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Resonant tunneling anisotropic magnetoresistance induced by magnetic proximity
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We reveal that the interplay between Rashba spin-orbit coupling and proximity-induced magnetization in a
two-dimensional electron gas leads to peculiar transport properties and large anisotropy of magnetoresistance.
While the related tunneling anisotropic magnetoresistance (TAMR) has been extensively studied before, we
predict an effect with a different origin arising from the evolution of a resonant condition with the in-plane
rotation of magnetization and having a much larger magnitude. The resonances in the tunneling emerge from
a spin-parity-time symmetry of the scattering states. However, such a symmetry is generally absent from the
system itself and only appears for certain parameter values. Without resonant behavior in the topological
surface states of a proximitized three-dimensional topological insulator (TI), TAMR measurements can readily
distinguish them from often misinterpreted trivial Rashba-like states inherent to many TIs.
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I. INTRODUCTION

Tunneling magnetoresistance (TMR) has enabled remark-
able advances in spintronic applications [1–5]. While TMR
devices require multiple ferromagnetic leads, in the presence
of spin-orbit coupling (SOC) even a single ferromagnet (F)
yields MR with the change of its magnetization direction. This
makes the resulting tunneling anisotropic magnetoresistance
(TAMR) [6–17] a promising effect for scaled-down devices
and design simplifications. Since the TAMR originates from
the interplay between magnetization, M and SOC, it can
also be used for experimentally probing emergent phenomena
from interfacial SOC fields in both normal and superconduct-
ing heterostructures [18–22].

In common TAMR devices, a ferromagnetic lead generates
spin polarization P, which together with the SOC strength
determines the transport anisotropy. In vertical tunneling de-
vices the in-plane TAMR is rather small (typically <1 %) even
for large P [6] and exchange energies >eV [7,12,13]. In this
work we propose a novel geometry in which a spin-polarized
lead [4,23] is not required, but the TAMR is enhanced. We
consider tunneling through a gated barrier with proximity-
induced magnetism from F on top of a two-dimensional
electron gas (2DEG), shown in Fig. 1(a). Magnetic proximity
effects offer a versatile method to transform materials with
measured proximity-induced exchange energies up to tens of
meV [24] and extending over 10 nm [25–28].

In the presence of Rashba SOC [4] the transport through
the magnetic barrier becomes anisotropic with respect to the
magnetization M. Remarkably, the predicted in-plane TAMR
is one to two orders of magnitude larger than in most TAMR
vertical devices. Surprisingly, this is realized in the proposed
device with nonmagnetic leads and the proximity-induced
exchange splitting typically two orders of magnitude smaller
than the exchange energy in the ferromagnetic lead of other
TAMR devices. We find that the enhanced MR sensitivity
to changes in M, even for small exchange fields, originates

from the emergence of a spin-parity-time (PsT ) symmetry
of the scattering states, where T is the time reversal and
Ps the inversion of both position and spin, generalizing the
well-known PT-symmetry [29,30]. The emergence of the PsT
symmetry leads to resonances in the transmission, which are
highly sensitive to M and result in an enhanced TAMR.

As illustrated in Fig. 1(b) and 1(c), in the magnetic bar-
rier region the Fermi contour of the 2DEG states is shifted

FIG. 1. (a) Planar geometry, the current flows in the 2DEG.
(b) Band structure in the 2DEG with the Fermi energy EF and
the effective barrier region (middle) of height V0 and exchange
field �. (c) Corresponding Fermi contours, arrows denote the spin
orientation. Dashed lines: the range of a conserved wave vector ky in
the scattering states. For incident angles exceeding θ0 backscattering
is suppressed. (d) Action of the PsT = PσzT operator on an incident
wave with an in-plane spin transforms the incident wave on the
left side of the barrier (left panel) into itself but as a transmitted
wave on the right side of the barrier (right panel). The magnetization
orientation M, defined by the in-plane polar angle φ.
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perpendicular to M. This barrier region is the same 2DEG
as in Fig. 1(a) but modified by a magnetic proximity effect
and a potential change. The change of the barrier Fermi
contour with respect to the Fermi contour of the leads when
the in-plane M is varied affects the transmission rates and
produces M-dependent changes in the device resistance. Fur-
thermore, the barrier Fermi contour undergoes a deformation
that increases with the strength of the Rashba SOC. Such
a deformation allows for lead-barrier Fermi contour match-
ing enabling multiple states to achieve high-transmission
rates.

The realization of perfect transmission can be intuitively
understood by considering the action of the PsT ≡ PσzT
operator on an incident wave with a given in-plane spin, as
schematically shown in Fig. 1(d). T reverses both the spin and
motion of the incident wave, while Ps ≡ Pσz inverts both the
spin (through the action of the Pauli matrix σz) and position
(through the action of space inversion P) of the wave. As a
result, by applying the PsT operator the incident wave on the
left is transformed to itself, but as a transmitted wave on the
right. Therefore, scattering states which are eigenfunctions of
PsT experience perfect transmission.

While our analysis is mostly focused on the proximity-
induced magnetization in a 2DEG, the approach we consider
can be also applied to other systems. In this work this is
illustrated on the example of topological insulators in which
topological surface states could be accompanied by trivial
bands characteristic for Rashba SOC.

Following this introduction, in Sec. II we describe the
Hamiltonian and scattering states for considered heterostruc-
tures. In Sec. III we provide the expressions for conductance
and transmission as well as their helicity-resolved compo-
nents. The transmission resonances are connected to the spin-
parity-time symmetry of the scattering states. The Fermi
contour analysis in Sec. IV reveals the role of wave vector
and spin mismatch on the evolution of conductance and trans-
mission with the direction and magnitude of the proximity-
induced magnetization in a 2DEG. In Sec. V we analyze the
angular dependence and resonant behavior of the TAMR. In
Sec. VI we discuss how TAMR signatures could be used
to distinguish between the topological and trivial states in
heterostructures with topological insulators as well as note
some open questions for future work.

