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We study how a system of one-dimensional spin- 1
2 fermions at temperatures well below the Fermi energy

approaches thermal equilibrium. The interactions between fermions are assumed to be weak and are accounted
for within the perturbation theory. In the absence of an external magnetic field, spin degeneracy strongly affects
relaxation of the Fermi gas. For sufficiently short-range interactions, the rate of relaxation scales linearly with
temperature. Focusing on the case of the system near equilibrium, we linearize the collision integral and find the
exact solution of the resulting relaxation problem. We discuss the application of our results to the evaluation of
the transport coefficients of the one-dimensional Fermi gas.
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I. INTRODUCTION

Relaxation of conventional Fermi liquids is well under-
stood [1]. It is dominated by two-particle collisions of the
elementary excitations of the liquid. At low temperature T the
number of states available for scattering is small, resulting in
a small relaxation rate τ−1 ∝ T 2. The fact that τ−1 is small
compared with the typical energy T of the excitation is at the
foundation of the Fermi liquid theory [1]. It is important to
keep in mind that the above result applies only to systems of
fermions in two or more spatial dimensions.

Relaxation proceeds very differently in one dimension [2].
Most importantly, the scattering processes involving only two
fermions do not lead to relaxation, and thus the dominant
processes involve three particles. The relaxation rate for
spin-polarized one-dimensional fermions scales as τ−1 ∝ T 7

[2–5]. Such a weak relaxation at T → 0 is due to the small
density of states for three-particle scattering and a strong
suppression of the scattering amplitude for spin-polarized
fermions, which is a manifestation of the Pauli principle [6].

The goal of this paper is to explore relaxation of the
one-dimensional Fermi gas in the absence of magnetic field,
when the system is fully spin degenerate. We consider the
low-temperature regime T � μ, where μ is the chemical
potential. At these low temperatures the dominant scattering
processes involve three particles with energies near μ (see
Fig. 1). The processes illustrated in Fig. 1(a) involve two
fermions near one Fermi point and the third fermion near the
other one. They give rise to decay of quasiparticles both at
finite temperature and at T = 0. The decay rate of a quasipar-
ticle with energy of order T due to scattering processes of this
type was evaluated in Ref. [7]. The result, τ−1 ∝ T , is much
greater than the decay rate τ−1 ∝ T 7 [2–5] for spin-polarized
fermions, because the scattering amplitude, instead of be-
ing suppressed due to the Pauli principle, diverges at small
momentum transfer as |p1 − p′

1|−1. The processes shown in
Fig. 1(b) involve three particles near the same Fermi point and
are not allowed at zero temperature. To our knowledge, their
effect on the decay of quasiparticles in the spin-degenerate

Fermi gas has not been considered before. We show that their
contribution is small compared with that of the processes in
Fig. 1(a) only for interactions that fall off sufficiently fast with
the distance between particles.

Focusing on the latter case, we consider the relaxation of
the Fermi gas to equilibrium. When the distribution function is
close to the equilibrium form, we are able to find a complete
solution of the relaxation problem by diagonalizing exactly
the linearized collision integral corresponding to the processes
of Fig. 1(a) at small temperature. This solution enables one to
obtain the time evolution of any nonequilibrium distribution
function at small deviation from thermal equilibrium.

Understanding the relaxation properties of the one-
dimensional Fermi gas is required for the evaluation of its
transport coefficients, such as thermal conductivity. At T � μ

one can identify two kinds of thermal conductivity [5,8,9].
The ordinary thermal conductivity κ is controlled by the expo-
nentially rare processes involving backscattering of particles
near the bottom of the band. It describes thermal transport
at exponentially small frequencies. At higher frequencies the
thermal transport is described by a different transport coeffi-
cient κex, which is essentially the thermal conductivity of the
gas of elementary excitations of the system [8]. Our treatment
of the relaxation of the one-dimensional Fermi gas will enable
us to express κex in terms of temperature, chemical potential,
and interaction strength.

The paper is organized as follows. In Sec. II we evaluate
the three-particle scattering rates associated with the two types
of processes illustrated in Fig. 1. In Sec. III we estimate the
decay rates of quasiparticle states with energies of order T and
discuss how these rates scale with the temperature for weak
interaction potentials decaying with the distance as 1/|x|γ . In
Sec. IV we solve the relaxation problem in the regime of short-
range interactions (γ > 5/2). To leading order in small tem-
perature and weak interaction, the corresponding linearized
collision integral is diagonalized exactly in Appendix A. The
spectrum of the relaxation rates is qualitatively different from
that in the spin-polarized system, which is briefly discussed in
Appendix B. We discuss our results and their implications for
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FIG. 1. At low temperature T � μ the dominant scattering pro-
cesses involve three particles with energies within T from the chemi-
cal potential μ. (a) A typical three-particle scattering process with
two fermions near one Fermi point and one near the other Fermi
point. (b) A scattering process with all three fermions near the same
Fermi point.

the transport coefficients of the one-dimensional Fermi gas in
Sec. V.

II. THREE-PARTICLE SCATTERING RATE

We consider a system of one-dimensional spin- 1
2 fermions

with quadratic dispersion εp = p2/2m and weak two-particle
interaction, which we describe by the Hamiltonian

V̂ = 1

2L

∑
p1, p2, q
σ1, σ2

V (q)c†
p1+q,σ1

c†
p2−q,σ2

cp2,σ2
cp1,σ1

. (1)

Here L is the system size, V (q) is the Fourier transform of
the interaction potential, and cp,σ is the operator annihilating
a fermion with momentum p and z component of spin σ .

