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Mechanisms of spin-charge conversion for the electrical readout of 4 f quantum states
in a TbPc2 single-molecule magnet spin transistor
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We present a theoretical study exposing the dominant microscopic electronic transport mechanisms underlying
a recent molecular spin-transistor experiment [C. Godfrin et al., ACS Nano 11, 3984 (2017)], where purely
electrical readout of the spin of a Tb(III)-based single-molecule magnet was achieved. To identify the relevant
spin-to-charge conversion mechanisms enabling opposite spin polarizations of the Tb(III) ion 4 f electrons to
generate different magnetoconductance responses, we investigate both incoherent sequential tunneling charge
transport, and coherent cotunneling corrections. Contrary to previous interpretations invoking the highly coherent
Kondo transport regime, we find that all reported experimental observations, including the temperature and
magnetic field dependence of the differential conductance, can be reproduced reasonably well within a sequential
tunneling transport regime explicitly accounting for broadening of the device energy levels due to molecule-lead
coupling.
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I. INTRODUCTION

Single-molecule magnets (SMMs) have been proposed as
candidates for molecular memory [1], molecular qubits [2,3],
and for novel molecular spintronics applications [4,5] owing
to their large magnetic anisotropy, stability upon surface
and thin-film deposition, and their unique, rich, quantum
properties. The bis-(phthalocyaninato) terbium nanomagnet
(TbPc2), in particular, has recently enjoyed a great deal of
popularity in molecular spintronics setups, such as in molec-
ular spin-valve experiments on graphene surfaces [6] and car-
bon nanotubes [7,8], when probed in thin films via scanning
tunneling microscopy tips [9,10] and also in molecular break
junctions [11–13].

The break-junction device has become a system of keen
interest due to the potential of the weakly decohering 159Tb
nuclear states to act as a qudit computational basis for molecu-
lar quantum computation technologies [14,15]. The electrical
readout of the 159Tb nuclear spin computational basis is
fundamentally rooted in a two-step coupling mechanism: (i)
the 159Tb nuclear spin is hyperfine coupled to the doubly
degenerate mJ = ±6 4 f -electron states of the Tb(III) ion, (ii)
the mJ = ±6 states are, in turn, ferromagnetically exchange
coupled to a radical s = 1

2 spin hosted by the Pc2 organic
ligands of the nanomagnet, which are coupled to the Au-
nanowire break junction, thus part of a sequential tunneling
current in and out of the leads. The coupling between the
sequential tunneling conduction electron hosted as a Pc2 s =
1
2 radical, and the 4 f hyperfine states, enables the transfer
of the nuclear spin states quantum information to the device
current, resulting in a readout process [11,12,14].

Several experimental works reporting highly anisotropic
hysteresis loops of conductance measurements recorded from
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the break junction [11] and from similar TbPc2 setups [16,17]
have demonstrated that the bistable electronic ground state
of the TbPc2 may be read out electronically by virtue of an
exchange coupling between the Tb(III) electronic states and
conduction electrons that transiently occupy the Pc ligands of
the molecule.

Despite the many experimental results concerning this
terbium molecular break-junction device, to our knowledge,
fewer theoretical investigations have been undertaken to
model electron transport through the system, and to under-
stand the microscopic mechanism for the resultant readout of
the Tb(III) electronic states. In a recent joint theoretical and
experimental study of the device by Troiani et al. [18] the
Landau-Zener-type tunneling dynamics of the Tb 4 f -electron
states was investigated under continuous measurement from
a local electric current, and simulated via a Lindblad-type
master equation. The work focused in particular on identifying
the signature of decoherence in the 4 f -electron tunneling
dynamics, as measured by the transport experiments, using
a phenomenological simulation of the coupling to the envi-
ronment. However, the specific microscopic mechanisms of
the transport measurement process, as those of the coupling
to the environment, were not the object of that work.

In all previous experimental studies [11–13,18,19], the
flipping of the terbium moment between the the mJ = 6 and
−6 ground states was detected by measuring the differen-
tial conductance of the device as a function of an applied
magnetic field, which was shown to give rise to disparate
conductance signals for different initializations of the Tb 4 f
state. The transport measurements were always interpreted
within a highly coherent and strongly correlated transport
regime (Kondo transport), which entails the assumption of a
strong coupling between the Au-nanowire junction and the Pc
ligands of the TbPc2 molecule.

The main evidence for a highly coherent transport regime,
presented especially by Godfrin et al. [19], consisted of the
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following points: (i) the conductance was probed at zero-bias
voltage in gate-voltage detuned conditions, i.e., away from
charge resonance points, which should suppress sequential
tunneling via Coulomb blockade; (ii) the observed temper-
ature dependence of the differential conductance displayed
features that are reminiscent of Kondo transport through a
simple s = 1

2 quantum dot device, e.g., the conductance is
maximal at the lowest temperatures, only to decay at higher
temperatures.

