorption of a composite comprising a semiconductor quan-
tum dot and a metallic nanoshell, considering the SQD as a
three-level ladderlike system with ground, one-exciton, and
biexciton states. The presence of a MNS nearby the SQD is
found to have a large impact on the TPA of the composite
due to two principal effects: (i) renormalization of the applied
field amplitude and (ii) renormalization of the resonance
frequencies and radiation relaxation rates of the quantum
dot, both depending on the quantum dot level populations.
In the perturbation regime, when the biexciton state is only
slightly populated, each of these factors may give rise to both

suppression and enhancement of the TPA as compared to the
TPA of an isolated SQD. The resulting effect is determined by
the complicated interplay of those factors.

The nonlinear regime of the TPA (where the biexciton state
is significantly populated) was analyzed for a particular case
of a resonantly tuned composite comprising an InGaAs/GaAs
SQD and a silica-Au MNS separated by a center-to-center
distance d = 16 nm. We found that the TPA of this het-
erostructure experiences a drastic enhancement compared to
the TPA of an isolated SQD prior to the SQD transitions
becoming saturated. This occurs independently of the type of
excitation, either into the one-exciton resonance or into the
two-photon resonance.

Two more effects were uncovered in our results for the TPA
of the composite that no analog in the TPA of an isolated
SQD: first, bistability of the TPA under the excitation of
the SQD into the one-exciton resonance and, second, the
emergence of a self-oscillation regime in the TPA, existing for
both types of excitations, either into the one-exciton or two-
photon resonance. Both effects were found to disappear upon
increasing the dephasing rates of the excitonic transitions.

To conclude, we note that InGaAs/GaAs SQDs absorb
light in the infrared. When conjugated with MNSs, which
drastically enhance the SQD optical response, they might be
considered as promising candidates for application in biosens-
ing and optical imaging.
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APPENDIX: SOLUTION OF THE STEADY-STATE
PROBLEM

The steady-state problem is governed by the following set
of equations:

γ (Z21 − Z32) + 3i(�∗ρ21 − �ρ∗
21) = −γ , (A1a)

μγ Z32 − i(μ�∗ρ21 − �∗ρ32 − μ�ρ∗
21 + �ρ∗

32) = 0, (A1b)

i�Z21 + (
i�21 + 1

2γ + 	2
)
ρ21 − iμ�∗ρ31 = 0, (A1c)
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μ�Z32 + [
i�32 + 1

2 (μ2 + 1)γ + 	2 + 	3
]
ρ32 + i�∗ρ31 = 0, (A1d)

i(μ�ρ21 − �ρ32) − (
i�31 + 1

2μ2γ + 	3
)
ρ31 = 0, (A1e)

here � is given by Eq. (7). The main steps towards
solving exactly Eqs. (A1a)–(A1e) together with Eq. (7)
are as follows [41]. Consider � in Eqs. (A1a)–(A1e)
as a parameter. This system of linear equations can be
solved analytically. Formally, let us write Eqs. (A1a)–
(A1e) in a matrix form M(�)R = R0, where the column
vectors R = (Z21, Z32, ρ21, ρ32, ρ31, ρ

∗
21, ρ

∗
32, ρ

∗
31)T and R0 =

(−γ , 0, 0, 0, 0, 0, 0, 0)T, while the matrix M can be easily
inferred from Eqs. (A1a)–(A1e) (we do not present its explicit
form). The vector R is found as R = M−1(�)R0, where the
inverse matrix M−1(�) also is known explicitly. Afterwards,
the solutions for ρ21(�) and ρ32(�) are used in Eq. (7) to find
� and furthermore all the density matrix elements ρi j (see
Ref. [41] for detail).

[1] S. Maruo, O. Nakamura, and S. Kawata, Opt. Lett. 22, 132
(1997).

[2] T. Baldacchini, Three-Dimensional Microfabrication Using
Two-Photon Polymerization: Fundamentals, Technology, and
Applications (William Andrew, Oxford, 2015).

[3] K. Svoboda and R. Yasuda, Neuron 50, 823 (2006).
[4] J. H. Strickler and W. W. Webb, Opt. Lett. 16, 1780 (1991).
[5] C. C. Corredor, Z.-L. Huang, and K. D. Belfield, Adv. Mat. 18,

2910 (2006).
[6] N. S. Makarov, A. Rebane, M. Drobizhev, H. Wolleb, and H.

