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Generalized dipole correction for charged surfaces in the repeated-slab approach
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First-principles calculations of surfaces or two-dimensional materials with a finite surface charge invariably
include an implicit or explicit compensating countercharge. We show that an ideal constant-charge counterelec-
trode in the vacuum region can be introduced by means of a simple correction to the electrostatic potential in
close analogy to the well-known dipole correction for charge-neutral asymmetric slabs. Our generalized dipole
correction accounts simultaneously for the sheet-charge electrode and the huge voltage built up between the
system of interest and the counterelectrode. We demonstrate its usefulness for two prototypical cases, namely,
field evaporation in the presence of huge electric fields (20 V/nm) and the modeling of charged defects at an
insulator surface. We also introduce algorithmic improvements to charge initialization and preconditioning in
the density functional theory algorithm that proved crucial for ensuring rapid convergence in slab systems with
high electric fields.
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I. INTRODUCTION

Charges at surfaces, interfaces, and two-dimensional (2D)
materials play an important role for creating or tuning macro-
scopic electric fields in a variety of technical applications.
Examples are electronic and optoelectronic devices, chem-
ical sensors, or electrochemistry and corrosion. The origin
and distribution of charges at the atomic scale, as well as
their effect on chemical bonding and chemical reactions, are
intimately linked to the electronic structure. It is therefore
highly desirable to simulate charged surfaces with electronic-
structure theory, notably density functional theory [1]. How-
ever, treating nominally charged systems with feasible system
sizes (typically a few hundred atoms) remains challenging
because long-range Coulomb interactions can introduce sig-
nificant artifacts. In particular, the energy changes associated
with forming and charging surfaces depend on the location
of the countercharge, i.e., on the specific experimental sce-
nario [2–6]. Truncating the Coulomb interactions in the sim-
ulation [7–9] alleviates the convergence issues encountered
with the implicit homogeneous background approach, but the
countercharge setup corresponding to the truncation requires
in general further modeling considerations to connect to the
situation of interest.

For charged point defects, it has become common practice
to extrapolate to the dilute limit of vanishing space charge
via corrections [6,10–15] or scaling considerations [16,17].
For surfaces, which are typically modeled in the repeated-slab
approach, this requires an estimate of the electrostatic energy
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arising from the chosen configuration of the countercharge,
namely, whether it is homogeneously distributed across the
cell [14,15] or confined to the slab [6]. However, the effect
of an artificial field on the calculated properties remains
unclear. There are still other cases where a finite field is
actually required, e.g., for field-induced reconstructions or
field evaporation [4,18–20]. It is therefore desirable to in-
troduce a computational counterelectrode facing the charged
surface as an alternative approach [cf. Fig. 1(a)]. This has
been done previously using a Gaussian sheet charge [18,19].
These investigations employed symmetric slabs because for
asymmetric slabs the field on either side of the slab cannot
be controlled easily. Alternatively, one can achieve this by
imposing special boundary conditions [3]. Here, we present
a conceptually different solution to introduce a computational
counterelectrode with full control over the field on both sides.
The concept is based on an easy to implement correction to
the standard periodic-boundary potential with implicit (ho-
mogeneous) countercharge. The approach is in close analogy
to the well-established dipole correction for charge-neutral
slabs [21], which introduces a sheet dipole layer in the vac-
uum to compensate for the intrinsic dipole of asymmetric
slabs. We therefore name our scheme “generalized dipole
correction.”

The remainder of this paper is organized as follows. In
Sec. II, we summarize the idea and working equations of the
generalized dipole correction. Some methodological improve-
ments of the DFT algorithms relevant for actual calculations
are presented in Sec. III. The application of the method for
field-dependent evaporation curves and charged defect calcu-
lations are presented in Secs. IV A and IV B, respectively. In
the Appendix, we exemplify for the used SPHINX code [22,23]
which settings must be made in a typical DFT input file.
A complete example input as well as a jupyter notebook
within the pyiron framework [24] is provided as Supplemental
Material [25].
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FIG. 1. Sketch of the potential (a) of a charged metallic slab
with counterelectrodes, (b) in the repeated-slab approach including
the generalized dipole correction, (c) the DFT region. The potential
discontinuity at the cut position z0 corresponds to a sheet dipole
layer that compensates the net dipole of the simulation cell (sum of
arrows).

II. GENERALIZED DIPOLE CORRECTION

A. Idea

The main motivation for using the repeated-slab approach
is to employ the highly efficient computer codes and al-
gorithms available for crystalline solids. These codes are
designed to deal with periodic-boundary conditions in three
dimensions. By adding enough empty space (vacuum) be-
tween the slabs and by making the slabs sufficiently thick, the
presence of the periodic images and of the backside surface
can be safely ignored for the surface of interest. The main goal
of our generalized-dipole correction is therefore to decouple
the simulation cell electrostatically from its periodic images,
and to link the energetics to a macroscopic system with
external electrodes as sketched in Fig. 1(a). For simplicity of
notation in the following, we will set the coordinate system
such that the slab is parallel to the x-y plane. The electric
field is parallel to the z axis. The surface unit-cell area will
be denoted by A. c is the size of the repeated-slab cell in the
third dimension, i.e., along the z axis. As we plot the z axis
horizontally from left to right in all diagrams, we will use the
words “left” as synonym for “toward decreasing z values,” and
“right” for “toward increasing z values” throughout this work.
We will further assume that the surface of interest is on the
“right” side.

The macroscopic system sketched in Fig. 1(a) consists of
the charged slab and two ideal counterelectrodes. The total
system is charge neutral, i.e., the slab charge is compensated
by the two electrodes. The charges per area A on each of the

FIG. 2. Potential and charges within the DFT region (cf. Fig. 1)
for different cut positions. Changing the position of the DFT bound-
aries (z0 → z′

0) should not change the potential near the slab. Real
charges placed at z0 would incur changes in energy.

two electrodes are QL and QR, respectively. They define the
electric field between the respective electrode and the slab via

EL = +4π

A
QL, (1)

ER = −4π

A
QR. (2)

As the electronic density rapidly drops toward zero outside the
slab, we can safely restrict the quantum-mechanical [density
functional theory (DFT)] treatment to a small region around
the slab, which will take notice of the external electrodes
by the electrostatic boundary conditions. Apart from the
electrostatic boundary conditions, the DFT region can be
safely approximated with a standard repeated-slab approach,
as the kinetic energy, short-range electrostatics, exchange-
correlation effects, and the ionic potentials are very short
ranged compared to macroscopic dimensions. The first task is
therefore to reconcile the desired potential shape for the DFT
part with periodic-boundary conditions.