In one dimension the restrictions imposed by conservation
of momentum and energy preclude relaxation by two-particle
scattering processes. Thus the dominant scattering processes
involve three particles. Because interaction (1) couples only
two fermions, the three-particle scattering amplitude must be
obtained in the second order of the perturbation theory in
V (q). Such a calculation was performed in Ref. [10]. The rate
of scattering of three fermions with momenta p1, p2, p3 and
spins σ1, σ2, σ3 to new states with momenta p′

1, p′
2, p′

3 and
spins σ ′

1, σ ′
2, σ ′

3, respectively, has the form

W1′2′3′
123 = 2π

h̄

∣∣A1′2′3′
123

∣∣2
δ(E − E ′), (2)

where E = εp1 + εp2 + εp3 and E ′ = ε′
p1

+ ε′
p2

+ ε′
p3

are the
energies of the three particles before and after the scattering
event and A1′2′3′

123 is the scattering matrix element. The latter
can be presented in the form

A1′2′3′
123 =

∑
π (1′2′3′ )

sign(1′2′3′)δσ1,σ
′
1
δσ2,σ

′
2
δσ3,σ

′
3

×(
apa,pb

p1,p2
+ apa,pc

p1,p3
+ apb,pc

p2,p3

)
δP,P′ . (3)

Here the summation is performed over all the permutations
of the final states of the three particles, P = p1 + p2 + p3

and P′ = p′
1 + p′

2 + p′
3 are total momenta before and after the

scattering event, and

apa,pb
p1,p2

= 1

L2
V (pa − p1)V (pb − p2)

×
(

1

E − εp1 − εpb − εP−p1−pb

+ 1

E − εp2 − εpa − εP−p2−pa

)
. (4)

In the absence of magnetic field the occupation numbers of
all the states do not depend on the spin. Thus it is convenient
to sum the scattering rate (2) over spin indices and introduce

W
p′

1,p′
2,p′

3
p1,p2,p3 =

∑
σ1 ,σ2 ,σ3
σ ′

1 ,σ ′
2 ,σ ′

3

W1′2′3′
123 . (5)

Our goal is to evaluate the scattering rate (5) assuming that
all three fermions are near the Fermi points (see Fig. 1). We
start with the state described by the momenta of the three
particles and notice that collisions conserve the total momen-
tum P = p1 + p2 + p3 and energy E = (p2

1 + p2
2 + p2

3)/2m.
Aside from P and E , a full description of a state of three
particles requires one additional parameter. We denote this
parameter α and introduce it via

pj = 1

3
P − 2

√
mE
3

cos

(
α − 2π j

3

)
, j = 1, 2, 3, (6a)

where E = E − P2/6m is the total energy of the three
fermions in the center-of-mass frame. Thus the state of three
particles is described by P, E , and α. The momenta of the three
particles after the collision are similarly parametrized by P′,
E ′, and α′ according to

p′
j = 1

3
P′ − 2

√
mE ′

3
cos

(
α′ − 2π j

3

)
, j = 1, 2, 3. (6b)

Conservation of momentum and energy implies that the
scattering rate (5) has the form

W
p′

1,p′
2,p′

3
p1,p2,p3 = 
δ(E − E ′)δP,P′ , (7)

where 
 is in general a function of E , α, and α′. (The
dependence of 
 on the total momentum P is precluded by
Galilean invariance.)

The scattering process shown in Fig. 1(a) involves two
fermions near the right Fermi point p = pF and the third
one near −pF . In terms of our variables P, E , and α, these
conditions translate to

|P − pF | � T

μ
pF ,

∣∣∣∣E − 8

3
μ

∣∣∣∣ � T, |α| � T

μ
, (8)

where the chemical potential μ is given by the Fermi energy
p2

F /2m in the low-temperature limit. For the processes of
Fig. 1(b), in which all three fermions are near the right Fermi
point, we have

|P − 3pF | � T

μ
pF , E � T 2

μ
, −π

3
< α <

π

3
. (9)

The estimate of E at low temperatures is obtained by notic-
ing that the typical difference of momenta of the fermions
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|p1 − p2| ∼ √
mE is of the order of T/vF , where vF = pF /m

is the Fermi velocity.
If the interaction potential falls off with the distance suf-

ficiently slowly, the Fourier transform V (q) is not analytic
at q = 0. For example, for the Coulomb interaction, V (q) ∝
ln(1/|q|). Relaxation of the Fermi gas with such long-range
interactions has a number of special features, which we leave
for future study. In the following we assume that the range
of interactions between fermions is short. The exact criterion
for a potential to be considered short range depends on the
particular result and is discussed below. An interaction poten-
tial that decays exponentially at large distances corresponds to
V (q) that is analytic at q = 0. This is sufficient to classify such
potentials as short range, but in practice exponential decay is
not required.

In the case of a short-range potential, the general result for
the three-particle scattering rate W

p′
1,p′

2,p′
3

p1,p2,p3 given by Eqs. (2)–
(5) can be simplified for the two types of processes that
dominate relaxation at low temperatures (see Fig. 1). For the
process of Fig. 1(a) we use the simplification (8) and find the
scattering rate in the form (7) with


 = 9π

L4

h̄3�2

m2

α2 + α′2

(α2 − α′2)2
, (10)

where � is a dimensionless parameter defined as

� = V (0)V (2pF ) − V (2pF )2 − 2pFV (0)V ′(2pF )

(h̄vF )2
. (11)

The result (10) is applicable as long as V (0) is well defined.
For interactions that fall off with the distance as 1/|x|γ this
requires γ > 1.

For the scattering processes of Fig. 1(b) we have E �
μ [see Eq. (9)], which enables one to simplify the general
expression for the scattering rate W

p′
1,p′

2,p′
3

p1,p2,p3 given by Eqs. (2)–
(5) to the form (7) with


 = 1458πm2

h̄L4
[V (0)V ′′(0)]2 1 − cos(3α) cos(3α′)

[cos(3α) − cos(3α′)]2 . (12)

The applicability of this expression is limited to interaction
potentials for which the second derivative of the Fourier
transform V ′′(q) is well defined at q = 0. For interactions that
fall off as 1/|x|γ this requires γ > 3.