We note that in Ref. [19], in order to model the observed
magnetic field dependence of the differential conductance,
it was necessary to assume that the anisotropic exchange
coupling between the conduction electron and the Tb 4 f elec-
trons features a strong component perpendicular to the TbPc2

easy axis (roughly 60% of the parallel component). However,
such an assumption appears to be at variance with previous
experimental [20] and ab initio [21–23] results on 4 f -Pc
radical exchange coupling in [TbPc2]0, which instead all cor-
roborate a more likely Ising purely axial anisotropic exchange
mechanism, having negligible perpendicular component. Fur-
thermore, the stability diagram reported by Godfrin et al.
[19] appears to only weakly depart from a clear-cut Coulomb
blockade diamond diagram, as the gate-detuned conductance
appears to die off quite quickly as a function of gate voltage
instead of clearly being established in the Coulomb blockaded
dark regions. Finally, we also note that the assumption of
strong molecule-lead coupling is not commonly observed in
nanomagnet-based spintronics setups [6,24,25].

Prompted by these observations, in this paper we take
a rather different interpretation of the transport experiments
reported for the TbPc2 spin-transistor device, and we present
a theoretical model that primarily describes transport within
the sequential tunneling regime, in the presence of broadening
arising from the coupling to the leads. Using our model,
we show that sequential tunneling indeed suffices to explain
most features of the magnetoconductance reported in previous
works [11,19], thus suggesting that electrical readout of a
single spin can be achieved even without assuming a strong
molecule-lead coupling, arguably easier to attain, hence more
common, experimental outcome in device fabrication. Finally,
we also explore coherent cotunneling corrections to the trans-
port problem and discuss the significance and limitations of
our model.

II. THEORETICAL MODEL

In the simplest approximation, the TbPc2 nanomagnet
molecular break junction consists of two electronic leads
assumed here to be weakly hybridized with a readout quantum
dot (the phthalocyaninato ligands of the nanomagnet), which
in turn coordinate the central Tb(III) ion. Also, recent experi-
mental works [11,12] have demonstrated a sizable hyperfine
coupling between the 159TbPc2 nucleus and its |mJ = ±6〉
4 f -electronic states, however, we find that our results remain
invariant to the inclusion of this coupling for the magnetic
field strengths explored herein (see Appendix A) and so,
for simplicity, we proceed by neglecting this coupling from
our model. To model low-energy electron transport through
the TbPc2 device we partition the Hamiltonian as H = HL +
HS + HT , which describes the two noninteracting electronic

leads HL, the nanomagnet exchange coupled to the readout dot
HS , and the electron tunneling between each subsystem HT ,
respectively. More specifically, the lead Hamiltonian reads
as HL = ∑

αkσ εαkσ a†
αkσ

aαkσ and describes the noninteracting
electrons in lead α ∈ {S, D} with wave vector k, spin σ , and
energy εαkσ . The a(†)

αkσ
hence form a set of annihilation (cre-

ation) operators that act on the single-particle states |αkσ 〉 of
each electrode. The hybridization between the readout dot and
the leads is given by HT = ∑

αkσ T ∗
αkσ a†

αkσ
dσ + Tαkσ d†

σ aαkσ

where d (†)
σ annihilates (creates) an electron with spin σ on the

readout dot and Tαkσ represents an amplitude that quantifies
the strength of the coupling between the readout dot and the
leads. The low-energy spectrum of the terbium nanomagnet
exchange coupled to a readout dot is modeled effectively by

HS =
∑

σ

(εD − eVg)d†
σ dσ + μBB(gJJz + gsz ) − aJzsz, (1)

where εD is the energy of the lowest unoccupied molecular
orbital (LUMO) of the phthalocyaninato ligands which consti-
tute the readout dot and is modulated by some local gate volt-
age Vg, Jz and sz are angular momentum operators that retrieve
the projection of the total angular momentum in the ground-
state spin-orbit multiplet of Tb(III) along the TbPc2 magnetic
anisotropy axis (z axis), and the spin projection along the
same axis of the unpaired conduction electron hosted on the
Pc2 ligand readout dot, respectively, μBB is the amplitude of
a longitudinally applied magnetic field premultiplied by the
Bohr magneton, gJ is the Landé g factor for the ground 7F6

spin-orbit multiplet of the Tb(III) ion, g is the g factor for a
free electron, and, finally, a is the ferromagnetic coupling con-
stant (a > 0) describing the Ising exchange coupling [20,23]
between 4 f electrons on the Tb(III) ion and unpaired electrons
on the Pc2 ligands (i.e., the readout dot).

For Eq. (1) to give a faithful representation of the low-
energy spectrum of the TbPc2 device, a few assumptions
have been made that are well justified for this molecular
device. First, we assume that the TbPc2 magnet retains the
large splitting (>400 cm−1) between the ground and first
excited crystal-field states within the lowest 7F6 spin-orbit
multiplet [21–23,26,27] when embedded in the break-junction
device. This assumption is consistent with the fact that mag-
netic hysteresis measurements indicate the preservation of the
nanomagnet’s magnetic anisotropy axis [11]. Owing to the
sub-Kelvin temperatures explored in these experiments, this
assumption allows us to safely discard all but the two maximal
total angular momentum projections |mJ = ±J〉 from our
model and consider the Tb(III) moment as a semiclassical
Ising spin. Second, on the basis of experimental evidence
[20] and high-level scalar relativistic multireference ab ini-
tio calculations [23], we describe the Tb(III) 4 f -electron-
Pc2 radical exchange coupling in terms of a purely axial
Ising exchange-coupling Hamiltonian, which would result
from projection of, e.g., an isotropic Heisenberg exchange
Hamiltonian, onto the doubly degenerate thermally isolated
ground state |mJ = ±6〉 of this molecule. This SMM radical
exchange-coupling scheme then offers the simplest paradigm
in which to capture theoretically the physics of the TbPc2

molecular break junction. As a consequence of these assump-
tions, HS is diagonal on the product basis of the nanomagnet’s
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bistable ground states and the spin states of the readout dot
|m; σ 〉 ≡ |m = ±J〉SMM ⊗ |σ 〉 which we will utilize for the
rest of the paper.