To this end, we introduce, similar to what is done in the
dipole correction [21], a cut in the vacuum region at z0, where
the field and potential change discontinuously [see Fig. 1(b)].
The potential between the cut left to the slab and the cut right
to it [Fig. 1(c)] should then be equivalent to that of the slab
sandwiched between two electrodes [Fig. 1(a)]. If, as in Fig. 1,
the fields on the left side EL and right side ER shall differ, a
corresponding charge (in Hartree atomic units)

Q = A

4π
(ER − EL) = −(QL + QR) (3)

must sit on the slab per surface unit-cell area A. This condition
is independent of the slab’s screening properties, i.e., whether
it is metallic (as sketched in Figs. 1 and 2) or behaves as a di-
electric. The main difference between a metal and a dielectric
is how the total charge is distributed within the slab: in a metal,
the surface charges on either side will exactly compensate
the external electrode charges they are facing in order to
ensure that the slab is field-free inside. In a dielectric, there
is no such guarantee. This internal distribution of the excess
charge, however, does not affect the formalism. Indeed, the
total polarization of the slab, the only relevant aspect for the
method, is directly accounted for by the total dipole moment.
Regarding the external distributions of fields, a particular
important case is EL = 0, as this suppresses any changes
from the left surface compared to a field-free neutral slab.

045403-2



GENERALIZED DIPOLE CORRECTION FOR CHARGED … PHYSICAL REVIEW B 102, 045403 (2020)

Reversely, any charged slab produces such a field difference
in open boundary conditions.

B. Potential

However, the repeated-slab approach is typically used for
codes which do not implement open-boundary conditions,
but periodic-boundary conditions (notably to employ plane-
wave basis sets). Solving the Poisson equation of a nominally
charged system with standard periodic-boundary conditions,
e.g., by means of the Fourier method and setting the G = 0
component to zero, is equivalent to implicitly including a
homogeneous compensating background [11,12]. Correcting
from the periodic-boundary solution V pbc to the desired po-
tential shape sketched in Fig. 1

V tot = V pbc + V corr (4)

requires a correction potential V corr that (1) accounts for the
sheet charge of both counterelectrodes at the cut position, (2)
removes the implicit compensating background, (3) fixes the
potential jump at the cut position such that the left and right
fields attain to their desired values, and (4) shifts the potential
by a spatially constant offset to follow some alignment con-
vention.

Formally, the corrections to the potential could be in-
troduced by adding suitable countercharges in the vacuum
region. However, correcting the potential rather than introduc-
ing explicit countercharges and using the Fourier method to
produce the desired potential shape has two advantages. First,
in order to get a converged Fourier series the countercharges
have to be smeared out [4,18]. The smeared-out charge distri-
bution introduces an additional artificial self-energy compared
to an ideal, flat electrode. This self-energy must be accounted
for to arrive at an artifact-free total energy [4]. In general, the
electrode smearing width requires an additional convergence
test with respect to the chosen plane-wave cutoff. Second, in
order to accommodate the total potential drop across the cell,
one would have to separate the left and right counterelectrodes
within the vacuum. This requires, however, a larger vacuum
region where the electron density must be neglible. To create
the required voltage between the two counterelectrodes, one
could use the (conventional) dipole correction with a cut in-
between the two electrodes. Alternatively, one could adjust
dynamically the values of the electrode charges such that
an additional counterdipole is created. For the latter choice,
the artificial interelectrode capacitor energy requires another
correction. This complex procedure is circumvented in the
generalized dipole correction that we propose here, by sep-
arating corrections to the potential and to the energy. First, we
fix the potential without explicitly introducing the electrode
charges. For the energy expression, we then add a simple
extra term that accounts for electrode charges at an arbitrary
position with respect to an isolated slab (see Sec. II C).

The correction potential for Eq. (4) can be compactly
written as (inside the interval 0 � z < c)

V corr (z) =
{

z < z0 : V0 − 2πQ
cA z2 −Ecorrz,

z � z0 : V0 − 2πQ
cA (z − c)2 −Ecorr (z−c)

(5)

with

Ecorr = EL + 2πQ

A
− 4πμ

cA
, (6)

where the slab dipole with respect to z0

μ =
∫

dx dy
∫ z0+c

z0

(z − z0)ρes(x, y, z) (7)

is obtained from the electrostatic charge ρes, i.e., electrons +
nuclear charges. Note that this dipole depends on both the
slab position and z0 whenever the slab is charged. V0 is the
alignment constant adjusted such that the laterally averaged
potential V

tot
right to the slab approaches −zER near the cut

position for reasons discussed below.
The quadratic term in the correction potential compensates

for the implicit homogeneous background. It is furthermore
easy to verify that Eq. (5) correctly describes the desired jump
in the electric field [cf. Eq. (3)]. The jump in the potential is
equivalent to that of the standard dipole correction [21] for an
augmented system comprised of the charged slab and its coun-
terelectrodes placed at the cut. Thus, the generalized dipole
correction can be thought of as simultaneously introducing a
sheet monopole and sheet dipole at z0.

The cut position z0 can be anywhere in the vacuum region
where the electron density is sufficiently low. If the density
were exactly zero, the slab’s dipole and the resulting general-
ized dipole correction to the potential energy would become
independent of z0. In practice, the electronic charge always
decays into the vacuum region from both sides of the slab.
Moving the cut position z0 then gives rise to a small error,
roughly proportional to the total charge contained between the
original and final positions of the cut, and proportional to the
voltage jump at the cut position. This uncertainty also exists
in the standard dipole correction for charge-neutral slabs, but
the voltage drop is typically much smaller (on the order of
1 eV) than in the generalized dipole correction (up to order
of 100 eV). Therefore, in order to minimize the impact of
density tail error, we set the cut position z0 to the minimum
of the laterally averaged electrostatic density at each step in
the self-consistency iteration. Technically, this optimal choice
is not required for applying the correction: the cut position
could alternatively be set by an additional input parameter. In
either case, the numerical noise from the unavoidable tail error
can be further reduced by increasing the vacuum thickness.