It is instructive to consider a special case of V (q) = const,
which corresponds to the interaction of fermions in the form
U (x) ∝ δ(x). The model of spin- 1

2 fermions with interaction
of this type was studied by Gaudin and Yang and shown to be
integrable [11,12]. This property implies that no scattering of
elementary excitations is allowed [13]. Substitution of V (q) =
const into Eqs. (10) and (12) indeed yields 
 = 0. More
generally, integrability should result in a vanishing scattering
amplitude (3) for V (q) = const. This was verified in Ref. [10].

III. DECAY OF QUASIPARTICLE STATES

As a first step toward understanding relaxation of the
one-dimensional Fermi gas we estimate the decay rates of
quasiparticles due to the three-particle scattering processes.

For a quasiparticle of momentum p the decay rate is given by

1

τ
= 1

2

∑
p1 ,p2 ,p3
p′1 ,p′2 ,p′3

W
p′

1,p′
2,p′

3
p1,p2,p3 θ (p2 − p3)θ (p′

1 − p′
2)θ (p′

2 − p′
3)δp,p1

× np2 np3

(
1 − np′

1

)(
1 − np′

2

)(
1 − np′

3

)
. (13)

Here the unit step function θ (x) is used to limit the summa-
tions to distinct sets of momenta before and after scattering,
and 1/2 compensates for the summation over the spin of the
initial particle included in Eq. (5). To estimate the rate, we
convert the sum to an integral and substitute the general form
(7) of the scattering rate. This yields

1

τ
= L4m2

384π4h̄4

∫∫∫
dE dα dα′ 


×np2 np3

(
1 − np′

1

)(
1 − np′

2

)(
1 − np′

3

)
. (14)

Here we transformed the integral to the variables (6) using

d p1d p2d p3 = m√
3

dP dE dα. (15)

The Fermi occupation numbers, to which one should substi-
tute the expressions for momenta using Eq. (6), effectively
limit the range of integration in Eq. (14).

Assuming that the quasiparticle of interest has the energy
within T from the Fermi level, its decay is controlled by the
two processes shown in Fig. 1. We start with the process
shown in Fig. 1(a) and substitute into Eq. (14) the expression
(10) for 
. This yields

1

τ
∼ �2

h̄

∫
|E− 8μ

3 |�T
dE

∫∫
|α|,|α′|� T

μ

dα dα′ α2 + α′2

(α2 − α′2)2
, (16)

with the ranges of integrations controlled by the omitted Fermi
occupation numbers [see Eq. (8)]. Ignoring for the moment the
singularity at α = ±α′, we find that the integral over α and α′
is of order unity, while the integral over E is of the order of T .
We therefore conclude that the processes of Fig. 1(a) result in
the relaxation rate of the order of

1

τa
= �2

h̄
T . (17)

Similarly, for the processes of Fig. 1(b), substitution of
Eq. (12) into Eq. (14) yields

1

τ
∼ m4

h̄5 [V (0)V ′′(0)]2
∫

0<E� T 2
μ

dE

×
∫∫

|α|,|α′|< π
3

dα dα′ 1 − cos(3α) cos(3α′)
[cos(3α) − cos(3α′)]2 . (18)

The corresponding relaxation rate is

1

τb
= m4

h̄5μ
[V (0)V ′′(0)]2T 2. (19)

Our estimates (17) and (19) should be understood as fol-
lows. The quasiparticle decay rates (16) and (18) diverge due
to the singularities at α = ±α′. One can see from Eq. (6) that
these divergences emerge as a result of scattering processes
for which the fermion with momentum p scatters to a state
with momentum p′ approaching p. Within our perturbative
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treatment, in the lowest order in interaction strength, the
decay rate is infinite. On the other hand, an infinitesimal
change of momentum of the fermion from p to p′ has little
effect on the observable quantities. In the next section we see
that the evolution of the fermion distribution function is not
affected by these singularities. Thus expressions (17) and (19)
give the order-of-magnitude estimates of the relaxation rates
associated with the processes shown in Fig. 1.

In the above calculation we assumed that the fermion in
the state with momentum p had the energy εp near the Fermi
energy, |εp − μ| ∼ T . Decay of quasiparticles with energies
larger than temperature in an electron gas with Coulomb
interactions was studied in Ref. [7]. Only the processes of
the type shown in Fig. 1(a) were considered. At energies of
order T the corresponding results of Ref. [7] are consistent
with our estimate (17) provided the logarithmic singularity of
V (q) ∝ ln(1/|q|) is properly cut off.

Comparison of expressions (17) and (19) shows that at
low temperature relaxation is dominated by the processes of
Fig. 1(a). This conclusion holds for sufficiently short-range
interactions, such that V ′′(0) is well defined. In the case of a
potential that falls off as a power law |x|−γ at large distances,
this condition requires γ > 3. For 1 < γ < 3 the temperature
dependence of the rate τ−1

b can be obtained as follows. The
Fourier transform of the interaction potential V (q) is well
defined at q = 0 for γ > 1. However, its second derivative
diverges at q → 0 as V ′′(q) ∝ |q|γ−3. For the process shown
in Fig. 1(b) the typical difference of momenta in the argument
of V in Eq. (4) is of the order of T/vF . Thus one can obtain the
temperature dependence of τ−1

b by substituting V ′′(T/vF ) ∝
T γ−3 for V ′′(0) in Eq. (19). This yields

1

τb
∝ T 2γ−4. (20)

At T → 0 the above rate is negligible compared with 1/τa ∝
T if γ > 5/2. Conversely, for 1 < γ < 5/2 we expect relax-
ation to be dominated by the processes of Fig. 1(b).