FIG. 2. (a) Typical band structure for the states in the lead (left)
and barrier (right), see Fig. 1. (b) The same band structure at normal
incidence ky = 0. Red line: the Fermi energy.

II. HAMILTONIAN AND SCATTERING STATES

The model Hamiltonian of the system represented in
Fig. 1(a) is given by

H = p2

2m∗ + α

h̄
(σ × p) · ẑ + [V0 − �(m · σ )]h(x), (1)

where m∗ is the effective mass, α is the Rashba SOC strength,
ẑ is the unit vector along the z axis, p = (px, py) is the 2D
momentum operator, σ is the vector of Pauli matrices, V0

describes the potential barrier, and � and m are the mag-
nitude and direction of the proximity-induced ferromagnetic
exchange field. The function h(x) = �(d/2 + x)�(d/2 − x)
describes a square barrier of thickness d . We focus on elec-
trons, not holes [31–34], with the typical band structure shown
in Fig. 2.

Due to Rashba SOC, the wave functions can be classified
by the helicity index, where λ = 1 (−1) refers to the inner
(outer) Fermi contour as depicted in Fig. 1(c). The scattering
states for the finite square barrier model can be written as
ψλ(x, y) = (1/

√
2S)eikyyφλ(x), with sample area S and the

conserved parallel component of the wave vector ky,

φλ(x) =

⎧⎪⎨⎪⎩
eikxλxχ

(+)
λ + rλλe−ikxλxχ

(−)
λ + rλλ̄e−ikxλ̄xχ

(−)
λ̄

, x < −d/2,∑
λ′=±1

∑
n A(n)

λλ′eĩk(n)
xλ′ xχ̃

(n)
λ′ , −d/2 < x < d/2,

tλλeikxλxχ
(+)
λ + tλλ̄eikxλ̄xχ

(+)
λ̄

, x > d/2.

(2)

Here the states in the lead are the same as those in the δ-barrier model discussed in Appendix A. In the barrier, the spinors are
defined as

χ̃
(n)
λ′ =

(
1

−iλ′eĩθ (n)
λ′

)
, (3)

where θ̃
(n)
λ′ = arctan(

k̃(n)
xλ′+�y/α

ky−�x/α
) and k̃(n)

xλ′ is the nth root (n = 1, . . . , 4) of

h̄2

2m∗
(̃
k2

xλ′ + k2
y

) + V0 + λ′
√

(αk̃xλ′ + �y)
2 + (αky − �x )2 = E . (4)
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For the wave function in the barrier, all possible eigenstates
should be involved. In Eq. (4), the total number of solutions
for both λ′ = ±1 is four, but there are two possible situations
for the distribution of the roots: All four roots belong to the
λ′ = −1 branch and no root to λ′ = 1, or two roots belong to
the λ′ = −1 branch while another two belong to the λ′ = 1
branch.

At the boundaries (x = −d/2 and x = d/2), the wave
function and its first derivative should be continuous, which
leads to a group of linear equations. By solving these linear
equations, one can obtain the transmission coefficients tλλ and
tλλ̄ for the square barrier model.

III. CONDUCTANCE AND TRANSMISSION

From the continuity equation, one can derive the particle
current density

j = Re
[
ψ†

( p
m∗ + α

h̄
(ez × σ )

)
ψ

]
. (5)

Inserting the scattering state in the right lead at x > d/2 from
Eq. (2), we can obtain the particle current density of the λ

channel

jλ = Re[v/S(|tλλ|2 cos θλ + |tλλ̄|2 cos θλ̄)]; (6)

here, the group velocity of the scattered particle, v =√
(α/h̄)2 + (2E/m∗), has the same magnitude for two bands.

This current contains contributions from the intra- and in-
terchannel transmission, where θλ is the incident and θλ̄

the propagation angle of the cross-channel wave with the
conservation of the ky component and θλ̄ is related to θλ by

cos θλ̄ =
√

k2
λ̄

− k2
λsin2θλ/kλ̄.

The longitudinal tunneling charge current of the λ channel
can be written as

Iλ = eD
∑

kx�0,ky

jλ[ f (E − eV ) − f (E )], (7)

where D is the width of the sample and f (E ) is the
Fermi-Dirac distribution. In the low-bias limit, i.e., |eV | �
EF , one can use the approximation f (E − eV ) − f (E ) ≈
eV δ(E − EF ).

Performing the following replacement∑
kx�0,ky

↔ S

(2π )2

∫ ∞

0
dkx

∫ ∞

−∞
dky, (8)

and inserting the particle current density in Eq. (6), we get the
expression for the conductance Gλ ≡ Iλ/V in the λ channel

Gλ = e2

h

D

2π

∫ π
2

− π
2

dθλkλ
F Tλ cos θλ, (9)

where kλ
F is the Fermi wave vector of the λ channel and the

transmission is

Tλ = Re[|tλλ|2 + |tλλ̄|2(cos θλ̄/ cos θλ)]. (10)

The total conductance is the sum of the two channels,

G =
∑
λ=±1

Gλ. (11)

As shown in Fig. 1, the PsT symmetry leads to per-
fect transmission. Therefore, transmission resonances occur
whenever the scattering states are such that PsT ψ (x, y) =
ξψ (x, y), with eigenvalues of the form ξ = eiη. However, PsT
does not commute with the Hamiltonian in Eq. (1). Therefore,
it is not an intrinsic symmetry of the system. Instead, the PsT
symmetry emerges only for certain specific system parameters
and scattering states satisfying,

[H,PsT ]ψR(x, y) = 0, (12)

where the index R emphasizes that the relation holds only
at resonances. This symmetry generalizes a simple case of
resonances in a potential barrier (or a spinless) system [35].
We will further analyze this occurrence of resonances in
Appendix B.