Our approach would fail, however, when the desired target
situation is inherently unstable against the escape of electrons
into the vacuum region. This occurs regularly for positively
charged counterelectrodes (e.g., for negatively charged slabs).
If the counterelectrode is put at sufficient distance, the voltage
drop across the vacuum exceeds the binding of electrons
to the slab, and produces unwanted electron states near the
positive counterelectrode that become occupied during the
self-consistent iterations. Trying to adapt z0 to the density
minimum will in general not produce a stable solution. The
experimental analog of this is field emission: a negatively
charged surface will resolve the instability ultimately by
constantly emitting the electrons toward the positive coun-
terelectrode, hindered only by the tunneling barrier near the
surface. In ground-state DFT, such a kinetic barrier does not
exist and the probably best pragmatic solution is to place the
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counterelectrode so close that the critical voltage drop is not
reached.

C. Energy

Until this point, we have corrected the potential such that
it corresponds to that of the slab sandwiched between two
electrodes. So far, the electrode positions zL and zR have not
been needed. For arriving at a consistent energy expression,
we have to make a choice where exactly the electrodes are
located. An obvious choice would be to place them at the
boundary of the supercell, i.e., at z0 − c for the left electrode
and z0 for the right one. Unfortunately, this introduces energy
jumps when we want to dynamically adapt z0 during the
calculation. Figure 2 highlights the problem: if the position
of the electrode depends on z0, the potential and hence the
electrode charge’s potential energy varies if the position shifts
from z0 to a different position z′

0. It is therefore advantageous
to choose fixed, but otherwise arbitrary, electrode positions
zL and zR, which corresponds to the situation sketched in
Fig. 1(a). For similar reasons, the alignment convention for the
potential is chosen such that it does not depend on z0 directly
(e.g., by setting the potential at z0 to zero) or indirectly (e.g.,
by setting the average potential to zero). Instead, we aim at
keeping the right electrode at constant potential. When we
additionally leave the left electrode at constant charge, this
choice makes it easy to interpret charge-transfer processes
between the active right electrode and the slab (see below in
Sec. II D).

The relevant electrode potentials can be extrapolated from
the the potential at the cut position, or rather infinitesimally
above and below it, and the known asymptotic fields EL and
ER. In Fig. 1(a) or Fig. 2, this corresponds to following the
potential trend beyond the boundaries at z0 − c and z0 until
the counterelectrodes at zL and zR, respectively. If we denote
the laterally averaged potential near z0 approached from below
and above as V

tot
< (z0) and V

tot
> (z0), respectively, the electrode

potentials are given by

V
R = V

tot
< (z0) − ER(zR − z0), (8)

V
L = V

tot
> (z0) − EL(zL − z0 + c). (9)

Using the alignment convention introduced above, and noting
that the potential jump at z0 is [cf. Eq. (5)]

V
tot
> (z0) − V

tot
< (z0) = ELc − 4π

A
(μ − Qz0), (10)

this simplifies to

V
R = −ERzR, (11)

V
L = −4πμ

A
− ELzL. (12)

The total electrostatic energy is then given by

E = EDFT + 1
2 (QLV

L + QRV
R

)

= EDFT − 1
2μ EL − 1

2 (QLELzL + QRERzR), (13)

where EDFT is the DFT energy using the corrected electro-
static potential V tot. The last term in Eq. (13) highlights the

trivial dependence on the chosen (virtual) electrode positions
zL and zR. In particular, for a given choice of EL and ER we can
use the first two terms as an internally consistent total energy
expression. This is the expression used in our implementation
in SPHINX [22,23]. It corresponds to the (unphysical) situation
of extrapolating the two virtual electrodes to zR = zL = 0.
Satisfyingly, it also corresponds to the energy expression of
the traditional dipole correction (for Q = 0) in the presence of
an additional external field EL.

D. Energy derivatives

The above energy expression corresponds to a well-defined
charge-neutral DFT setup, namely, the charged slab sand-
wiched between the two virtual electrodes with an overall
compensating charge. Therefore, all common derivatives can
be immediately evaluated in the usual way. No explicit cor-
rection terms are needed for forces (derivative with respect
to nuclear coordinates), eigenvalues (derivatives with respect
to occupation numbers), or the Fermi energy (derivative with
respect to electron number), provided that the corrected elec-
trostatic potential V tot [Eqs. (4) and (5)] is used instead of the
periodic-boundary version.

However, some additional comments are appropriate. First,
fixing the electrode positions in space breaks the usual transla-
tional invariance along z in periodic boundary conditions. The
sum of the nuclear forces is therefore not zero in general, but
amounts to ∑

i

F i
z = 1

2
QEL + 1

2
QER

= A

8π
[(ER)2 − (EL)2]. (14)

This is not a computational artifact, but reflects the balance
between the well-known Maxwell stresses on the left and right
sides. Ignoring these forces would introduce an unphysical
compensating force acting directly on each atom without a
physical basis.

For the case of an external counterelectrode facing the
surface, i.e., EL = 0, the Maxwell stress in a real experimental
setup is compensated by mounting the charged sample me-
chanically on the back side. In geometry optimization, we
simulate this by fixing the positions of the first few layers on
the back side (left). The Maxwell stress then puts the slab
under tensile strain, which is physical. Indeed, we observe
an expansion in the free part of the slab in this case. The
stresses for fields relevant to field evaporation experiments
(∼10–100 V/nm) amount to 0.4–44 GPa. If the countercharge
in experiment was located inside the material (e.g., band
bending due to Fermi-level pinning at the surface), this would
be simulated by setting ER = 0 and EL = 4πQ/A, and fixing
the left side, which would put the slab under compressive
strain.