IV. RELAXATION OF THE DISTRIBUTION FUNCTION

We now consider how the one-dimensional Fermi gas
relaxes to its equilibrium state. The latter is described by the
occupation numbers of the different momentum states in the
Fermi-Dirac form

n(0)
p = 1

e(εp−μ)/T + 1
. (21)

The evolution of the occupation numbers np toward the
equilibrium values (21) due to the three-particle collisions is
described by the following collision integral:

ṅp = −1

2

∑
p1,p2 ,p3
p′1,p′2 ,p′3

W
p′

1,p′
2,p′

3
p1,p2,p3 θ (p2 − p3)θ (p′

1 − p′
2)θ (p′

2 − p′
3)

× δp,p1

[
np1 np2 np3

(
1 − np′

1

)(
1 − np′

2

)(
1 − np′

3

)
− (

1 − np1

)(
1 − np2

)(
1 − np3

)
np′

1
np′

2
np′

3

]
. (22)

Here we again limit the summation to nonequivalent sets of
initial as well as final momenta.

For a system near thermal equilibrium it is convenient to
present occupation numbers in the form

np = n(0)
p + gpφp, (23)

where

gp =
√

n(0)
p

(
1 − n(0)

p
) = 1

2 cosh εp−μ

2T

. (24)

We then substitute Eq. (23) into Eq. (22), linearize in small
φp, and obtain

φ̇p = −Ŵ φp, (25)

where the linearized collision integral Ŵ is defined by

Ŵ φp = 1

2

∑
p1,p2 ,p3
p′1,p′2 ,p′3

W
p′

1,p′
2,p′

3
p1,p2,p3 θ (p2 − p3)θ (p′

1 − p′
2)θ (p′

2 − p′
3)

× δp,p1 gp2 gp3 gp′
1
gp′

2
gp′

3

×
(

φp1

gp1

+ φp2

gp2

+ φp3

gp3

− φp′
1

gp′
1

− φp′
2

gp′
2

− φp′
3

gp′
3

)
. (26)

The problem of the relaxation of the system to thermodynamic
equilibrium has now been reduced to solving Eq. (25). Since
Ŵ is a real symmetric linear integral operator, one can, in
principle, solve the eigenvalue problem

Ŵ φ(l )
p = 1

τl

φ(l )
p (27)

and obtain real eigenvalues τ−1
l . A general solution of Eq. (25)

is then obtained as a linear combination

φp(t ) =
∑

l

Cl e−t/τl φ(l )
p . (28)

Thus the eigenvalues defined by Eq. (27) are the relaxation
rates associated with modes φ(l )

p .
Our goal is to study relaxation of the one-dimensional

Fermi gas at low temperatures T � μ. As discussed above,
the relaxation is dominated by the three-particle processes
shown in Fig. 1. We limit ourselves to the relatively short-
range interactions that fall off faster than 1/|x|5/2. As we
discussed in Sec. III, for such interactions relaxation is domi-
nated by the processes shown in Fig. 1(a). Thus from now on
the processes of Fig. 1(b) are neglected.

An important feature of the process shown in Fig. 1(a) is
that while all the momenta of the initial and final states of the
fermions measured from the nearest Fermi point are of the
order of T/vF , the difference of momenta |p3 − p′

3| is much
smaller than T/vF . Indeed, using Eqs. (6) and (8), we find

|p3 − p′
3| � 2pF

3
|α2 − α′2| � T 2

vF μ
� T

vF
. (29)

This feature can be understood as follows. The possible values
of momenta of the three particles before and after collision are
restricted by the momentum and energy conservation laws. At
low temperature the energy spectrum of the particles near the
Fermi points is approximately linear:

εp = p2

2m
� μ + vF (|p| − pF ). (30)

In this approximation, any choice of momenta p1, p2, p′
1, and

p′
2 such that p1 + p2 = p′

1 + p′
2 guarantees that εp1 + εp2 =
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εp′
1
+ εp′

2
. Thus both momentum and energy are conserved

if p3 = p′
3. A small quadratic correction to the energy in

Eq. (30) results in small |p3 − p′
3| [see Eq. (29)].

Nonlinearity of the energy spectrum must be taken into
account when solving the quantum-mechanical problem of
evaluation of the three-particle scattering rate (see Sec. II).
Linearization of the spectrum at that stage would lead to
singular scattering rates. On the other hand, the collision
integral in both its original and linearized forms (22) and
(26) takes finite values when the spectrum approaches linear
form (30). This procedure is appropriate only for studying
the relaxation of the system in the leading order at low
temperature [14]. Because in this approximation p3 = p′

3, the
distribution function of the particles near the left Fermi point
in Fig. 1(a) remains unchanged. Thus, to leading order in
T � μ the subsystems of right- and left-moving particles
relax independently of each other.

We now substitute Eqs. (7) and (10) into the definition (26)
of the operator Ŵ and use Eqs. (6) and (15) to convert the
sum into an integral over P, P′, E , E ′, α, and α′. Assuming
p3 = p′

3, the integral over the first four of these variables is
straightforward and yields

Ŵ φp = 3

16π3τa

∫∫
dα dα′ α2 + α′2

(α2 − α′2)2
gp2 gp′

1
gp′

2

×
(

φp

gp
+ φp2

gp2

− φp′
1

gp′
1

− φp′
2

gp′
2

)
. (31)

Here τa is defined by Eq. (17), the spectrum εp in the definition
(24) of gp is linearized according to Eq. (30),

gp = 1

2 cosh vF (|p|−pF )
2T

, (32)

and the momenta

p2 = p + 4pF√
3

α, p′
1,2 = p + 2pF√

3
(α ∓ α′), (33)

are evaluated to linear order in T using Eqs. (6) and (8). Given
that gp falls off exponentially away from p = pF , the integrals
over α and α′ in Eq. (31) should be taken from −∞ to +∞.

Similarly to expression (16) for the quasiparticle decay
rate, the integrand of Eq. (31) contains a factor 1/(α2 − α′2)2,
which diverges at α = ±α′. However, one can easily see from
Eq. (33) that the expression in the second line of Eq. (31)
vanishes at α = ±α′. Thus the integrand is only singular
as 1/(α2 − α′2), resulting in a finite integral that should be
treated as a principal value.