A. Coulomb blockade transport model

We now discuss the theoretical framework in which we
model the most relevant experimental quantity of the device:
the zero-bias differential conductance. In order to study the
relationship between the orientation of the Tb magnetic mo-
ment and conductance measurements at finite field, i.e., the
very origin of the electrical readout mechanism observed in
experiments [11,12,18,19], we compute contributions to the
conductance from each orientation separately, and average the
two signals when appropriate. The linear response differential
conductance for one of the two possible orientations (m = ±6)
of the semiclassical TbPc2 Ising magnetic moment m is de-
fined by the derivative of the steady-state current with respect
to bias voltage

gm = dIm

dVb

∣∣∣∣
Vb=0

= e
d

dVb
(Wm · Pm)

∣∣∣∣
Vb=0

= e

(
dWm

dVb
· Pm + Wm · dPm

dVb

)∣∣∣∣
Vb=0

, (2)

where Pm = (pm, pm;↑, pm;↓)T contains the nonequilibrium
populations of the electronic states of the device for a given
orientation of the Tb moment m and Wm is a vector of transi-
tion rates between the redox states of the device obtained from
the Fermi golden rule. As a result of weak but non-negligible
coupling of the readout Pc2 ligand-dot orbital state to the
continuum of states in the leads, the molecular energy levels
obtain a finite linewidth proportional to the imaginary part of
the self-energy, arising as a correction to the effective molecu-
lar Hamiltonian to account for the coupling to the leads states,
after eliminating the leads manifold from the full molecule-
lead partitioned Hamiltonian [28]. The ensuing broadening
of the molecular effective Hamiltonian eigenvalues (energy
levels) is encoded in the spectral density function of the
readout dot, which can be approximated as a Lorentzian line
shape centered at the LUMO energy of the noninteracting Pc2

ligand. We include this important effect into our model phe-
nomenologically by expressing charge-transfer processes as
convolutions of the leads’ thermal functions with a Lorentzian
line shape centered at the charging energy [29]

W m→m;σ ′
ασ = �δσσ ′

h̄π

∫
f (ε − μα )η dε

(ε − 	m;σ ′,m)2 + η2
. (3)

Here, � = 2πραkσ |Tαkσ |2 is the coupling strength between the
leads and the dot that, to a good approximation, can be taken
as constant over the energy range explored herein [30,31],
δσσ ′ is a Kronecker delta function accounting for the overlap
between the incoming electron spin and the reduced state,
	m;σ ′,m is the energy gap between the relevant reduced and
uncharged states of the device, η is the hybridization-induced
broadening of the molecular energy levels and f (ε − μα ) =
{1 + exp[(ε − μα )/kBT ]}−1 is the Fermi-Dirac distribution
of electrons in lead α at some temperature T and chemical
potential μα = ±Vb. The discharging rate of a spin σ electron

to lead α is given by W mσ ′→m
ασ and is readily obtained from

Eq. (3) with the substitution f (ε − μα ) → [1 − f (ε − μα )].
In order to evaluate the conductance formula in Eq. (2) we

compute the populations of the electronic states of the device
from a quantum rate equation that describes the nonequilib-
rium dynamics imparted on the molecular system as a result
of coupling to the leads [32]. The time evolution of each
population is determined by

ṗm =
∑

σ

W m;σ→m pm;σ − pmW m→m;σ ,

ṗm;σ = W m→m;σ pm − pm;σW m;σ→m, (4)

where the charging rates summed over leads and spin are
W m→m;σ = ∑

ασ ′ W m→m;σ
ασ ′ and likewise for the discharging

rates. As we are interested only in the steady-state limit of
Eq. (4) we solve the linear system that originates when Ṗm =
0 with the additional normalization condition pm + pm;↑ +
pm;↓ = 1.

A final simplification to our model can be made by noting
that if our device is invariant under a parity transformation,
which in our simple model is tantamount of assuming that the
molecular device is symmetrically coupled to left and right
leads, then the nonequilibrium populations of the single-level
quantum dot are invariant under reversal of the bias voltage.
On the other hand, the bias-voltage drop across the device is
by definition odd under a parity transformation. Hence, the
Taylor series expansion about Vb = 0 of the populations in
powers of the external bias voltage must necessarily be an
even polynomial in the bias voltage, so that all odd deriva-
tives of the populations with respect to the bias evaluated
at zero bias must be identically zero. In particular, we have
dPm/dVb = 0 at zero bias, which simplifies Eq. (2), leading
to the compact formula

gm|Vb=0 = e

(
dWm

dVb
· Pm

)∣∣∣∣
Vb=0

(5)

for the zero-bias differential conductance. An alternative
proof of Eq. (5) is presented in Appendix B. We note that the
fabrication of a molecular device with a perfectly symmetrical
source/drain coupling (i.e., �S = �D = �) is somewhat un-
likely, hence limiting the scope of Eq. (5) for realistic devices.
However, introducing such a lead-dot coupling asymmetry
does not change the essential physics exposed by our model
(see Appendix A) and so we proceed with this none-too-
restrictive assumption for simplicity.