A second comment concerns the Fermi energy, i.e., the
derivative with respect to electron number and hence with
respect to the charge Q. If we keep the left side field fixed
(assuming that the surface of interest is the right one), any
change in the slab charge must be compensated by the right
electrode charge. The Fermi energy therefore corresponds to
the voltage between the right electrode and the electronic
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subsystem in the slab. Any changes to the nominal charge
would be realized by a current flowing between the electronic
subsystem and the right electrode. The voltage then changes
like in a standard plate capacitor. Of course, if the left elec-
trode’s charge is nonzero, the change in the total voltage drop
between the left and right electrode �U = �(V

L − V
R

) upon
charging contributes 1

2�UQL to the overall energy.
Of course, we verified the agreement between the analyt-

ical derivatives and their numerical counterparts from finite
differences for our implementation in SPHINX [22]. We found
excellent agreement within the numerical accuracy of the
calculation (10−4 eV for Fermi energy, 10−5 hartree/bohrs
for forces). Moreover, we used the convergence behavior of
our direct energy minimization algorithm [26] down to 10−10

hartree as a sensitive check for the consistency between the to-
tal energy and the Hamiltonian (derivative with respect to the
density matrix) and also the Kohn-Sham eigenvalues. Finally,
the energy is independent of z0 to within the expected accu-
racy, i.e., it has the desired property of being invariant to shifts
in the position of the compensating charge and dipole layer.

III. IMPROVEMENTS ON SELF-CONSISTENT
FIELD ITERATIONS

One of the challenges for actual calculations turned out to
be the high sensitivity of the potential to incorrect distribu-
tions of the charge. For instance, shifting 0.01 e from the left
to the right side of a 20 Å thick slab with a surface area of
10 Å2 incurs a voltage drop of 3.6 V between the surfaces.
This is sufficient to dramatically modify the occupation of
surface-related states. The occupation changes imply even
larger redistribution of charge across the surfaces than the
original fluctuation. In consequence, they render the self-
consistent iterative procedure unstable.

The misplacement of charge originates from the charge
initialization, as discussed below in Sec. III A, or from fluc-
tuations arising from the self-consistent field iterations. The
latter are commonly and efficiently suppressed by density
preconditioners such as the Kerker preconditioner K̂ , written
in reciprocal space as [27,28]

K̂�ρ(G) = |G|2
q2

TF + |G|2 �ρ(G). (15)

The physical model underlying the Kerker preconditioner is
a homogeneous Thomas-Fermi metal with screening length
qTF. At the slab surface, this model is very inaccurate and
produces density fluctuations that leak into the vacuum region.

However, similar to the standard dipole correction for
neutral slabs, a temporary escape of electron density into
the vacuum region during the self-consistent iterations must
be strictly avoided. The reason lies in the calculation of the
dipole moment and the associated electric correction field: in
the absence of density in the vacuum, the total dipole moment
depends on the cutting position only trivially via the shift of
the reference position [cf. Eq. (7)]. Otherwise, if the cutting
position is shifted by �z, the dipole additionally changes by
�zρ(z0)cA. If the cutting position is determined dynamically
in each step from the minimum of the density profile ρ,
fluctuations of the charge density may shift the cutting

position from iteration to iteration. The associated quasiran-
dom fluctuations in the correction field prevent progress in the
self-consistency unless severe damping is employed. But even
when the cutting position is fixed, charge fluctuations may
cross the cutting boundary and lead to severe convergence
problems.

The solution to this dilemma is a preconditioner that
accounts for the local material’s behavior. A conceptually
straightforward, very powerful model for the related problem
of potential mixing has recently been proposed by Lin and
Yang [29]. They termed it “elliptic preconditioner” due to the
appearance of an elliptic differential equation that must be
solved numerically. We adapted the idea to density mixing,
and describe it in Sec. III B.

A. Charge initialization

In many DFT codes the initial charge density is set up from
an overlap of atomic charge densities. In order to arrive at a
charged slab, it is tempting to rescale the electron density

ρ̃(r) = λρ(r) with λ = 1 − Q/Nel, (16)

where Nel denotes the number of electrons in the charge-
neutral case. This corresponds to distributing the excess
charge over the entire slab. In the self-consistent solution,
however, the excess charge will sit in the near-surface region.
For conditions relevant to field evaporation (EL = 0, ER =
1010–1011 V/m corresponding to surface charge densities
of 0.006–0.06 e/Å2), this discrepancy may lead to dramatic
distortions of the effective potential, raising the surface region
far above the bulklike part [see Fig. 3(a)] and spilling the
associated electron density all over the supercell.

To prevent this, we introduce the charge not by rescaling,
but by adding an additional Gaussian layer density

ρ(z) = Q

√
π

β
e−(z−zc )2/2β2

(17)

with a default broadening of β = 1 bohrs. The center position
zc is placed at the rightmost atomic layer. For positive charges
(removing electrons), this reduces the electron density. De-
pending on the surface roughness, this might lead to artificial
negative electron densities in the setup. These may be avoided
by increasing the broadening and/or shifting the center of
charge zc deeper into the slab. Alternatively, one can also
place spherical Gaussian charges on each surface atom, which
yields similar results. SPHINX [22,23], our plane-wave DFT
code that we used to implement the approach, supports both
Gaussian layers and localized Gaussian charges at arbitrary
positions as well as combinations thereof.

The key advantage is that the initial potential is already
much closer to the final potential [see Fig. 3(b)], producing a
realistic electronic structure right from the outset, even if the
surface dipoles are vastly off.

B. Elliptic preconditioner

As elegantly outlined by Lin and Yang [29], the self-
consistent procedure can be viewed as fixed-point iterations

V (n)(r) → V (n+1)(r). (18)
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FIG. 3. Potential for electrons, averaged over the x-y plane, of
a charged slab from (a) a rescaled electron density and from (b) an
initial density with a additional Gaussian layer charge (blue curve)
with comparison to the self-consistent potential (red curve). Note the
different scale.