IV. FERMI CONTOUR ANALYSIS

A. Wave vector and spin mismatch

To understand the relation between conductance and bar-
rier parameters, it is convenient to perform a Fermi contour
analysis. The basic idea is that the better the matching between
Fermi contours in the lead and barrier, the higher the transmis-
sion. We recall that for a simple δ barrier, the transmission is
T = 1/(1 + Z2), where Z is the effective barrier strength which
combines the influence of a native barrier and the mismatch
of the Fermi wave vectors in the two regions [22,36]. Since
the difference between the lead and barrier Fermi contours
is associated with the effective barrier potential, a larger
mismatch between Fermi contours corresponds to a larger
effective potential Z and thus to a low transmission.

In the presence of Rashba SOC the effective interfacial
barrier is inequivalent for two helicities (for outer/inner
Fermi contours) leading to an important influence of spin
mismatch on transmission [22]. For the spin mismatch, we
can decompose the incident spinor in the basis constructed by
the corresponding barrier eigenspinor χ↑ and its antiparallel
partner χ↓, i.e., |χin〉 = 〈χ↑|χin〉|χ↑〉 + 〈χ↓|χin〉|χ↓〉. The first
term undergoes a weak effective barrier while the second term
experiences a strong barrier [22]. Therefore, considering the
spin mismatch, we need to include a correction of |〈χ↑|χin〉|2
in the transmission, i.e., T ≈ |〈χ↑|χin〉|2Tχ↑ , where Tχ↑ is the
transmission when spin mismatch is ignored. When the state
inside the barrier is the same (up to a phase) as that in the lead,
perfect transmission is achieved.

The band structure of the lead and barrier states shown
in Fig. 2 can be further analyzed for parameters of a typi-
cal InGaAs/InAlAs 2DEG with m∗ = 0.05m0, where m0 is
the free-electron mass, and α = 0.093 eV Å [37]. The corre-
sponding Fermi contours with spin orientations for various
strength of the proximity-induced exchange and a tenfold
increase in SOC are shown in Fig. 3. While in the leads, the
Fermi contours of the Rashba bands are perfectly circular, in-
side of the barrier they are shifted and distorted in the direction
⊥ to the magnetization M, which is along the direction of the
proximity-induced exchange field m shown in Fig. 3 for m ‖ x
and m ‖ y. These effects can be seen more clearly in the large
α states. The spin is polarized along the M in the barrier.

To understand the behavior of the conductance, the overall
matching of the Fermi contours should be considered, i.e.,
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FIG. 3. Fermi contours in the lead (leftmost) and in the barrier
when V0 = 15 meV and � = 12, 17, and 24 meV. The upper (lower)
panel is for α = 0.093 eV Å (α = 0.93 eV Å). In each panel, the
first row corresponds to m ‖ x and the second row m ‖ y. The blue
and yellow contours denote lower and upper bands, respectively,
and inside the barrier the upper band disappears since its bottom is
above the Fermi energy EF . The spin orientations are represented by
arrows.

not only the matching of individual states but also the overall
matching in the radius and curvature of the contours. When
the incoming particles are from two Fermi contours, we need
to compare both the inner and outer lead contours with the
barrier contour.

B. Conductance peak near � = V0

To explore the evolution of conductance as a function
of proximity-induced field and its direction, throughout this
work we consider its normalized value in Eq. (11) expressed
in terms of the Sharvin conductance,

G0 = e2

h

2D

π

√(
α m∗

h̄2

)2

+ 2m∗ EF

h̄2 . (13)

Similar to the examined changes in the Fermi contours from
Fig. 3, we focus in Fig. 4(a) on the conductance for M
transverse (m ‖ x) and parallel (m ‖ y) to the barrier [recall
Fig. 1(d)], G(φ = 0) and G(φ = π/2), respectively. The con-
ductance exhibits a nonmonotonic behavior with maxima, la-
beled by (1) and (2), occurring at different � and accompanied
by the corresponding Fermi contours in the insets (1) and
(2). To understand this behavior it is useful to consider a
small SOC limit, α � �/

√
(2m∗/h̄2)(EF + � − V0), where

FIG. 4. (a) Dependence of the conductance on � with EF =
10 meV, V0 = 15 meV, d = 13 nm, and α = 0.093 eV Å, where the
dashed and solid curves denote the conductance for m ‖ x and m ‖ y,
respectively. Insets (1) and (2) show the matching between Fermi
contours in the lead (blue and red) and in the barrier (multicolor)
at labeled peaks. (b) The same as (a) but α is 10 times greater. The
dashed vertical lines labeled by (3) and (4) denote the values of � for
which the conductance maxima are achieved and the corresponding
Fermi contours are given in the two insets.

the barrier Fermi contour can be approximately written as(
kx − m∗α

h̄2 sin φ

)2

+
(

ky + m∗α
h̄2 cos φ

)2

≈ 2m∗

h̄2 (EF + � − V0). (14)

This implies that the barrier contour for small α reduces to
a shifted circle with radius r0

√
(EF + � − V0)/EF , where r0

is the average radius of the inner and outer lead circles. In the
region near the line V0 = �, both G(0) and G(π/2) reach their
maxima because the best matching of Fermi contours between
lead and barrier is obtained. Specifically, when α → 0, V0 =
� leads to a perfect transmission. We notice that the shift of
barrier circle, which is always ⊥ to m, is of the first order in α,
while the deformation is, at least, a second order correction.