The eigenvalue problem (27) with Ŵ defined by Eqs. (31)–
(33) can be solved exactly (see Appendix A). The eigenvalues
and eigenfunctions are

1

τl
= 3

32π3τa
×

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

l∑
j=1

1

j
for even l

l∑
j=1

1

j
− 2

l (l + 1)
for odd l ,

(34)

φ(l )
p = θ (p)Bl

(
vF (p − pF )

πT

)
gp. (35)

Here l = 0, 1, 2, . . ., the rate τ−1
a is defined by Eq. (17), and

Bl (u) are modified Bateman polynomials [15–17] defined by

Bl (u) = il

π
cosh

πu

2

∫ +∞

−∞
dx e−iux Pl (tanh x)

cosh x
, (36)

where Pl (y) are the Legendre polynomials. In particular,

B0(u) = 1, B1(u) = u, B2(u) = 3u2 − 1

4
. (37)

The step function θ (p) in Eq. (35) accounts for the fact that in
the linearized spectrum approximation only the right-moving
particles are scattered in Fig. 1(a). In Eq. (35) we omitted the
normalization factor, which can be restored with the help of
Eq. (A22).

In addition to the processes illustrated in Fig. 1(a) there are
similar ones that involve two particles near the left Fermi point
and one particle near the right one. These processes equili-
brate the left-moving particles. Inversion symmetry dictates
that the relaxation rates are again given by Eq. (34) with the
relaxation modes

φ(l )
p = θ (−p)Bl

(
−vF (p + pF )

πT

)
gp. (38)

For l = 0 and 1 the relaxation rates (34) vanish. The
corresponding eigenfunctions (35) are

φ(0)
p = θ (p)gp, φ(1)

p = θ (p)
vF (p − pF )

πT
gp. (39)

Indeed, from Eq. (31) one immediately obtains Ŵ φ(0)
p = 0,

as the expression in parentheses vanishes. The deviation of
the distribution function from the equilibrium form (21) de-
scribed by φ(0)

p corresponds to a small change of the chemical
potential μ. Thus this zero mode reflects the conservation
of the number of particles near the right Fermi point. To
verify that Ŵ φ(1)

p = 0, one should keep in mind that p + p2 =
p′

1 + p′
2, which follows immediately from Eq. (33). The latter

condition is satisfied automatically for the linearized spectrum
(30) because in this case p3 = p′

3. Alternatively, the same
condition can be interpreted as conservation of energy of the
two particles near the right Fermi point. Correspondingly, the
deviation of the distribution function from the equilibrium
form (21) described by φ(1)

p can be interpreted as a result of
a small change of temperature.

V. DISCUSSION OF THE RESULTS

In this paper we have studied the relaxation of a gas of one-
dimensional spin- 1

2 fermions at low temperatures. We focused
on the case of small deviations of the distribution function
from the equilibrium Fermi-Dirac form (21). This enabled us
to linearize the collision integral and obtain the spectrum of
relaxation rates (34) in terms of the interaction potential and
temperature. To leading orders in small temperature and weak
interactions the result (34) is exact.

The relaxation rates (34) scale linearly with the temper-
ature [see Eq. (17)]. This conclusion is consistent with the
expectation based on the earlier results for the quasiparticle
energy relaxation rate in a one-dimensional electron gas with
Coulomb interactions [7]. Unlike the authors of Ref. [7],
we considered both three-particle processes shown in Fig. 1.
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We showed that the scattering processes of Fig. 1(b), which
were neglected in Ref. [7], give subleading contribution to
the relaxation rate provided that the interaction between the
fermions falls off with the distance faster than 1/|x|5/2. An
important example of such a one-dimensional Fermi system is
the electron gas in a quantum wire with a metal gate parallel
to it, in which case interactions fall off as 1/|x|3. The expected
temperature dependence for more slowly decaying potentials
is given by Eq. (20).

Our result (34) predicts a discrete spectrum of the relax-
ation rates. It is instructive to compare this behavior with
the case of spin-polarized one-dimensional Fermi gas. The
linearized collision integral analogous to Eq. (31) was ob-
tained in Ref. [5]. It can be diagonalized numerically (see
Appendix B). Importantly, the spectrum of relaxation rates is
continuous. The relaxation modes are qualitatively different
as well. Specifically, each mode of the continuous spectrum
has a singularity at a certain value of momentum and can be
associated with decay of a particular quasiparticle state. Con-
tinuous spectrum and singularities in relaxation modes were
also obtained in other systems of spin-polarized fermions
[18,19]. In contrast, our results (35) and (38) show smooth
analytic behavior as a function of momentum.

Our expressions (35) and (38) for the relaxation modes
contain step functions θ (±p), which limit the ranges of mo-
mentum to either positive or negative values. This should not
be considered to be a singularity as a function of momentum
as our approach is limited to fermion states near the Fermi
points, where the linearization (30) of the spectrum is justified.
Given the inversion symmetry of the problem it is natural to
introduce even and odd modes

φ(l,+)
p = Bl

(
vF (|p| − pF )

πT

)
gp, (40)

φ(l,−)
p = Bl

(
vF (|p| − pF )

πT

)
gp sgn p. (41)

In the approximation of linearized spectrum the modes φ(l,+)
p

and φ(l,−)
p have the same relaxation rate (34) for any given l .

We expect the main effect of the spectral curvature to be a
small-in-T/μ splitting of the degeneracies of relaxation rates
of the even and odd modes.