The mapping is performed by taking a given DFT potential,
solving the Kohn-Sham equation, constructing a new density,
and computing a new potential from it. As is well known, this
can be rewritten as iterations of the error

δV (n) = V (n) − V scf (19)

from the self-consistent potential V scf . From this viewpoint,
each step corresponds to calculating the electronic response
to a slightly perturbed ground-state system. Near the solution,
this response can be linearized. The mapping from one iter-
ation to the next is then dictated by the response properties
of the self-consistent solution: The density δρ

(n)
out induced

by δV (n) reflects the polarizability (written here as a linear
operator χ̂)

δρ
(n)
out = χ̂δV (n). (20)

The resulting potential is obtained by computing the change
in the Coulomb (also known as Hartree) and exchange-
correlation potential. This can be written in linearized form
as the Hartree-exchange-correlation kernel v̂Hxc:

δV (n)
out = v̂Hxcδρ

(n)
out . (21)

Combining Eqs. (20) and (21) leads to

δV (n)
out = v̂Hxc χ̂ δV (n), (22)

which can be inverted to give the ideal step toward the self-
consistent solution

�V = −δV (n) = (1 − vHxc χ̂ )−1
(
V (n)

out − V (n)
)
. (23)

The main idea of the elliptic preconditioner introduced in
Ref. [29] is to approximate Eq. (23) by a differential equation

{−∇(a(r)∇ ) + 4πb(r)}�V = −∇2
(
V (n)

out − V (n)
)
. (24)

The motivation is that setting a(r) = 1 and b(r) = 1
4π

q2
TF

yields the Kerker preconditioner, while b(r) = 0 and a(r) = ε

yields a simple scaling 1/ε appropriate for a homogeneous
dielectric. In other words, a(r) accounts for the local dielectric
screening and b(r) for the local metallic screening in the
Thomas-Fermi approximation.

For density mixing, we seek to obtain the optimal density
step �ρ from the residue R(n) = ρ

(n)
out − ρ (n). For this, we

propose an almost identical differential equation to Eq. (24),
namely,{

1 +
(

− 1

4π
∇(

[a(r) − 1]∇) + b(r)

)
v̂C︸ ︷︷ ︸

P̂

}
�ρ = R(n). (25)

The subtle difference is that the Hartree-exchange-correlation
operator v̂Hxc that connects the error in potential to the one in
density [cf. Eq. (22)] has been replaced by a pure Coulomb po-
tential v̂c = −4π (∇2)−1 in periodic-boundary conditions with
a special alignment convention. Namely, the operator P̂ on
the left-hand side of Eq. (25) should be interpreted as adding
the Hartree-potential-induced density. We force this induced
density to carry no net charge by adjusting the alignment of
the potential v̂C�ρ: only the metallic contribution b(r) is able
to change the net charge. A constant shift in the potential will
therefore add charge proportional to b(r). Enforcing charge
neutrality is straightforwardly achieved by first evaluating a
preliminary induced density ρ ′

ind at an arbitrary alignment, and
then setting

ρind(r) = ρ ′
ind(r) − b(r)

∫
d3r ρ ′

ind(r)∫
d3r b(r)

. (26)

An approximate solution S to the differential equation (25)
is obtained iteratively by a conjugate-gradient scheme until

|(1 + P̂)S − R| < ε|R| (27)

for a relative accuracy ε = 10−5. This approximate solution
then acts as the preconditioned residue in a standard DIIS
density-mixing scheme [28].

The final task is to find a suitable recipe for dielectric and
metallic polarizability functions a(r) − 1 and b(r). Since we
are mostly interested in metallic slabs, we use

a(r) = 1, (28)

b(r) = 1

4π
q2

TF(ρ̃e(r)) (29)

as a pragmatic approach. Here, ρ̃e is a Gauss-broadened
version (β = 1 bohrs) of the initial density, and

q2
TF(ρ̃) = 4

(
3ρ̃

π

)1/3

(30)
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is the Thomas-Fermi screening length. For small electron
densities ρ̃ < 10−3 e/bohrs3, we set b to exactly zero. The
resulting function is again Gauss broadened (β = 1 bohrs).
The motivation for the broadening is to smoothen the rapid
variation of the screening behavior near the atomic cores,
which would lead to an artificial localization of screening
charge due to the most problematic long-wavelength fluctua-
tions near the cores within the model. The chosen broadening
is a compromise: to dampen fluctuations near the atomic
cores, large values are desirable, but too large values spill the
screening response at the surfaces into the vacuum region.

One advantage of this setup is that by construction, the pre-
conditioner cannot produce artificial densities in the vacuum
region. Of course, for complex systems containing metallic
and nonmetallic regions, more refined recipes must be de-
veloped to avoid metallic behavior (which we associate here
with the presence of electron density) in insulating material.
Nevertheless, the present procedure even works reliably for
insulator slabs such as the ones discussed in Sec. IV B.
For semiconducting slabs, however, direct minimization, [26]
turned out to be the fastest algorithm in our calculations, even
if the slabs are charged.

In our calculations, the computational effort to solve the
preconditioner equation (25) amounted to 1%–2% of the total
time. We therefore did not explore the various opportunities
to improve the algorithm. For instance, the broadening may
allow for a reduced mesh when solving the elliptic pre-
conditioner equation. However, care must be taken to make
sure that the preconditioning does not remove components
that cannot be represented in the reduced mesh. This would
introduce an implicit filtering on the preconditioned residue
and prevent any improvement on the filtered-out components.
Therefore, we always replace the approximate, potentially
filtered solution S′ from the employed solver by

S = R + F−1[S′ − (1 + P̂)S′]. (31)

The F−1 operation interpolates from the reduced mesh to the
fine mesh, e.g., by a Fourier interpolation. The third term
corresponds to the filtered representation of R contained in
S′ (to within the accuracy of the solution). In other words,
we replace the filtered component of R contained in S′ by its
unfiltered one (first term).

The advantage of the elliptic preconditioner is visible al-
ready for neutral slabs. In Fig. 4, we show the convergence of
the self-consistent field iterations for a 10-layer Al(111) slab
with various thicknesses of the vacuum separation. No dipole
correction was used. Using a dipole correction even worsens
the convergence for the Kerker preconditioner. It is apparent
that the Kerker-preconditioned cases sensitively depend on
the vacuum separation, probably due to temporary charge
fluctuations that leak into the vacuum region. In contrast,
the elliptic preconditioner not only significantly speeds up
convergence (similar to the observations made in Ref. [29]),
but also entirely removes the vacuum dependence. The impact
for thicker slabs and charged slabs is even larger, as such
calculations often failed to converge with the Kerker precondi-
tioner. In contrast, the elliptic preconditioner guaranteed rapid
convergence in all test cases.
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FIG. 4. Convergence behavior of neutral 10-layer Al(111) slabs
with three differerent vacuum thicknesses for the Kerker and elliptic
preconditioners (see text).