A modest shift between the two conductance maxima in
Fig. 4(a) is largely enhanced in Fig. 4(b), when the SOC is
increased tenfold and α = 0.93 eV Å. As shown in Figs. 4(a)
and 4(b), G(0) is peaked exactly at V0 = �, where the con-
tours from insets (1) and (3) share the least overall mismatch.
In the small α limit, the barrier contour is shifted downward
and its radius equals to the average radius of the inner and
outer lead contours. Due to the asymmetry of the barrier Fermi
contour, the best match for both the upper and lower half
of the circle cannot be achieved simultaneously. Therefore,
the upper (lower) half of the barrier contour tends to match
the inner (outer) lead contour since the spin mismatch is
smaller for these states. Thus the simultaneous achievement
of these large transmission conditions at V0 = � results in the
maximum conductance. This statement still holds for large
α, so generally V0 = � is always the maximum condition
for G(0).
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FIG. 5. Transmission Tλ from each energy band (a), (b) when
m ‖ x and (c), (d) when m ‖ y, as a function of � and incident angle
θ , with EF = 10 meV, V0 = 15 meV, d = 13 nm, and α = 0.93 eV Å,
as in Fig. 4(b). The dashed vertical lines labeled by (3) and (4) denote
the values of � for conductance maxima from Fig. 4(b).

However, the maximum of G(π/2) is achieved when the
barrier circle shares the same size as the outer circle of the
lead from Fig. 4 in insets (2) and (4). Up to the first order in
α, the condition leading to the maximum G(π/2) is given by
� = V0 + αkF . When such a condition is satisfied, the barrier
Fermi contour matches the outer lead contour instead of the
inner one, because the main contribution of the conductance
is from the incident particles on the outer Fermi contour.

The previously discussed nonmonotonic behavior of the
conductance is a consequence of the collective contributions
of multiple resonant states corresponding to different propa-
gation directions of the tunneling carriers. For a strong SOC
in Fig. 4(b), the appearance of a large number of resonant
states at the value of � indicated by vertical lines results in
the maximum of conductance labeled by (3) and (4). With
the change of the m the parameter space where resonances
emerge is shifted, leading to a shift in the corresponding �

value.
The origin of the conductance maximum at (3) and (4)

can be understood from Fig. 5 by examining the transmission
at EF , Tλ, which reveals multiple resonances, depending on
� and the incident angle θ . As shown in Fig. 5, where the
corresponding values � for the conductance maxima (3) and
(4) from Fig. 4(b) are given again, the dominant contribution
to Tλ comes from λ = −1 channel, which corresponds to the
transport via the outer Fermi contour states in the leads. The
region of bright colors in Figs. 5(a) and 5(c) shows strong
T−1 which approximately satisfies the symmetry condition
Eq. (12), further analyzed in Appendix B and connected to
the occurrence of different resonances.

The observed behavior in Figs. 4(b), 5(a), and 5(c) leads us
to conclude that the maximum of the total conductance is de-
termined mainly by the range of θ for dominant transmission.

FIG. 6. Planar geometry and schematic diagram of scattering
processes. The current flows only through a 2DEG which is modified
in the barrier region by the electrostatic potential and the proximity-
induced spin splitting from the ferromagnet; F. Fermi contours
correspond to the states in the left lead, barrier, and right lead.
Dots (crosses) denote the states favored (unfavored) in the scattering.
States with positive kx are transmitted, while those with negative kx

are reflected.

For G(0) or m ‖ x, the Fermi contour inside the barrier shifts
vertically and the condition for maximum transmission angle
is achieved exactly at � = V0, when the shift of the energy
band by the potential V0 inside the barrier is canceled by the
Zeeman shift −� for the λ = −1 channel.

In contrast, for G(π/2) or m ‖ y, the best contour matching
at large angles is achieved for an enlarged Fermi contour
inside the barrier at � ≈ V0 + αkF as shown in inset (4)
of Fig. 4(b) and discussed before. This is consistent with
Fig. 5(c) revealing an almost perfect transmission near the
grazing incidence (θ ≈ ±90◦), rather than just a maximum
T−1 expected to occur near the normal incidence (θ ≈ 0◦).
We can understand this behavior of T−1 and G(π/2) from the
allowed scattering processes illustrated in Fig. 6. Considering
the spin matching, reflection to the band with opposite helicity
is favored, while the situation for transmission is the oppo-
site. On the other hand, for carriers from the λ = −1 band
(outer contour), when the incoming angles are greater than
the critical angle θ0 = ± arcsin (k1/k−1), the transmission and
reflection to the λ = 1 band are not allowed because there
are no such propagating states as shown for dashed line (1).
Therefore, in this regime, back scattering is suppressed while
T−1 is enhanced. To ensure that states with such large incident
angles are transmitted across the barrier, the corresponding
barrier eigenstates should be propagating, implying that the
contour should at least have the same size as the outer lead
contour. Since the matching deteriorates when the size of the
barrier contour increases, the maximum of G(π/2) is obtained
when the barrier contour is the same size as the outer lead
contour, confirming again � ≈ V0 + αkF .

V. TUNNELING ANISOTROPIC
MAGNETORESISTANCE (TAMR)

A. Infinite vs finite geometry

This difference for the maximum of the total conductance
as a function of m is the origin of the strong TAMR. To char-
acterize the strength of the anisotropic response, we introduce
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the in-plane TAMR coefficient [7,9],

TAMR(φ) = R(φ) − R(0)

R(0)
= G(0) − G(φ)

G(φ)
, (15)

with φ defined in Fig. 1(d). Unlike the MR values, which
may change considerably from sample to sample, the TAMR
coefficient is known to be more robust against specific sample
details [38]. Up to the second order in the SOC strength, the
extreme values of the TAMR(φ) are given by the contrast
between the MR measured for m parallel and perpendicular
to the current, i.e., TAMR(φ = π/2). For brevity, we use

TAMR ≡ TAMR(φ = π/2), (16)

unless φ is explicitly specified.
Our previous analysis, based on the model from Sec. II,

relies on an infinite heterostructure and its translational invari-
ance perpendicular to the current. It would then be important
to examine if the observed trends are retained by relaxing
this assumption within a finite geometry. To consider this, our
numerical calculations are based on a finite-difference scheme
leading to the discretization of the Hamiltonian in Eq. (1),
which can then be written in the tight-binding representation
as