The relaxation properties of the one-dimensional Fermi
gas determine its transport coefficients, such as the thermal
conductivity and viscosity. The thermal conductivity of one-
dimensional systems of spinless fermions has been recently
studied in Refs. [5,9]. The dc thermal conductivity κ of these
systems is controlled by the processes involving exponentially
weak backscattering of particles near the bottom of the band.
At frequencies above an exponentially small value ω∗ ∝
exp(−μ/T ), the backscattering processes are negligible, and
the thermal transport is controlled by the thermal conductivity
κex of the gas of elementary excitations [8]. A relation be-
tween κex and the solutions of the relaxation problem has the
form [5,20]

κex = 1

2m4T 2

∑
s

τs

〈
φ(s)

p

∣∣ψp
〉2〈

φ
(s)
p

∣∣φ(s)
p

〉 . (42)

Here the summation is over all the eigenmodes of the relax-
ation problem with nonvanishing rates τ−1

s ; the inner product
is defined as

〈αp|βp〉 =
∫ +∞

−∞

d p

2π h̄
αpβp, (43)

and ψp is given by

ψp = 3pF

[
(|p| − pF )2 − π2T 2

3v2
F

]
gp sgn p. (44)

Interestingly, ψp coincides with φ(2,−)
p given by Eq. (41) up to

a momentum-independent factor 4π2T 2m/vF [see Eq. (37)].
Since the eigenmodes φ(s)

p are orthogonal to each other, only
the term with s = {2,−} in the sum in Eq. (42) gives a nonva-
nishing contribution. This greatly simplifies the evaluation of
κex, which yields

κex = 2π3

5

T 3vF τ2

h̄μ2
= 128π6

45

T 2vF

�2μ2
, (45)

where we applied Eqs. (34) and (17). The result (45) differs
dramatically from κex ∝ T −4 in the case of spinless fermions
[5]. This is due to the slow relaxation of the spinless system,
τ−1 ∝ T 7 [2–5], compared to τ−1 ∝ T for spin- 1

2 fermions.
Equation (45) gives the thermal conductivity of the one-
dimensional Fermi gas in a broad range of frequencies below
τ−1

a given by Eq. (17) [21].
An expression similar to Eq. (42) can be obtained for

the bulk viscosity ζ of a one-dimensional spinless quantum
liquid [22]. Unlike thermal conductivity, ζ is controlled by
the relaxation modes that are even with respect to inversion.
In fact, for the bulk viscosity of a spinless system the analog
of ψp in Eq. (42) is proportional to φ(2,+)

p defined by Eq. (40).
Generalization of the treatment of bulk viscosity in Ref. [22]
to systems with spins is not entirely straightforward and will
be discussed elsewhere.

Given the special role that the modes φ(2,+)
p and φ(2,−)

p
play in the evaluation of the transport coefficients, it is worth
discussing how the corresponding relaxation rate behaves
for the long-range interactions. As we saw in Sec. III, for
interaction potentials that fall off at x → ∞ as 1/|x|γ with
γ < 5/2, the scattering processes of Fig. 1(b) dominate the
relaxation of the Fermi gas. These processes obey conser-
vation laws of the number of right-moving particles, their
momentum, and energy. Thus the corresponding collision
integral must have three zero modes. It is easy to see from
Eq. (26) that these three modes are φ(0)

p , φ(1)
p , and φ(2)

p defined
by Eqs. (35) and (37). Symmetry requires that the modes
φ(0)

p , φ(1)
p , and φ(2)

p defined by Eq. (38) are also zero modes
of the collision integral due to the processes involving three
particles on the same branch. We therefore conclude that the
even and odd combinations φ(2,+)

p and φ(2,−)
p are not affected

by the processes of Fig. 1(b) and remain eigenfunctions of the
linearized collision integral even for γ < 5/2. Additionally,
our result for τ−1

2 obtained from Eq. (34) and the result (45)
for κex remain unchanged for long-range interactions with
1 < γ < 5/2. In the important case of Coulomb interaction
e2/|x| with a short distance cutoff w, which corresponds
to γ = 1, this result is still valid if one substitutes � =
(2e2/h̄vF )2 ln(pF w/h̄) ln(μ/T ) (cf. Ref. [7]).
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In this paper the interactions between fermions are treated
in the lowest order of the perturbation theory. This has en-
abled us to ignore the Luttinger liquid effects that develop
in interacting one-dimensional systems at T → 0, such as
spin-charge separation. The latter means that instead of quasi-
particles and quasiholes with Fermi statistics the elementary
excitations of the system are two types of bosons, in the
charge and spin sectors, propagating at different velocities.
Luttinger liquid effects can be neglected if the interactions
are sufficiently weak compared with the typical energy of the
quasiparticles [7], which in our case is the temperature. This
results in the condition pFV (0)/h̄ � T .
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APPENDIX A: SOLUTION OF THE EIGENVALUE
PROBLEM (27)

Here we solve the eigenvalue problem (27) with the op-
erator Ŵ defined by Eqs. (31)–(33). We start by introducing
dimensionless variables u, w, and w′ via

p = pF + πT

vF
u, α =

√
3πT

8μ
(w + w′),

α′ =
√

3πT

8μ
(w − w′), (A1)

and denoting φp = �(u). Substitution of Eq. (A1) into
Eq. (31) yields Ŵ φp = (3/32π3τa)�̂�(u), where

�̂�(u) =
∫∫

dw dw′ w
2 + w′2

8w2w′2 G(u + w + w′)G(u + w)

× G(u + w′)
(

�(u)

G(u)
+ �(u + w + w′)

G(u + w + w′)

−�(u + w)

G(u + w)
− �(u + w′)

G(u + w′)

)
, (A2)

where the integrals extend from −∞ to +∞ and

G(u) = 1

cosh(πu/2)
. (A3)

As a result the eigenvalue problem (27) takes the dimension-
less form

�̂�l (u) = ωl�l (u), (A4)

with the eigenvalues ωl determining the relaxation rates

1

τl
= 3ωl

32π3τa
. (A5)

Next, we use the symmetry w ↔ w′ to replace (w2 +
w′2)/w2w′2 → 2/w2 in Eq. (A2) and perform the Fourier
transform

�(u) = 1√
2π

∫
ϕ(x)e−iux dx,

ϕ(x) = 1√
2π

∫
�(u)eiux du. (A6)