Spahni, J. Opt. Soc. Am. B 24, 1874 (2007).
[7] P. C. Verburg, G. R. B. E. Römer, and A. J. Huis in’t Veld, Opt.

Express 22, 21958 (2014).
[8] M. R. Kalita, J. A. Behr, A. Gorelov, M. R. Pearson, A. C.

DeHart, G. Gwinner, M. J. Kossin, L. A. Orozco, S. Aubin, E.
Gomez, M. S. Safronova, V. A. Dzuba, and V. V. Flambaum,
Phys. Rev. A 97, 042507 (2018).

[9] A. Smolyaninov, M.-H. Yang, L. Pang, and Y. Fainman, Opt.
Lett. 41, 4445 (2016).

[10] B. C. Marin, S.-W. Hsu, L. Chen, A. Lo, D. W. Zwissler, Z. Liu,
and A. R. Tao, ACS Photonics 3, 526 (2016).

[11] J. B. Rabor, K. Kawamura, J. Kurawaki, and Y. Niidome,
Analyst 144, 4045 (2019).

[12] R. D. Artuso and G. W. Bryant, Nano Lett. 8, 2106 (2008).
[13] R. D. Artuso and G. W. Bryant, Phys. Rev. B 82, 195419 (2010).
[14] A. V. Malyshev and V. A. Malyshev, Phys. Rev. B 84, 035314

(2011).
[15] J.-B. Li, N.-C. Kim, M.-T. Cheng, L. Zhou, Z.-H. Hao, and

Q.-Q. Wang, Opt. Express 20, 1856 (2012).
[16] B. S. Nugroho, A. A. Iskandar, V. A. Malyshev, and J. Knoester,

J. Chem. Phys. 139, 014303 (2013).
[17] W. Zhang, A. O. Govorov, and G. W. Bryant, Phys. Rev. Lett.

97, 146804 (2006).
[18] S. G. Kosionis, A. F. Terzis, V. Yannopapas, and E. Paspalakis,

J. Phys. Chem. C 116, 23663 (2012).
[19] B. S. Nugroho, V. A. Malyshev, and J. Knoester, Phys. Rev. B

92, 165432 (2015).
[20] S. M. Sadeghi, Nanotechnology 21, 455401 (2010).
[21] S. M. Sadeghi, Phys. Rev. B 79, 233309 (2009).
[22] M. A. Antón, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-

Granado, J. Cox, and M. R. Singh, Phys. Rev. B 86, 155305
(2012).

[23] B. S. Nugroho, A. A. Iskandar, V. A. Malyshev, and J. Knoester,
J. Opt. 19, 015004 (2017).

[24] B. S. Nugroho, A. A. Iskandar, V. A. Malyshev, and J. Knoester,
Phys. Rev. B 99, 075302 (2019).

[25] C. Loo, A. L. L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West,
and R. Drezek, Technol. Canver Res. Treat. 3, 33 (2004).

[26] C. Loo, L. Hirsch, M.-H. Lee, E. Chang, J. West, N. Halas, and
R. Drezek, Opt. Lett. 30, 1012 (2005).

[27] E. Prodan, P. Nordlander, and N. Halas, Nano Lett. 3, 1411
(2003).

[28] N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, Gold
Bulletin 41, 5 (2008).

[29] C. F. Bohren and D. R. Huffman, Absorption and Scattering of
Light by Small Particles (John Wiley & Sons, New York, 2008).

[30] S. A. Maier, Plasmonics: Fundamentals and Applications
(Springer Science & Business Media, New York, 2007).

[31] J. A. Scholl, A. L. Koh, and J. A. Dionne, Nature (London) 483,
421 (2012).

[32] A. Derkachova, K. Kolwas, and I. Demchenko, Plasmonics 11,
941 (2016).

[33] S. Stufler, P. Machnikowski, P. Ester, M. Bichler, V. M.
Axt, T. Kuhn, and A. Zrenner, Phys. Rev. B 73, 125304
(2006).

[34] G. Jundt, L. Robledo, A. Högele, S. Fält, and A. Imamoğlu,
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