We now discuss in some detail sequential tunneling trans-
port occurring via two different exchange-coupling regimes in
which, through different mechanisms, it is possible to explain
the observed electric readout of the quantum states of the
TbPc2 nanomagnet embedded in the molecular break-junction
device.

1. Large exchange-coupling regime: Gate-detuning-driven
readout mechanism

We begin with a study of the coupling between the Tb
4 f electrons and the unpaired conduction electron hosted
on the Pc2 dot in the large ferromagnetic exchange regime
[6a � kBT , where 6a is the exchange energy gap according
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FIG. 1. (a) Zeeman diagram of the lowest-lying levels of the
device in the large exchange-coupling regime. (b) Conductance as
a function of magnetic field at 100 mK for the two orientations of the
TbPc2 magnetic moments m = J (spin up, blue arrow) and m = −J
(spin down, red arrow) in the large exchange-coupling regime. Note
the conductance peaks at the magnetic field values B = ±2δVg/gμB,
at which values the gate-voltage-detuned energies of the neutral and
reduced states of the TbPc2 are brought back to charge resonance.

to Eq. (1)], so that the antiferromagnetically coupled re-
duced states |m = ±J, σ = ∓ 1

2 〉 are thermally isolated and
do not participate in electron transport. We choose a gate
voltage Vg = V (0)

g + δVg, where V (0)
g is the gate that brings

to degeneracy at zero field the ferromagnetic reduced state
|m = ±J, σ = ± 1

2 〉 and the uncharged state |m = ±J〉. As
shown in the Zeeman energies plot in Fig. 1(a), the effect of
δVg is to shift the system away from charge resonance (gate
detuning), preparing the system in a ferromagnetic reduced
ground state. Note that, in our model, the role of detuning
is to shift the charge resonance degeneracies between the
uncharged and reduced ground states, hence, the peaks of
the sequential tunneling current, to nonzero values of the
magnetic field, having opposite signs for opposite orientations
of the Tb magnetic moment [circled in black in Fig. 1(a)].

For a given orientation of the terbium magnetic moment
m the conductance [obtained from Eq. (5)] takes on the
particularly simple form

gm|Vb=0 = e�

2π h̄

∫
η dε

(ε + δVg − gμBBσ )2 + η2

×
(

∂ f (ε − Vb)

dVb
− ∂ f (ε + Vb)

dVb

)∣∣∣∣
Vb=0

. (6)

It is instructive to take the zero-temperature limit of Eq. (6), so
that the Fermi-Dirac functions become step functions whose

derivatives are Dirac delta functions centered at Vb = 0. In this
limit the integral in Eq. (6) can be evaluated exactly, and it can
be readily seen that the zero-temperature limit of the conduc-
tance for each orientation of the TbPc2 moment as a function
of the magnetic field is proportional to a Lorentzian line
shape peaked at B = ±2δVg/gμB, where the ± corresponds
to the m = ±J orientation of the Tb magnetic moment. From
this analysis we can ascribe the splitting of the conductance
signals in an applied magnetic field for each transport channel
m = ±J at zero bias and low temperature to an off-resonance
phenomenon that originates from detuning the electronic lev-
els of the Tb-dot hybrid away from level degeneracy with a
gate voltage, then restored by a magnetic field together with
the peaks of maximal differential conductance.

With the above mechanism in mind, we calculate the
conductance as a function of magnetic field for both orien-
tations of the TbPc2 moment at the finite temperature T =
100 mK used in the experiment [19] by numerical integration
of Eq. (6). We obtain best agreement with the experiments
for molecule-leads tunnel coupling �/h̄ = 6.5×108 s−1, and
using a broadening factor η = 55 μeV, which is of the order of
magnitude of the broadening used to model electron transport
through quantum dots [29,33]. Furthermore, in order to repro-
duce the conductance peaks at the experimentally observed
fields of B = ±100 mT, within the strong coupling regime
the detuning gate voltage must be fixed at δVg ≈ 0.005 meV.
Figure 1(b) shows the calculated conductance as a function
of magnetic field for each orientation of the Tb magnetic
moment. The peaks in the conductance associated to each ori-
entation of the Tb moment clearly originate from a recovery of
the level degeneracy condition restored via the magnetic field.
In this regime, applying a static magnetic field to the device
leads to two disparate conductance signals that provide an
electronic readout of the spin state of the terbium nanomagnet,
explaining the observed readout experiments [18,19] within
the Coulomb blockade transport regime.

We note that recent multifrequency electron paramagnetic
resonance (EPR) experiments on single crystals of this spin-
transistor molecular unit [TbPc2]0 measured an intramolec-
ular 4 f -electron-Pc2 radical Ising exchange energy gap of
6a = 0.11 meV (a ≈ 0.02 meV) [20]. Given that the thermal
energy available at T = 100 mK (≈0.01 meV) is 10 times
smaller than the experimental exchange gap, we would expect
the strong exchange limit discussed in this section to be the
relevant exchange-coupling regime to describe the readout
mechanism observed for this molecular spin transistor. This
could be easily verified within the spin-transistor experimental
setup by monitoring as function of applied gate voltage the
magnetic field values for which the conductance peaks are
observed. We have not so far been able to find these data in
the literature.