Then the eigenvalue problem (A4) transforms to∫ +∞

−∞
K (x, x′)ϕl (x

′) dx′ = ωl ϕl (x), (A7)

where the kernel is given by

K (x, x′) =
∫∫

du dw

4π

[
eiu(x−x′ )

w sinh πw
2

(
G(u + w)

G(u)
− e−iwx′

)
−2ieiux sin(wx′)

w2 cosh x′ G(u + w)

]
. (A8)

Let us now split the kernel into three contributions:

K (x, x′) = K1(x − x′) + K2(x, x′) + K3(x, x′), (A9)

where

K1(x − x′) =
∫

du dw

4π

eiu(x−x′ )

w sinh πw
2

(
G(u + w)

2G(u)
+ G(u − w)

2G(u)
− 1

)
, (A10)

K2(x, x′) =
∫

du dw

4π
eiu(x−x′ ) 1 − cos(wx′)

w sinh πw
2

= ln(cosh x)δ(x − x′), (A11)

K3(x, x′) = − i

cosh x′

∫
du dw

4π
eiux sin(wx′)

w2
[G(u + w) − G(u − w)] = −|x + x′| − |x − x′|

2 cosh x cosh x′ . (A12)

Evaluation of the first kernel is somewhat nontrivial. The
result can be presented in the form∫ ∞

−∞
K1(x − x′)ϕ(x′)dx′

= 1

2

∫ ∞

−∞
ln

(
2 tanh

|x − x′|
2

)
sgn (x′ − x)

dϕ

dx′ dx′. (A13)

In the following discussion we only use the fact that K1 is a
function of the difference x − x′; the explicit form (A13) will
not be used. The evaluation of the integrals (A11) and (A12)
is straightforward.

Note that �0(u) = G(u) is an obvious solution
of the eigenvalue problem (A4) with the eigenvalue
ω0 = 0 [see Eq. (A2)]. Therefore, its Fourier transform
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φ0(x) = √
2/π g(x), where

g(x) = 1

cosh x
, (A14)

must solve the eigenvalue problem (A7) with the same eigen-
value ω0 = 0. Noticing that K3(x, x′) is odd in x and x′, we
conclude that a condition∫ ∞

−∞
K1(x − x′)g(x′)dx′ = g(x) ln g(x) (A15)

must be satisfied.
We now establish some general properties of the deriva-

tives of g(x). Noticing that

g′(x) = −g(x) tanh x, (tanh x)′ = 1 − tanh2 x, (A16)

it is straightforward to show that the lth derivative g(l )(x) is
given by g(x) multiplied by the polynomial of tanh x of lth
power. Let us then consider the most general function of this
form:

alg
(l )(x) + al−1g(l−1)(x) + · · · + a0g(x)

= g(x)(bl tanhl x + bl−1 tanhl−1 x + · · · + b0). (A17)

We assume here that the leading coefficients al and bl do not
vanish. The two forms of the expression (A17) are equivalent;
each set of coefficients (a0, a1, . . . , al ) uniquely defines the
set (b0, b1, . . . , bl ) and vice versa.

We now show that when the integral operator with the
kernel K (x, x′) is applied to a function of the form (A17), the
resulting function also has form (A17), with the same l . By
applying the sum of K1 and K2 to the lth derivative of g(x)
and using Eq. (A15), we find∫

[K1(x − x′) + K2(x, x′)]g(l )(x′) dx′

= dl

dxl

∫
K1(x − x′)g(x′) dx′ + g(l )(x) ln cosh x

= dl

dxl
[g(x) ln g(x)] − g(l )(x) ln g(x)

=
l∑

j=1

l!

j!(l − j)!
g(l− j)(x)

d j

dx j
ln g(x). (A18)

As we saw earlier g(l− j)(x) is given by g(x) multiplied by
a polynomial of tanh x of power l − j. Taking into consid-
eration Eq. (A16) and noticing that [ln g(x)]′ = − tanh x, it
is easy to see that d j ln g(x)/dx j is a polynomial of tanh x
of power j. Thus each term in the last line of Eq. (A18) is
g(x) multiplied by a polynomial of tanh x of power l , and
therefore the right-hand side of Eq. (A18) has the form (A17).
Addition of the terms with lower-order derivatives, which are
also present the left-hand side of Eq. (A17), does not change
the general form of the result. Thus the application of the
integral operator with the kernel K1 + K2 to a function of form
(A17) gives a function of the same form.

Because K3(x, x′) is odd in x and x′, the corresponding
integral operator gives zero when applied to g(x) tanh2m x
with m = 0, 1, 2, . . .. Let us now apply this operator to

g(x) tanh2m+1 x:∫
K3(x, x′)g(x′) tanh2m+1 x′ dx′

= −
∫ |x + x′| − |x − x′|

2 cosh x
tanh2m+1 x′ dx′

cosh2 x′

= g(x)

4(m + 1)

∫
(tanh2m+2 x′ − 1)

[sgn(x + x′) − sgn(x′ − x)] dx′

= g(x)

2(m + 1)

∫ x

−x
(tanh2m+2 x′ − 1) dx′

= − g(x)

m + 1

m∑
j=0

tanh2 j+1 x

2 j + 1
. (A19)

Thus the integral operator with the kernel K3 applied to a
function of the form (A17) results in a function of the same
form.