IV. APPLICATIONS

A. Field evaporation

In order to investigate thermally driven field evaporation,
it is necessary to explore the potential energy surface in
the presence of a surface electric field. In particular, we are
interested in positive biases, i.e., positively charged surfaces.
The left side of the slab is kept field free (EL = 0). The field
driving the evaporation is thus solely described by the field
on the right side E = ER, and we omit the R superscript from
the right field from now on. The generalized dipole correction
is a valuable framework for investigating such potential en-
ergy surfaces. As demonstration, we consider the case of an
adsorbed Al atom on Al(111). Sanchez et al. were the first to
study this prototypical case by means of DFT [19]. Lacking
the generalized dipole correction, they employed an explicit
Gaussian countercharge and a necessarily symmetric setup
(with adatoms on both sides of the slab), which restricted the
affordable complexity to such a relatively simple case. More-
over, they neglected relaxation within the surface in response
to adatom desorption, probably to avoid the additional com-
putational cost. Our approach, on the other hand, is capable of
handling complex situations such as desorption from a step
or from a kink site and we have recently shown how such
investigations provide new insights into the previously poorly
understood desorption mechanism [20].

Sufficiently high above the surface, any atom will be able
to transfer some electrons to the surface and acquire a positive
charge [19,20]. This ion will then move in the electric field
toward the counterelectrode. In the potential energy surface,
this yields a steady lowering of the energy as the atom moves
away from the surface. For the desorption of a single ion,
its z coordinate is therefore a suitable reaction coordinate to
describe its evaporation [19]. In order to explore the energy
landscape orthogonal to the reaction coordinate, the z coor-
dinate of the atom of interest is kept at a fixed value, while
all other atoms are relaxed except for the left 2–3 layers to
prevent the slab from drifting in the field as described in
Sec. II D. This is in contrast to the approach taken by Sanchez
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FIG. 5. Binding curves for an adatom on Al(111) for various
electric fields. �z is displacement from the equilibrium position for
fields below 19 V/nm. Black arrows mark the top of the desorption
barrier. For higher fields, �z = 0 corresponds to the inflection point
(see text). Orange arrows mark the inflection point.

et al. in their study on adatoms, where they kept the entire
substrate fixed [19].

All DFT calculations for this work were performed in
the local-density approximation (LDA) with the SPHINX

code [22]. For field evaporation calculations, a plane-wave
basis set with an energy cutoff of 20 Ry and norm-conserving
pseudopotentials were used. The k-point sampling for the
4 × 4 Al(111) slab with 16 surface atoms and 128 atoms in
total (8 atomic layers) was 4 × 1. Calculations for a 5 × 5 cell
yield very similar results. Atoms were relaxed until the forces
were below 10−4 hartree/bohrs using our recent geometry
optimizer [30], which is ideally suited to capture global strain
from the Maxwell stresses.

From a series of calculations for various values of z
for a certain field E , we obtain the binding-energy curve
E (z, E ). Figure 5 shows this for the Al adatom. The binding
curve shows a minimum when the atom is in its equilibrium
position, a maximum at the barrier for desorption and the
aforementioned steady slope far above the surface. The energy
difference between the minimum and maximum corresponds
to the thermal barrier for desorption �Edes(E ). Following
Sanchez et al. [19], one can now straightforwardly obtain
barriers as a function of applied field and determine thus the
critical “zero-barrier” field Ezbf where the barrier vanishes.

In practice, geometry optimization at fields near the critical
one on a more complex surface can be challenging because
surface atoms in other sites than the investigated one may be
close to evaporation, too. The finite displacements during op-
timization may then move such an atom beyond its desorption
barrier, and remove it from the surface in subsequent steps. It
is therefore desirable to extrapolate the zero-barrier field from
subcritical fields. As we will see in a moment, the generalized
dipole correction provides the perfect framework to achieve
this.

For this, we focus on the inflection point of the desorption
curve marked with orange arrows in Fig. 5, which is easily

FIG. 6. Force −dE/d�z at the inflection point (cf. Fig. 5) vs
applied electric field for an adatom on Al(111). A negative sign
indicates a force pointing toward the surface.

determined as the maximum of (retracting) force on the con-
strained atom along the reaction coordinate. As long as there
is a finite barrier, the inflection point falls in-between the local
energy minimum (equilibrium position) and the local energy
maximum (top of the barrier). At the zero-barrier field, the
local minimum and maximum merge into the inflection point,
and the retracting force becomes zero. However, in contrast
to minimum and maximum, the inflection point is still well
defined beyond this critical field. As long as the geometry
optimization runs stably, it is easy to determine the force at
this point.

Figure 6 shows the force on the adatom at the inflection
point for different fields. It is apparent that crossing the zero-
barrier field does not induce any special features and the force
continues to increase linearly with the field. This implies that
the effective charge on the reaction coordinate only weakly
depends on the applied field near the critical field strength.
Figure 6 also shows the zero-barrier field strength as 19 V/nm
(18 V/nm for the 5 × 5 cell, not shown), in good agreement
with Sanchez et al. [19]. Apparently, relaxation of the atoms
within the close-packed surface plays a minor role for the
desorption energetics of a single adatom. For more complex
surface structures, however, significant rearrangements oc-
cur [20].

Yet, we can go one step further than just observing the
linearity of the maximum constraining force with applied
field. For this, we recall that varying the field corresponds to
varying the surface charge, and that the Fermi energy reflects
the corresponding derivative of the DFT energy (13). On
the other hand, the constraining force Fξ (with ξ being the
reaction coordinate, in the case of the adatom its z coordinate)
is equivalent to the change of the DFT energy with respect
to the reaction coordinate. Thus, we can express the total
energy’s double derivative with respect to field and reaction
coordinate (which has the physical dimension of a charge) in
two ways as

∂Fξ

∂E = − A

4π

∂2E tot

∂Q∂ξ
= A

4π

∂EFermi

∂ξ
. (32)
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The derivative of the Fermi energy with respect to the re-
action coordinate can be determined numerically from the
calculations used for the binding curve at a given field at
negligible cost. Indeed, we find very good agreement for the
effective “desorption charge” of 0.81 (± ∼ 0.02 depending
on the interpolation scheme for forces and Fermi energies)
obtained in this way with the average slope of the force
curve in Fig. 6 (0.79, from linear regression). This equivalence
offers a way to determine critical fields from a rather coarse
mesh of applied fields, thereby reducing the computational
effort.