2. Weak exchange-coupling regime:
Exchange-driven readout mechanism

We now proceed with a discussion of the weak exchange-
coupling regime (6a � kBT ), where both the ferromagnetic
and antiferromagnetic reduced states participate in elec-
tronic transport through the device. We set the exchange-
coupling constant to a = 2×10−3 meV, which is one order of
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FIG. 2. (a) Zeeman diagram of the lowest-lying levels of the de-
vice in the weak exchange-coupling regime where a < δVg. (b) Con-
ductance as a function of magnetic field at 100 mK for the two
orientations of the TbPc2 magnetic moments m = J (spin up, blue
arrow) and m = −J (spin down, red arrow) in the weak exchange-
coupling regime. Note that in this case, the conductance peaks at the
magnetic field values B = ±aJ/gμB, at which values the exchange-
coupling split energies of the ferromagnetic and antiferromagnetic
reduced states of TbPc2 become degenerate.

magnitude smaller than that measured in single-crystal exper-
iments [20], hence comparable to the thermal energy available
at T = 100 mK. The ensuing Zeeman spectrum of the device,
assuming a detuning gate voltage δVg = 0.02 meV, is reported
in Fig. 2(a).

In order to simulate the finite-temperature sequential tun-
neling transport, we use Eq. (5) as function of the external
magnetic field, and plot the differential conductance as func-
tion of field in Fig. 2(b). The best agreement with experiments
was obtained for �/h̄ = 6.7×108 s−1 and η = 75 μeV.

As shown in Fig. 2(b), also in the weak exchange-coupling
regime the two opposite spin polarizations of the Tb(III)
nanomagnet give rise to well-defined disparate conductance
signals at finite applied field, peaked at the same but op-
posite nonzero values of the external magnetic field, repro-
ducing the experimental observations (peaks are centered at
B = 100 mT). However, inspection of the Zeeman energy
diagram reported in Fig. 2(a) immediately shows that the
peaks of conductance in this case coincide with field-induced
level crossings within the same redox manifold, i.e., at B =
100 mT we recover degeneracy between the ferromagnetic
and antiferromagnetic reduced states only, as opposed to the
large exchange-coupling regime reported in Fig. 1, where
the peaks correspond to charge resonance points at level
degeneracies between different charged and uncharged redox
states. The reason why the conductance peaks at the level

FIG. 3. Differential conductance averaged over both orientations
of the Tb moment as a function of temperature using a = 0.02 meV.
Best agreement with experiments was obtained for �/h̄ = 6.6×108

s−1, and η = 65 μeV.

crossing between same-redox states, occurring at field values
B = ±aJ/gμB [circled in black in Fig. 2(b)], is that at these
crossings the steady-state populations of the reduced states
become equal, and hence contribute simultaneously and max-
imally to transport through the device.

As the amplitude of the magnetic field required to bring the
reduced states to degeneracy is unaffected by gate detuning,
the positions of the differential conductance signals in this
regime are sensitive only to the value of the exchange gap 6a,
hence implementing an exchange-driven readout mechanism,
which is expected to be less sensitive to the detailed value of
the detuning gate voltage used in the experiment. In this limit,
the transport experiments would then provide a direct measure
of the exchange-coupling strength between 4 f electrons and
the sequential tunneling electrons.

B. Temperature, magnetic field, and bias-voltage
dependence of the conductance

To study the temperature, bias voltage, and magnetic
field dependence of the device differential conductance we
simulate sequential tunneling transport using the exchange
coupling a observed in single-crystal EPR experiment [20]
and corroborated by multiconfigurational [21–23] and mul-
tireference ab initio calculations [23], corresponding to a ≈
0.02 meV, and leading to an exchange energy gap ≈0.1 meV,
10 times smaller than the thermal energy available at the
operating temperature. While for this choice of coupling
both of the aforementioned mechanisms could in principle
play a role, we expect the gate-detuning-driven mechanism
discussed for the limit 6a � kBT to dominate, with only a
negligible amount of population transfer to the antiferromag-
netic reduced states of the device when the field is applied.
We find that the effect of such population transfer is to shift
the center of the peaks of differential conductance shown in
Fig. 1(b) by a few tens of mT to higher fields.

In Fig. 3 the differential conductance in the absence of
a magnetic field is plotted as a function of temperature. A
plateau is observed in the conductance at low temperatures
until kBT ∼ δVg wherein the electronic states of the device
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FIG. 4. Contour plot of conductance averaged over both orienta-
tions of the Tb moment as a function of bias voltage (in units of the
occupation energy of the dot) and magnetic field, for a = 0.02 meV,
�/h̄ = 6.6×108 s−1, and η = 65 μeV.

thermally equilibrate and the conductance signal begins to fall
off to zero. We note that the behavior of the differential con-
ductance as a function of temperature in our model captures
the temperature dependence of the molecular break-junction
device as reported in Ref. [19], except that in our microscopic
model of sequential tunneling conductance we do not need
to invoke Kondo coherent transport in order to reproduce
this behavior. This specific line shape, then, appears to be a
necessary but evidently not sufficient condition to infer the
strongly correlated Kondo transport regime in this molecular
device.