HTB =
∑
n,σ

(4t − V0hn)|n, σ 〉〈n, σ | − t
∑

〈n,n′〉,σ
|n, σ 〉〈n′, σ |

− 2�

h̄

∑
n,σ,σ ′

(m · Sσσ ′ )hn|n, σ 〉〈n, σ ′|

+ α

h̄a

∑
n,σ,σ ′

(
i Sx

σσ ′ |n, σ 〉〈n + ey, σ
′|

− i Sy
σσ ′ |n, σ 〉〈n + ex, σ

′| + H.c.
)
, (17)

where 〈r|n, σ 〉 = ψσ (an) represents the wave function at sites
n = (nx, ny) of the square lattice with lattice constant a, t =
h̄2/2m∗a2 is the hopping parameter, ex (ey) is the unit vector
along the x (y) axis, and Sσσ ′ is the vector of spin matrix
elements, Sx,y

σσ ′ = 〈σ |h̄σx,y/2|σ ′〉. In the second term on the
right-hand side of Eq. (17), 〈n, n′〉 indicates the sum is over
nearest neighbors. The form of the barrier is determined by
hn = h(an), which we assume to have a rectangular shape and
width d .

To compute the conductance, two semi-infinite metallic
leads without Rashba SOC are attached to the scattering
region described by Eq. (17). The numerical calculations were
performed with the Kwant package [39] for quantum trans-
port, which allows for an efficient computation of the zero-
temperature differential conductance by using the Landauer
formula,

G = e2

h

∑
iσ∈l, jσ ′∈r

|Siσ, jσ ′ |2. (18)

Here Siσ, jσ ′ represents the scattering matrix elements and the
summation is over the conducting channels in the left (l) and
right (r) leads.

To examine the influence of geometry on the evolution of
TAMR with � and V0, we use the previous InGaAs/InAlAs
2DEG-based parameters and compare in Fig. 7(a) the results
for an infinite geometry with those in Fig. 7(b) for a finite

FIG. 7. (a) Dependence of TAMR amplitude on V0 and � for
2DEG system with d = 13 nm thick barrier, EF = 10 meV, and
α = 0.093 eV Å. (b) TAMR for a finite system with the same d
and α, but with the hopping parameter t = 0.112 eV, corresponding
to a lattice spacing of a = 2.6 nm, and the scattering region was
discretized into a 100 × 40 lattice.

geometry. In Fig. 7(a), the TAMR exhibits a sharply peaked
behavior for α = 0.093 eV Å with extreme values along a line
in the vicinity of V0 = �. For a given value of V0, the width
of the TAMR peak is estimated as the difference between
the values of � corresponding to the maximum of G(0) and
G(π/2) which, according to our discussion in Sec. IV B and
Fig. 4, in the weak SOC limit is given by αkF . Complemen-
tary finite-size calculations in Fig. 7(b) have been performed
calculations using Kwant [39] with TAMR obtained from
Eqs. (17) and (18). A finite system with a scattering region
was discretized into a 100 × 40 lattice with a spacing of
2.6 nm and the hopping parameter t = 0.112 eV. The results,
for the same range of V0 and � as in Fig. 7(a), reveal that while
finite-size effects slightly increase and sharpen the TAMR, the
overall qualitative behavior remains similar to the calculations
for an infinite system. This confirms the TAMR robustness
mentioned above and the suitability of the considered infinite
geometry.

B. Angular dependence

Since the helical spin textures in 2DEG systems, depicted
in Fig. 1(c), are also inherent to the surfaces states of 3D
topological insulators (TIs), it is important to examine if
there are any differences between their respective TAMR
signatures, for example, in the angular dependence of TAMR.
This distinction could be very important since in 3D TIs,
depending on the Fermi energy, their transport properties may
be dominated by topological surface states with a Dirac-like
dispersion, trivial Rashba-like states, or both [40–43].

While we focus on in-plane TAMR, we note that out-of-
plane TAMR calculated in vertical structures with TIs can
become large. Within an effective Hamiltonian description
it can be enhanced from ∼1% to ∼15% with a direct F/TI
contact which opens the gap in the TI’s surface state [44] and
can even reach ∼50%, predicted from first principles [45].

To analyze in-plane angular dependence, it is helpful to
use the δ-barrier model from Appendix A and obtain some
analytical results. For a 2DEG system, in the limit of �/V0 �
1, the leading contribution to the angular dependence of the
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FIG. 8. Angular dependence of (a) channel-resolved conduc-
tance (blue line: λ = −1 and red line: λ = 1) and (b) total con-
ductance for a 2DEG with the δ barrier, where EF = 10 meV, � =
12 meV, V0 = 15 meV, d = 13 nm, and α = 0.093 eV Å.

conductance from the two incoming channels with helicity
λ = ±1, is ± sin (φ), as shown in Fig. 8(a). However, with
their opposite signs, these leading contributions cancel in the
total conductance from Fig. 8(b), which becomes significantly

smaller, quadratic in the small parameter, and has a different
angular dependence, resulting in

TAMR2DEG(φ) ∼ (�/V0)2 sin2 (φ). (19)

A similar TAMR analysis can be performed for a 3D TI
dominated by the Dirac-like topological surface state [46,47],
where in the heterostructure from Fig. 1(a) the 2DEG is
replaced by a 3D TI. The corresponding spin-momentum
locking of these surface states is used to explain various
experiments [46–48], including unusual electrically tunable
magnetoresistive effects in TIs with an applied magnetic field
or magnetic doping [49,50]. Here we use the δ-barrier model,
based on the approach from Ref. [51], given by

H = vF (σ × p) · ẑ + [V0 − �(m · σ)]dδ(x), (20)

with vF the Fermi velocity, while the remaining quantities
retain the meaning from Eq. (1). Since we consider an in-
plane magnetization, the topological surface state remains
gapless. We can then derive an approximate analytical TAMR
expression for topological states which, up to the second order
in �/V0, yields

TAMRTI(φ) ≈ tan Z0(Z0 − 2 tan Z0)[(3 − cos2Z0)arctanh(cos Z0) − 3 cos Z0]

2[cos Z0 − sin2Z0arctanh(cos Z0)]

(
�

V0

)2

sin2(φ), (21)

with Z0 = V0d/(h̄vF ) the dimensionless barrier strength, used
also in studies of TIs with multiple F regions [52].