We note in passing that the change in the Fermi energy
would be directly related to the change in the slab dipole
μ from Eq. (7) if the surface dipole on the left side was
independent of the slab charge and the changes on the right
surface. However, at finite slab thickness we do observe
small, rather unsystematic variations of the left-side work
function due to the incomplete decay of Friedel oscillation
from the right surface. Therefore, extracting the field depen-
dence of the constraining force from the Fermi energy is more
accurate.

B. Surface defect calculations

As a second application, we used the counterelectrode
approach realized by the generalized dipole correction for
the calculation of the formation energy of a charged defect
at a surface. The problem with almost all charged defect
calculation is that the charge compensation in the simulation
differs from the experimental situation, and in most cases is
even “unphysical” in the sense that such smeared-out charge
distributions overlapping with the actual atoms, as they are
used in simulations, do not exist in reality. In particular,
it was criticized that the interaction between the homoge-
neous background [14,15] or a rescaled nuclear charge [6]
at the (sub)atomic level introduces errors that are not well
understood and therefore difficult to quantify. The generalized
dipole correction gives the chance to move the compensating
charge away from the electronic system into the vacuum,
where the electrostatics is well understood. The purpose of
this part is therefore twofold: demonstrate that (1) charged
defects at surfaces can be calculated without artificial charge
distributions that overlap with the quantum system, and that
(2) the results agree well with the traditional homogeneous
background approach.

Specifically, we illustrate the approach for the oxygen
vacancy at the MgO(100) surface in the +2 charge state
as an example. To model the defect, we use an eight-layer
MgO(100) slab with an oxygen vacancy at the right surface.
The vacuum region is 15 Å wide. The surface unit cells
are multiples of the conventional four-atom square unit cell.
For these calculations, the projector-augmented wave (PAW)
formalism was used [31]. The PAW setups for Mg and O
were taken from the VASP database [32]. The plane-wave
cutoff was 28 Ry, and 2 × 2 × 1 k-point sampling with offset
[ 1

2 , 1
2 , 1

4 ] was used for all supercells. We tested both the self-
consistent field algorithm with the elliptic preconditioner of
Sec. III B as well as the direct minimization algorithm [26].
Both work, but in contrast to the metallic Al slab, we found the
direct minimization to be more efficient for MgO, a common
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FIG. 7. Sketch of electron potential shape along z direction
for three different boundary conditions (see text): right-side field,
left + right field, and standard periodic boundary conditions with
implicit homogeneous background. The potentials are shifted from
their usual alignment for visibility. The shown z range encompasses
∼1.15c for clarity. Dashed lines correspond to fully relaxed cases
(ionic screening within the entire slab, i.e., without a frozen region),
where this is possible (see text). The positive defect is located near
the right surface.

observation for systems with a gap or a low density of states
at the Fermi level within DFT.

The formation energy of a defect depends on the chem-
ical potentials in the target scenario [13]. For oxygen, we
choose the oxygen molecule in the triplet state as reference.
The electron chemical potential, i.e., the Fermi level in the
target scenario, was set to the bulk valence band maximum
(within DFT-LDA) in order to allow for a comparison with
the formation energy in the bulk. The value, 5.5 eV below the
vacuum level, was obtained from a separate bulk calculation,
which was then aligned to the defect-free slab’s energy scale
via the electrostatic potential in the center of the slab. We did
not consider band bending, i.e., the value corresponds to the
dilute limit at negligible defect concentrations.

We compare three different boundary conditions. Their
potentials along the z direction (averaged over the x-y plane)
are illustrated in Fig. 7. The three cases are the conventional
homogeneous background (“hom. background,” black line
in Fig. 7) [14], the generalized dipole correction with zero
field at the back side (“right-side field,” red line), and the
symmetric-field case with fields of equal magnitude, but op-
posite direction on the right and left sides (“left+right field,”
blue line). The left+right field case is realized by setting
the left field EL to +2πQ/A. We also attempted calculations
where the entire field is on the left side, but observed di-
electric breakthrough in all cases. As explained above, the
net force on a charged slab does not vanish in general, and
we therefore fixed the positions of the two back-side layers
on the left. As shown in Fig. 7, the suppression of ionic
relaxation modifies the screening in the lower part of the slab.
For the homogeneous background and the left+right field
cases, this restriction can be lifted as the net force vanishes in
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FIG. 8. Comparison of calculated formation energies of the oxy-
gen 2+ vacancy at MgO(001) in the dilute limit obtained from a
homogeneous background approach and the present counterelectrode
approach for various supercell sizes. All cases have been corrected
for artificial interactions in the repeated-slab approach [14]. The
chemical potential for the electrons (Fermi energy) is set to the
bulk valence band maximum. The solid and dashed lines are linear
regressions to the partially relaxed and fully relaxed cases, respec-
tively. A 1/A convergence trend is observed. The red dotted line
serves as a guide to the eyes, connecting the calculated values for
the right-side-field case.

these setups. We therefore included these cases with complete
ionic relaxation, too (dashed lines). Outside the slab, in the
left-side vacuum region, this leads to a constant potential
offset compared to the partially frozen cases, but no qualitative
change in the overall profile.

Charged defect calculations need finite-size correc-
tions [6,10–15]. The counterelectrode approach is no ex-
ception. We therefore implemented the generalized dipole
correction also in the sxdefectalign2d code [14]. Indeed,
since the total energy strongly depends on the placement of
the counterelectrode(s), formation energies without correc-
tions are entirely meaningless. In our case, finite-size correc-
tions reached several 10 eV in some cases, mostly accounting
for the effective capacitor energy. For the relaxed part of the
MgO slab, we determine a dielectric constant of εr = 9.8 from
a line fit of the effective potential [14]. For the unrelaxed part
(electronic screening only) we find εr = 3.36.