In Fig. 4 we report the differential conductance as a func-
tion of magnetic field and bias voltage. The strong, broad
resonance about B = 0 and Vb = 0 can be attributed to the
averaged conductance signals that appear for each orientation
of the Tb moment [see Fig. 1(b)]. At zero-bias voltage and
larger values of the magnetic field the level degeneracies be-
tween the uncharged states and the reduced states of the device
are lost and the conductance signal falls to zero. For magnetic
fields greater than the exchange coupling, the ferromagnetic
reduced state becomes the ground state of the device which
may transfer excess charge to electrodes and thus reinstate a
sequential tunneling electric current through the device only
when the bias conduction window is wide enough so as to
include the uncharged ground state of the TbPc2 molecule.

C. Coherent corrections to transport

To investigate the extent of the coherent character of the
conductance in the TbPc2 break junction, we consider cor-
rections to the Coulomb blockade models presented above to
second nonvanishing order (cotunneling) in the hybridization
Hamiltonian HT . To calculate the cotunneling rates we em-
ploy a T -matrix approach which is known to be consistent
with a full microscopic derivation of the transport problem
[34–36]. In this approach, there are three types of cotunneling
processes that may contribute to the conductance within our
model and for the experimental choice of gate-voltage de-
tuning: (i) elastic transitions in the uncharged manifold, (ii)
elastic transitions in the reduced manifold and (iii) inelastic
transitions in the reduced manifold. The most general ex-
pressions for the cotunneling rates in the neutral and reduced

manifolds, respectively, are [37]

W N,i→ f
aσ ;a′σ ′ = �2

2π h̄

∫
dε fα (ε)[1 − fα′ (ε − 	 f i )]

×
∣∣∣∣∣
∑

ν

〈 f |dσ |ν〉〈ν|d†
σ ′ |i〉

ε − 	νi + iγ

∣∣∣∣∣
2

,

W N+1,i→ f
aσ ;a′σ ′ = �2

2π h̄

∫
dε fα (ε)[1 − fα′ (ε − 	 f i )]

×
∣∣∣∣∣
∑

ν

〈 f |d†
σ |ν〉〈ν|dσ ′ |i〉

−ε + 	 f ν + iγ

∣∣∣∣∣
2

, (7)

where the sums run over all virtual states |ν〉 of the device that
differ in electron number from the final and initial states | f 〉
and |i〉 by 1. The finite lifetime γ for the virtually populated
state has been included to regularize the denominators and, to
a first approximation, the broadening of the molecular energy
levels induced by the coupling to the leads is absorbed into
the finite lifetime of the virtual transition so that γ = η. The
quantum rate equations given in Eq. (4) for the reduced states
must now be amended to account for population transfer as a
result of inelastic cotunneling transitions (elastic cotunneling
transition by definition do not change the populations of the
states). The new rate equations for the reduced states are
given by

ṗm;σ = W m→m;σ pm + W N+1,m;σ̄→m;σ
cot pm;σ̄

− pm;σ
(
W m;σ→m + W N+1,m;σ→m;σ̄

cot

)
, (8)

where |m; σ̄ 〉 denotes the reduced state other than |m; σ 〉 and
W N+1,m;σ→m;σ̄

cot = ∑
α′α′′σ ′σ ′′ W N+1,m;σ→m;σ̄

α′σ ′;α′′σ ′′ are all possible in-
elastic cotunneling processes that transfer population from the
state |m; σ 〉 to |m; σ̄ 〉. Likewise, the expression for the conduc-
tance is now recast to include all cotunneling contributions to
electronic transport through the device. Again, using the parity
invariance arguments outlined above, one obtains the compact
formula

gm|Vb=0 = e

(
dWseq

m

dVb
+ dWcot

m

dVb

)
· Pm

∣∣∣∣
Vb=0

(9)

for the zero-bias steady-state conductance of the device where
the appropriate transition rates for sequential tunneling and
cotunneling have been collected into the vectors Wseq

m and
Wcot

m , respectively.

1. Large exchange-coupling regime

We consider again the large exchange-coupling regime in
which the antiferromagnetic reduced states of the device are
thermally inaccessible for transport. As a consequence of this
large coupling, all inelastic cotunneling transitions between
the ferromagnetic and antiferromagnetic reduced states are
suppressed and the steady-state quantum rate equations for all
states in the device remain identical to the purely incoherent
regime.
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FIG. 5. Conductance as a function of magnetic field arising from
sequential and cotunneling processes at T = 100 mK for the two
orientations of the TbPc2 magnetic moments m = J (spin up, blue
arrow) and m = −J (spin down, red arrow) in the weak exchange-
coupling regime.

The sequential tunneling contribution to the zero-bias
steady-state conductance is

dWseq
m

dVb
· Pm

∣∣∣∣
Vb=0

= e�

π h̄kBT

∫
eβεdε

(1 + eβε )2

× η

(ε − 	m;σ,m)2 + η2
(10)

while the elastic cotunneling contribution is

dWcot
m

dVb
· Pm

∣∣∣∣
Vb=0

= e�2

2π2ηh̄kBT

∫
eβεdε

(1 + eβε )2

× η

(ε − 	m;σ,m)2 + η2
, (11)

where β = 1/kBT and 	m;σ,m is the energy gap between
the ferromagnetic reduced state and the neutral state of the
device with Tb orientation m. Combining Eqs. (10) and (11)
results in a formula for the conductance that is identical to
the pure Coulomb blockade transport model described above,
however, now with a renormalized coupling constant � �→
�(1 + �/2πη) between the dot and the leads. As before,
even after including cotunneling processes into the model,
the disparate signals of conductance that can be attributed to
the individual quantum states of the nanomagnet result from
an off-resonance effect induced by detuning the system from
level degeneracy with a gate voltage.