While both Eqs. (19) and (21) yield the same angular de-
pendence, this could simply be a consequence of the assumed
δ-function barrier. Instead we next consider a more realistic
square barrier to check if the angular dependence in TAMR
remains the same for trivial and topological states. For a 3D
TI we choose (BixSb1−x )2Te3 with x = 0.36, effective mass
m∗ = 0.27m0, Rashba SOC α = 0.36 eV Å, Fermi velocity of
the surface state 4 × 105 m/s, the energy difference between
the Dirac point and the crossing point of the Rashba bands

FIG. 9. Angular dependence of TAMR in 2DEG and TI systems
with EF = 10 meV, V0 = 15 meV, � = 12 meV (red), 17 meV
(green), and 26 meV (blue), α = 0.093 eV Å (2DEG) and vF =
4 × 105 m/s (TI). The TI values are 10 times larger than labeled on
the vertical axis.

�E = 250 meV, and EF = 260 meV measured from the Dirac
point [53–57].

TAMR(φ) of the 2DEG and TI for different values of � is
represented by dashed and solid lines, respectively, shown in
Fig. 9. For both 2DEG and TI the maximum TAMR values in
Fig. 9 are quite large compared to typical values of in-plane
TAMR �1% in other systems [6,7,12,13]. This predicted
magnitude is particularly striking for a 2DEG with commonly
found SOC strength and spin-unpolarized leads.

For � � V0, the functional form of the conductance is

G(φ) ≈ A + B cos2(φ), (22)

where A and B are functions of system parameters other than φ

[17]. It then follows from Eq. (15) that the angular dependence
is of the form TAMR ≈ B sin2(φ), which is precisely the
dependence observed in Fig. 9. Despite the different disper-
sions of the massive carriers in the 2DEG/F and the massless
topological states in the TI/F systems, the TAMR in both
devices exhibit the same sin2(φ) dependence on m, preventing
their experimental distinction.

VI. DISCUSSION AND CONCLUSIONS

While the TAMR(φ) cannot discriminate between the triv-
ial and topological states, we seek if TAMR can still provide
their distinguishing signature. Interestingly, from Fig. 9 we
can see that for the 2DEG the sign of B in Eq. (22) and even
of TAMR can be inverted by changing �. While TAMR is
positive for � = 12 meV and 26 meV, it becomes negative
for � = 17 meV. In contrast, there is no TAMR sign reversal
for the TI surface states, shown by solid lines in Fig. 7, which
are computed following the same procedure as in Ref. [51].
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FIG. 10. TAMR (a) due to topological surface states in the TI/F
system as a function of V0 and � and (b) due to both topological
and trivial states, where EF = 10 meV, d = 13 nm, m∗ = 0.27m0,
and α = 0.36 eV Å. (c) Dependence of TAMR amplitude on � with
V0 = 15 meV for different states.

Indeed, by comparing TAMR due to (i) only topological
states in Fig. 10(a) and (ii) both topological and trivial states
in Fig. 10(b), we can see nonmonotonic TAMR trends in
either � or V0 arise only from the trivial states. This is better
illustrated in Fig. 10(c) with TAMR as a function of �. The
main peak of |TAMR| at � = 25 meV originates from the ear-
lier Fermi contour matching argument. However, the resonant
transmission at � = 9 meV arises from a different origin of
the standing-wave formation in the barrier due to the construc-
tive interference between the two 2DEG/F interfaces (see
Appendix B). Such peaks, also resulting from the PsT sym-
metry, have resonant conditions analogous to those for simple
potential barrier systems [35], as analyzed in Appendix B.

In contrast, with just TI surface states, the Fermi contour
shifts the exchange field without changing its diameter due
to its linear dispersion relation, and the TAMR lacks such
resonance. Therefore, TAMR measurements and their mono-
tonicity in TI/F systems could help to address the controversy
[58–64] whether the transport is purely determined by the
topological states or if there is also a contribution of trivial
states.

To realize magnetic proximity effects for the in-plane
transport, magnetic insulators are desirable [53,65,66]. This
precludes current flow in the more resistive F region
[Fig. 1(a)] and minimizes hybridization with the 2DEG or TI
to enable a gate-tunable proximity-induced exchange splitting
in their respective states. However, as shown in graphene
[67–69] for tunable magnetic proximity effects one could
also employ ferromagnetic metals, separated by an insulating
region from the 2DEG or TI.