In Fig. 8, we compare the resulting formation energies
extrapolated to the dilute limit obtained from the various
approaches for different supercell sizes. We observe that,
for a given, sufficiently large supercell size, the different
approaches agree to within ∼0.1 eV. The most dramatic
exception is the right-field case for the smallest surface cell
(3 × 3). However, the applied field in this case is very large
(47 V/nm). While we do not observe any indications of bond
breaking (note that the Al adatom evaporates spontaneously
at half that field!), the field noticeably distorts the surface
structure of MgO. In consequence, linearizing the screening
response, as assumed in the correction, does not work well. As

a result, the effective position of the charge in the correction
procedure is too high (≈1 Å above the other cases). Yet,
already at 27 V/nm, the corrections work very well.

It is also noticeable that the electrostatic corrections do
not fully remove the size dependence with respect to the
surface unit cell. This trend is essentially independent on the
electrostatic boundary conditions used. The error seems to
scale linearly with the surface concentration of the defect,
1/A. We were not able to identify the underlying interaction
mechanism; it might be an insufficient modeling of the lateral
electrostatics, residual strains, or a combination thereof. The
crucial point here is that the counterelectrode approach and
the conventional homogeneous background approach give
very similar effects. One motivation for including the fully
relaxed calculations was to check if the modified screening at
the relaxed/frozen boundary is responsible for the observed
effects, but from Fig. 8 we conclude that it is not an important
factor.

Assuming that the apparent 1/A behavior persists to the
limit of infinite supercell sizes, we can extrapolate the for-
mation energy of the vacancy at the surface to 3.0 eV. This
can be compared to the bulk value of 3.2 eV obtained with an
equivalent computational setup (DFT-LDA, same PAW poten-
tials, same plane-wave cutoff, 2 × 2 × 2 k-point sampling in
a 4 × 4 × 4 supercell of the conventional eight-atom unit cell,
full relaxation, bulk defect corrections [12]). In other words,
the +2 vacancy at the surface is slightly (by 0.2 eV) more
stable than in the bulk.

V. CONCLUSIONS

In this work, we introduce a “generalized dipole correc-
tion” as an efficient means to realize a computational coun-
terelectrode of charged slab calculations in periodic-boundary
conditions. The correction can be applied to any plane-wave
DFT code at a negligible computational cost. The correc-
tion can be thought of as introducing a compensating sheet
monopole and sheet dipole layer in the vacuum between the
slabs. It thereby efficiently decouples the periodic images
and produces boundary conditions equivalent to an isolated
slab sandwiched between the electrodes (cf. Fig. 1). At the
position of these electrode layers, the electric potential and
the electric field are discontinuous. The energy expression is
chosen to mimic the isolated case, thereby removing any de-
pendence on the artificial vacuum size or placement of the cut
position.

We then introduced two key improvements to the standard
DFT formalism. These are critical to overcome the slow
electronic convergence of traditional DFT approaches when
considering slabs in large electric fields. The first regards the
initialization of the charge density. It is required to achieve a
realistic field distribution right at the beginning. The second
is an implementation of the elliptic preconditioner for self-
consistent field iterations, adapted here to the case of density
mixing. We provide an explicit, pragmatic approach to deter-
mining the screening model for repeated slabs. Despite the
screening model’s conceptual simplicity, it works extremely
well for metallic slabs and reasonably for semiconducting
ones.
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Finally, we demonstrated that the generalized dipole cor-
rection can be used to investigate field evaporation at huge
electric fields. It is thus ideally suited to understand the fun-
damental processes in atom probe tomography. Likewise, the
counterelectrode approach realized by the generalized dipole
correction provides an efficient way to perform charged-
defect calculations at surfaces. We hope (and expect) that
the generalized dipole correction is going to be implemented
in major plane-wave DFT codes. Thereby, it will open the
way for simulating electrified surfaces in a more direct
and computationally more efficient way than was possible
before.
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APPENDIX: INPUT FILE SETTINGS

The methodology presented here requires rather few addi-
tions to a typical input file for any DFT code (and hence can be
implemented in a user-friendly manner). In order to illustrate
this point, we discuss in the following the characteristic items
in the input file for the SPHINX code [22]. In addition to
the source code [23] for installations on high-performance
computers, we provide a compiled binary version of the
SPHINXcode as a conda package [33] for testing. We believe
that other codes can come up with a similarly lean user
interface to simplify application of the methodology. Figure 9
presents an excerpt of the SPHINX input file for a charged-
defect calculation (3 × 3 cell). Key lines relevant for the
methodology discussed in this work are highlighted and will
be discussed in the following. For clarity, we omitted all parts
of the input file relating to defining the atomic positions, the
PAW potentials, and the basis set.

Lines 20–22, highlighted in light green, reflect the key
settings for computing charged slabs with the generalized
dipole correction. These lines define, in the given order, the
nominal charge (+2 = two electrons less), the use of the
(generalized) dipole correction, and EL (parameter zField,
in units of V/bohrs). In this particular case, EL was chosen
such that the fields are equal and opposite on both sides of the
slab. zField is an optional parameter, the default is zero field
on the left side.

The charge initialization (see Sec. III A) is set up in lines
27–34, highlighted in blue. In this particular case, the total
charge of +2 is distributed over the four Mg neighbors next
to the vacancy located in the right layer at (0,0,23.5) (in units
of bohrs), using a Gaussian charge on each of these sites. This
choice was made because it places the initial charge in the
rightmost layer (where we expect the dominant localization)
in the lateral vicinity of the vacancy.

The elliptic preconditioner for the self-consistent iterations
as introduced in Sec. III B is requested in line 47 (highlighted
in red). In the present implementation, the preconditioner
has no input-controlled parameters. Finally, since the cal-
culation type is geometry optimization (lines 39–41 request
our on-the-fly parametrized redundant internal-coordinate op-
timizer [30]), line 42 (highlighted in purple) switches off the

FIG. 9. Key items of the input file for a charged-defect calcu-
lation with SPHINX (see text). For clarity, some parts of the input
file are omitted. The full input file is available as Supplemental
Material [25].

force drift filter which normally removes the net force by
adding a small, constant compensating counterforce on each
atom. The need for keeping the net force was discussed in
Sec. II D.
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