2. Weak exchange-coupling regime

We briefly return to the weak exchange-coupling regime
but now with the cotunneling corrections that were discussed
above, included into the model. Using the same parameter set
as discussed in the previous weak coupling section we sim-
ulated the differential conductance as a function of magnetic
field for each orientation of the terbium magnetic moment as
shown in Fig. 5. With coherent corrections included to second
nonvanishing order of the perturbation theory, we observed
no change to either the conductance in a magnetic field or
to the temperature-dependent conductance as the cotunneling
transition rates appeared two orders of magnitude smaller than
the sequential charging and discharging rates.

III. CONCLUSIONS

In this work we presented two sequential tunneling the-
oretical models, which were shown to capture recent low-
temperature experimental observations of off-charge reso-
nance differential conductance as function of magnetic field,
temperature, and bias voltage. The two separate mechanisms
we have identified for the electric readout of the magnetic
quantum state of the TbPc2 in differential conductance mea-
surements at finite magnetic field depend on the system’s
parameters in a fundamentally different way, which provides
an experimental handle to check the prevalence of each regime
in a given device.

Specifically, the peaks of the differential conductance read-
outs as function of magnetic field, for the two opposite orien-
tations of the magnet in the large exchange-coupling regime,
are found to be linearly dependent on the magnitude of the
gate voltage shift from the N/N + 1 charge resonance point.
Conversely, the position of the same peaks of magnetocon-
ductance in the weak exchange-coupling limit are mainly an
expression of the Ising exchange-coupling strength between
the Tb(III) nanomagnet 4 f electrons and the sequential tun-
neling electron spin hosted by the molecule’s Pc2 ligand, and
are not expected to change significantly on scanning a gate
voltage across the charge resonance.

On the basis of the experimental value of the exchange-
coupling energy gap (6a ≈ 0.1 meV) for the [TbPc2]0

molecule in the crystal phase, assuming it is not signifi-
cantly affected by coupling to the break-junction device or
by the application of gate voltages, we argue that the gate-
detuning-driven readout mechanism identified here in the
large exchange-coupling regime is expected to be the most
prominent for explaining the origin of the disparate signals of
differential conductance measured for each of the 4 f quantum
ground states of the TbPc2 nanomagnet.

On the basis of the good performance of our sequential
tunneling model, including its simulation of the temperature
dependence of the differential conductance line shape which
was argued to be associated to a Kondo transport regime, we
have provided evidence that the disparate conductance signals
measured for each Tb magnetic moment orientation in a lon-
gitudinal magnetic field can be explained solely on the basis
of sequential tunneling processes in the Coulomb blockade
transport regime, with no essential need to invoke coherent
transport regimes, as also shown by the negligible influence
of the coherent cotunneling corrections explored here.

As such, while we cannot exclude that higher-order co-
herent conduction mechanisms might improve quantitative
agreement between theory and experiment, we posit here
that incoherent charge tunneling processes and the associated
Coulomb blockade physics contributes dominantly to the low-
temperature conductance of this device, which may contribute
to explaining the microscopic mechanisms of dephasing in
the Landau-Zener–type 4 f spin-tunneling dynamics identified
in recent studies of the TbPc2 break junction [18]. This
has significant implications for future studies of molecular
spin transistors based on single-molecule magnets, as weak
molecule-lead coupling represents a more common scenario
in the fabrication of these devices, where selective control of
the interactions between molecule and leads cannot as yet be
easily achieved.
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APPENDIX A: GENERAL MODEL: HYPERFINE
COUPLING AND ASYMMETRIC COUPLING

TO THE LEADS

In this Appendix we show that the relaxation of some of
the constraints in our model (namely, the neglect of 159Tb
hyperfine coupling, and the symmetric coupling to the source
and drain leads) does not change any of the conclusions
achieved with the simpler and more symmetric model.

1. Hyperfine levels

To include the hyperfine structure of the 159Tb nanomagnet
into our model we append to Eq. (1) the Hamiltonian Hnuc =
μBBgI Iz + AIzJz + P[I2

z + I (I + 1)/3] which accounts in the
first term for the Zeeman interaction of the 159Tb nucleus,
in the second term for the hyperfine interaction between the
nucleus and the electronic angular momentum of the nano-
magnet, and in the third term for the nonspherical, quadrupo-
lar structure of the nucleus. Here, gI = 1.34 is the nuclear g
factor for terbium, A = 2.14 μeV is the hyperfine coupling
constant, and P = 1.24 μeV as reported by Ishikawa et al.
[38]. The new Hamiltonian H ′

S = HS + Hnuc is diagonal on
the product basis of the nanomagnet’s bistable ground states,
nuclear spin states, and the spin states of the readout dot
|m, mI , σ 〉 = |m = ±J〉 ⊗ |mI〉 ⊗ |σ 〉 where mI can take on
the values −3

2 , −1
2 , 1

2 , and 3
2 . The energies of these states

are plotted as functions of magnetic field in the upper panel
of Fig. 6(a) after detuning the system from level degeneracy
with a gate voltage δVg = 0.005 meV. Note that as a result of
this detuning, the level degeneracies between the neutral and
charged states with matching electronic and nuclear angular
momentum quantum numbers are shifted [black circles in
Figure 6(a)] to B = ±2δVg/gμB irrespective of the nuclear
spin quantum number of the states; note that the ± sign relates
to the orientation of the TbPc2 magnetic moment m = ±J .