While we have focused on a longitudinal transport in
a very simple system having no spin-polarized leads, the
predicted resonant tunneling behavior emerging from a spin-
parity-time symmetry of the scattering states is important not
just in explaining a surprisingly large TAMR but also as a
sensitive probe to distinguish between trivial and topological
states. The magnitude of TAMR can be further enhanced by
considering an out-of-plane magnetization, reaching ∼100%
for TIs and expanding possible applications with a single
magnetic region [51]. We expect a rich behavior of the trans-
verse response [51,70] and unexplored resonant Hall effects
as well as detecting different states in magnetic topological
insulators [71]. The focus on Rashba spin-orbit coupling can
be extended in a growing class of van der Waals materials.
For example, transition metal dichalcogenides in addition
to their inherent spin-orbit coupling also provide spin-orbit
proximity [43,72–79] and thereby alter spin textures and ex-
pected TAMR, while 2D van der Waals ferromagnets support
a versatile gate control [80–82].
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APPENDIX A: ANALYTICAL SOLUTION FOR
δ-BARRIER MODEL

To investigate tunneling in a two-dimensional electron gas
(2DEG) across a single ferromagnetic barrier, we consider the
Hamiltonian of the δ-barrier system is given by

H = p2

2m∗ + α

h̄
(σ × p) · ẑ + [V0 − �(m · σ )] d δ(x), (A1)

where m∗ is the effective mass, α is the Rashba spin-orbit
coupling (SOC) strength, ẑ is the unit vector along the z axis,
p = (px, py) is the 2D momentum operator, σ is the vector of
Pauli matrices. V0 describes the potential barrier, and � and
m are the magnitude and direction of the proximity-induced
ferromagnetic exchange field. The effective barrier width is
represented by d .

As a linear combination of all possible eigenstates with the
same energy and the transverse wave vector, ky, the scattering
states in the left (l ) and right (r) sides of the barrier can
be written as ψ

(l ),(r)
λ (x, y) = (1/

√
2S)eikyyφ

(l ),(r)
λ (x) with the

sample area S and

φ
(l )
λ

(x) = χ
(+)
λ eikxλx + rλλχ

(−)
λ e−ikxλx

+ rλλ̄χ
(−)
λ̄

e−ikxλ̄x, (A2)

φ
(r)
λ

(x) = tλλχ
(+)
λ eikxλx + tλλ̄χ

(+)
λ̄

eikxλ̄x, (A3)

where the helicity λ = ±1, λ̄ = −λ, and the spinors are given
by

χ
(±)
λ =

(
1

∓iλe±iθλ

)
, (A4)

with θλ = arcsin(ky/kλ).
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With energy and transverse momentum h̄ky conservations,
we can express the magnitude and x component of the mo-
mentum from the two energy bands (λ = ±1) as

kλ = −λαm∗

h̄2 +
√(

αm∗

h̄2

)2

+ 2m∗E

h̄2 , (A5)

kxλ =
√

kλ
2 − k2

y . (A6)

For a δ barrier, the boundary conditions are

φ
(l )
λ (0−) = φ

(r)
λ (0+), dφ

(r)
λ /dx|x=0+ − dφ

(l )
λ /dx|x=0−

= 2m∗d

h̄2 [V0 − �(m · σ )]φ(r)
λ (0+). (A7)

By matching the boundary conditions for the scattering
states given by Eqs. (A2) and (A3), we can obtain the trans-
mission coefficients tλλ and tλλ̄

tλλ = (B+C− − B−C+)X + (B−D+ − B+D−)Y + (D−C+ − D+C−)Z

(A−B+ − A+B−)X + (B−D+ − B+D−)Y + (A+D− − A−D+)Z
, (A8)

tλλ̄ = (A−C+ − A+C−)X + (A+D− − A−D+)Y + (D+C− − D−C+)Y

(A−B+ − A+B−)X + (B−D+ − B+D−)Y + (A+D− − A−D+)Z
, (A9)

where

A± = (−2kxλ − iṼ0) f (+)
±λ,λ + i(�̃ · s±λ,λ), (A10)

B± = (−kxλ − kxλ̄ − iṼ0) f (+)
±λ,λ̄

+ i(�̃ · s±λ,λ̄), (A11)

C± = −2kxλ f (+)
±λ,λ, (A12)

D± = (kxλ − kxλ̄) f (−)
±λ,λ̄

, (A13)

X = f (−)
λλ̄

s f (−)
λ̄λ

− f (−)
λ̄λ̄

f (−)
λλ , (A14)

Y = −2 f (−)
λ̄λ

+ f (+)
λ̄λ

f (−)
λλ , (A15)

Z = − f (+)
λλ̄

f (−)
λ̄λ

+ 2 f (−)
λλ , (A16)

with

f (±)
λ,λ′ = χ

(+)†
λ χ

(±)
λ′ , (A17)

sλ,λ′ = χ
(+)†
λ σχ

(+)
λ′ , (A18)

and �̃ = (2m∗d/h̄2)�m, Ṽ0 = (2m∗d/h̄2)V0. In particular,
for normal incidence the transmission coefficients reduce to

tλλ = (kλ + kλ̄)[(kλ + kλ̄) + iṼ0 − i�̃λ sin φ]

[(kλ + kλ̄) + iṼ0]
2 + �̃2

, (A19)

tλλ̄ = λ(kλ + kλ̄)�̃ cos φ

[(kλ + kλ̄) + iṼ0]
2 + �̃2

, (A20)

where �̃ = |�̃| and φ is the angle between magnetization M
(or, equivalently, m) and the +x axis.

The δ-barrier model agrees with the square-barrier model
in the angular dependence and the resonances around � =
V0, but it fails to show the resonance originating from the
constructive interference, recall Fig. 10. Therefore, we will
only use this model to analyze the angular dependence.

APPENDIX B: TRANSMISSION RESONANCES

1. Symmetry analysis

In simple spinless barrier systems the resonant condi-
tions for a perfect transparency with transmission T = 1 are
well understood [35]. However, much less is known how to

generalize those conditions for spinful systems with magnetic
barriers. Following the arguments to generalize such condi-
tions of resonant transmission for scattering states outlined in
the Introduction we can complement them with the illustration
in Fig. 11.

We can then intuitively understand that the resonant trans-
mission occurs when the scattering states are invariant (up to
a phase difference) under the operation

PsT ≡ PσzT , (B1)

where P is the parity operator in the x direction, T = −iσyK
is the time-reversal operator, and K is the complex conju-
gation operator. While PσzT does not commute with H in
Eqs. (1) or (A1), such symmetry is satisfied at resonances. As
shown in Fig. 11 by applying the PsT operator the incident
wave on the left is transformed to itself but as a transmitted
wave on the right. Therefore, scattering states which are
eigenfunctions of PsT experience perfect transmission. At
the end of the Appendix we show how for strong magnetic
proximity this case of a generalized transmission resonance is
reduced to the well-known condition of spinless systems.