We have therefore demonstrated that the action of the inte-
gral operator with the kernel (A9) on any function of the form
(A17) results in a function of the same form. This enables us
to find the eigenfunctions of the integral operator in Eq. (A7).
We first notice that a function of the form (A17) is fully
described by l + 1 coefficients b0, b1, ..., bl . Such functions
form an (l + 1)-dimensional subspace, and our operator in
this subspace is a symmetric matrix of size (l + 1) × (l + 1).
It has l + 1 eigenfunctions that are orthogonal to each other
and have the form g(x)pl (tanh x), where pl is a polynomial
of power l . When l is increased by 1, a new eigenfunction
g(x)pl+1(tanh x) appears. Thus all the solutions have polyno-
mials pl of different powers. The orthogonality condition∫ +∞

−∞
g(x)pl (tanh x) g(x)pl ′ (tanh x) dx

=
∫ 1

−1
pl (y)pl ′ (y) dy = δl,l ′ (A20)

indicates that pl (y) are proportional to the Legendre polyno-
mials Pl (y). The normalized eigenfunctions are

ϕl (x) =
√

l + 1

2

Pl (tanh x)

cosh x
. (A21)

Normalized eigenfunctions �l (u) of the operator (A2) are
obtained by performing the inverse Fourier transform (A6) of
the above expression,

�l (u) = il

√
2l + 1

2
√

π

∫ +∞

−∞
e−iux Pl (tanh x)

cosh x
dx, (A22)

where the additional factor il ensures that �l (u) is real for
all l . Taking into account the definition of u in Eq. (A1) and
omitting the normalization constant one obtains our result
(35).

To find the eigenvalues ωl , we consider separately the cases
of even and odd l . Because K3(x, x′) is odd in x and x′, it does
not affect the eigenvalues for even l , when the eigenfunction
(A21) is even in x. The combined effect of K1 and K2 on
the eigenfunction ϕl can be obtained from Eq. (A18). Its
right-hand side is a linear combination of ϕ j (x) with j � l .
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FIG. 2. Eigenvalues λl of the operator M̂ obtained by numerical
solution of the integral equation (B2).

Note that the term g(x) tanhl x appears only in ϕl (x). Thus the
coefficient of this term in the last line of Eq. (A18) is given
by that in the expansion of g(l ) in the left-hand side times ωl .
Using the relations (A16), one easily finds

g(l )(x)

g(x)
= (−1)l l! tanhl x + · · · ,

d j

dx j
ln g(x) = (−1) j ( j − 1)! tanh j x + · · · ,

where the omitted terms have the form c j tanh j x with j < l .
Applying these results to Eq. (A18), we obtain

ωl (−1)l l! g(x) tanhl x

=
l∑

j=1

l!

j!(l − j)!
(−1)(l− j)(l − j)! g(x) tanhl− j x (−1) j

× ( j − 1)! tanh j x.

This immediately yields

ωl =
l∑

j=1

1

j
(A23)

for even l .
For odd l = 2m + 1 there is an additional contribution due

to the K3 part of the kernel. It is given by the coefficient
of g(x) tanh2m+1 x on the right-hand side of Eq. (A19), i.e.,
δω2m+1 = −[(m + 1)(2m + 1)]−1. Thus for odd l the eigen-
value is

ωl =
l∑

j=1

1

j
− 2

l (l + 1)
. (A24)

Equations (A23) and (A24) in combination with Eq. (A5) give
the result (34).

APPENDIX B: RELAXATION RATE AND MODES
IN THE SPINLESS FERMI GAS

Relaxation of the one-dimensional spinless Fermi gas was
studied in Ref. [5]. In the case of short-range interaction the

FIG. 3. Numerically obtained eigenfunctions �l (ξ ) of the op-
erator M̂. (a, b) The two modes with zero eigenvalues. (c, d) The
even and odd modes with nonzero eigenvalues. The position of the
singularity is ξ0 = 0.5.

relaxation rates are given by

1

τl
= 2π3�2T 7

h̄5v8
F

λl . (B1)

Here the parameter � is quadratic in V (q) but different from
our earlier expression (11); it is given by Eq. (80) of Ref. [5].
The parameters λl are obtained by solving the eigenvalue
problem

M̂�l (ξ ) = λl�l (ξ ). (B2)

Here the operator M̂ is defined by

M̂�(ξ ) = A(ξ )�(ξ ) +
∫

dξ ′[B1(ξ, ξ ′) + B2(ξ, ξ ′)]�(ξ ′),

(B3)
where the integration is from −∞ to +∞ and

A(ξ ) = (1 + 4ξ 2)(9 + 4ξ 2)(5 + 44ξ 2)

5760
, (B4)

B1(ξ, ξ ′) = 1

6
(ξ − ξ ′)2 (ξ + ξ ′)[1 + (ξ + ξ ′)2]

sinh(π (ξ + ξ ′))
, (B5)

B2(ξ, ξ ′) = − ξ − ξ ′

240 sinh(π (ξ − ξ ′))

×(7 + 120ξξ ′ + 128ξ 4 − 752ξ 3ξ ′

+1488ξ 2ξ ′2 − 752ξξ ′3 + 128ξ ′4). (B6)

Similarly to the relaxation problem (27) with Ŵ defined by
Eq. (31), only the right-moving particles are accounted for by
the operator M̂. The relaxation of the left-moving particles can
be obtained by using the inversion symmetry of the system.

The integral equation (B2) can be solved numerically by
replacing the infinite limits of integration with finite but
large ones and discretizing the function �(ξ ). The resulting
spectrum of eigenvalues is shown in Fig. 2. The two lowest
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eigenvalues vanish. A gap � = A(0) = 1/128 separates λ0 =
λ1 = 0 and λ2 ≈ 0.00781. The dense set of eigenvalues above
the gap represents a continuous spectrum of relaxation rates
and extends to +∞.

The two modes with zero eigenvalues are plotted in
Figs. 3(a) and 3(b). Up to a numerical prefactor they are given
by

�0(ξ ) = 1

cosh(πξ )
, �1(ξ ) = ξ

cosh(πξ )
. (B7)

These two modes account for the conservation of the number
of particles and energy and are fully analogous to the modes
(39) for fermions with spin.

The modes corresponding to nonvanishing eigenvalues are
qualitatively different. Each mode is either an even or an odd
function of ξ and has two singularities (ξ ± ξ0)−1 for some
value of ξ0. The corresponding eigenvalue is related to the
positions ±ξ0 of the singularities by λ = A(ξ0). Pairs of even
and odd modes are present for all real ξ0. Typical modes with
ξ0 = 0.5 are shown in Figs. 3(c) and 3(d).
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