We proceed from here as in the main text by developing
master equations for the populations of each orientation of
the TbPc2 magnetic moment and solve for the steady-state
populations which are then used to compute the conductance
from Eq. (5). In Fig. 6(b) we plot the resultant curves of
magnetoconductance that arise for each orientation of the
TbPc2 moment utilizing the parameter set used to produce
Fig. 1 in the main text. The invariance of our model upon the
introduction of hyperfine coupling results from the inability
of neutral and charged states with mI �= m′

I to participate in
charging/discharging events, thus, the only level degeneracies
left that may contribute to the device conductance are unaf-
fected by interactions with the 159Tb nucleus. A similar ar-
gument can be made for the weak exchange-coupling regime
wherein the magnetoconductance curves for each orientation
of the TbPc2 magnetic moment again remain invariant upon
the inclusion of the hyperfine states of the device.
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FIG. 6. (a) Zeeman diagram of the lowest-lying hyperfine-split
levels of the device |m, mI , σ 〉 in the large exchange-coupling regime.
(b) Conductance as a function of magnetic field at 100 mK for the
two orientations of the TbPc2 magnetic moments m = J (spin up,
blue arrow) and m = −J (spin down, red arrow).

2. Asymmetric coupling

If the lead-dot coupling to source and drain is allowed
to be different, we note that our simple expression for the
conductance [given in Eq. (5)] is no longer valid. To ascertain
the consequences of introducing such an asymmetry we im-
plemented the full calculation of the conductance accounting
for the derivative of the populations with respect to bias
voltage [Eq. (2)] and report the results of the magnetoconduc-
tance for one orientation of the TbPc2 magnetic moment as a
function of magnetic field in Fig. 7. Notably, by varying the
ratio between the lead-dot coupling constants for the source
and drain, the magnetoconductance becomes diminished in
magnitude but still retains its broad, Lorentzian line shape
centered at B = 2δVg/gμB. Therefore, the appearance of a
small asymmetry in the coupling constants �S and �D does
not affect the readout mechanisms discussed in the main text
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FIG. 7. Magnetoconductance of the device when m = J in the
large exchange-coupling regime at various ratios of lead-dot coupling
�D/�S using the same parameter set as for Fig. 1 with �S = �.
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and can be accounted for in our more symmetric model by
adjusting the value of �.

APPENDIX B: CONDUCTANCE FORMULA AT ZERO BIAS

We will now prove the validity of Eq. (5) from Eq. (2)
which amounts to showing that the term proportional to
dPm/dVb on the right-hand side of Eq. (2) vanishes when Vb =
0. The population vector Pm is obtained by solving the rate
equations presented in Eq. (4). For ease of notation, we cast
these equations into a matrix form and consider a derivative
with respect to bias voltage Vb:

dPm

dt
= MPm ⇒ ∂

∂Vb

dPm

dt
= ∂

∂Vb
(MPm)

⇒ d

dt

(
∂Pm

∂Vb

)
= M∂Pm

∂Vb
+ ∂M

∂Vb
Pm. (B1)

At zero-bias voltage, the last term on the right-hand side of
Eq. (B1) is exactly zero. To see why this is the case, consider
the derivative with respect to bias voltage of a representative
coefficient of the matrix M:

∂W m→m;σ ′

∂Vb
=

∑
ασ

∂W m→m;σ ′
ασ

∂Vb

=
∫

dμ(ε)

[
∂ f (ε + Vb)

∂Vb
+ ∂ f (ε − Vb)

∂Vb

]
, (B2)

where dμ(ε) = dε(�/h̄π )[η/(ε − 	mσ ′;m)2 + η2]. Notably,
in this step we have assumed a symmetric coupling strength
between the dot and both leads, i.e., �S = �D = �. Clearly,
when Vb = 0 the integrand vanishes due to the derivatives
of the Fermi functions. The same calculation can be made
for entries of M containing discharging rates, thus reducing
Eq. (B1) to

d

dt

(
∂Pm

∂Vb

)
= M∂Pm

∂Vb
(B3)

when Vb = 0. Equation (B3) has the exact form of the master
equation for the populations Pm and thus possesses a steady-
state limit, i.e., the matrix M has one zero eigenvalue. Sec-
ond, note that

∑
i ∂Pi

m/∂Vb = ∂/∂Vb
∑

i Pi
m = ∂/∂Vb(1) = 0,

where we have used that the populations sum to unity. It can
be readily verified then that the steady-state limit of ∂Pm/∂Vb

that is obtained from solving the linear system

M∂Pm

∂Vb
= 0 (B4)

with the additional condition
∑

i ∂Pi
m/∂Vb = 0 is ∂Pm/∂Vb =

0 and, thus, at zero-bias voltage, Eq. (5) is retrieved.
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