According to the wave functions of the scattering states
in Eq. (2), there are four eigenstates in the lead with x-
component wave vectors ±kxλ,±kxλ̄. The x-component wave
vectors for the lead states from the inner Fermi contour ±kxλ̄
can be purely imaginary when the incident particles are from

FIG. 11. Spin parity-time symmetry of the scattering states. Suc-
cessive action of several discrete symmetry operations on an incident
wave with an in-plane spin (black arrow) on the left side of the
magnetic barrier. T is the time reversal, P the space inversion, and
Ps ≡ Pσz, where σz is the Pauli matrix, inverts both the spin and the
position. By applying the PsT operator the incident wave on the left
is transformed to itself but as a transmitted wave on the right.
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the outer Fermi contour (λ = −1) with incident angles greater
than the critical angle θ0. Therefore, we will discuss the
resonance conditions for these two situations (±kxλ̄ real or
purely imaginary) separately.

a. Case 1: Four propagating lead eigenstates

From the particle current conservation, a perfect transmis-
sion requires no reflected current. If all the eigenstates in the
leads are propagating, a perfect transmission means that no
reflected waves should exist. In this situation, the scattering
states can be written as

φλ(x) =

⎧⎪⎨⎪⎩
eikxλxχ

(+)
λ , x < −d/2,∑

λ′=±1

∑
n A(n)

λλ′eĩk(n)
xλ′ xχ̃

(n)
λ′ , −d/2 < x < d/2,

eiηeikxλxχ
(+)
λ , x > d/2,

(B2)
where η is an arbitrary phase. The continuity equations of
the wave function and its derivative at x = −d/2 lead to the
following system of four linear equations,

4∑
j=1

Mi jA j = bi, i = 1, 2, 3, 4, (B3)

where Mi j are elements of the matrix of the system of linear
equations, and the coefficients of the barrier states A(n)

λλ′ are
written in the form of Aj . Except for normal incidence when
m ‖ y, all equations are linearly independent, so each Aj is
uniquely determined by these linear equations. On the other
hand, the boundary conditions at x = d/2 can also be written
as

4∑
j=1

Mi jA je
ik̃ j d = bie

i(η+kxλd ), i = 1, 2, 3, 4, (B4)

where the x components of the barrier wave vectors are written
in the form of k̃ j since there is no need to distinguish which
energy band they are from. These boundary conditions are
satisfied when and only when

eĩk j d = ei(η+kxλd ), j = 1, 2, 3, 4 (B5)

is valid for all the barrier states. If there exist decaying barrier
states, Eq. (B5) cannot be fulfilled. If all the barrier states are
propagating, this condition can be satisfied when

(̃k j − k̃1)d = 2πn j, j = 2, 3, 4, (B6)

where nj are any integers. Since all the propagating eigen-
states are invariant (up to a phase difference) under PσzT (see
next subsection), the PσzT symmetry is always fulfilled for
the resonant states in this case. However, for the system here
considered, k̃ jd ∼ 10 and Eq. (B6) can hardly be satisfied.

The normal incidence when m ‖ y is a special case, where
the spins of all scattering states are parallel to each other,
which makes the system “spinless” and perfect transmission
becomes possible. In summary, except for a few special cases,
the resonance will not happen when all the lead states are
propagating.

FIG. 12. Schematic of the two propagating and two decaying
lead eigenstates for (a) four and (b) two propagating states in the
barrier. Under the symmetry PσzT operation, up to a phase differ-
ence, the propagating states inside the barrier remain the same, while
φL1 becomes φR1 and the decaying states become their partners (φL2

to φR2 and φB3 to φB4).

b. Case 2: Two propagating and two decaying lead eigenstates

If there are decaying lead eigenstates, they can exist in the
reflected waves at perfect transmission since they do not carry
any current. This will happen when the incidence is from the
λ = −1 band and the incident angle is greater than the critical
angle θ0. In this situation, the scattering states are given by

φλ(x) =

⎧⎪⎪⎨⎪⎪⎩
eikxλxχ

(+)
λ + re|kxλ̄|xχ (−)

λ̄
, x < −d/2,∑

λ′=±1

∑
n A(n)

λλ′eĩk(n)
xλ′ xχ̃

(n)
λ′ , −d/2 < x < d/2,

eiη0 eikxλxχ
(+)
λ + te−|kxλ̄|xχ (+)

λ̄
, x > d/2.

(B7)

Similar as illustrated in Fig. 12, the spatial parts of the wave
functions of the propagating states (∼eikx) remain the same
(up to a phase difference) under the PσzT operation, while
those of the decaying states (∼e±|k|x) change to ∼e∓|k|x. For
the spinors of the propagating lead eigenstates, they can be
written as χ (±) = ( 1

e±iβ ), with β = θλ=−1 + π/2. The spinors
are in the xy plane and satisfy the following relation under the
operation PσzT (P has no impact on the spinor),

σzT χ (±) = −e∓iβχ (±). (B8)

For the decaying states, whose spinors can be ex-
pressed by χ ′(−) = (u∗

1 ), χ ′(+) = (1
u) with u = u∗ = (|kx,λ=1| +

ky)/
√

k2
y − |kx,λ=1|2, their spins point out of the xy plane, and

the relation becomes

σzT χ ′(±) = −χ ′(∓). (B9)
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Therefore, if t from Eq. (B7) is set to be

t = rei(β+η0−2Arg(r)), (B10)

the scattering states in the lead have the following symmetry

φR(x) = eiηLPσzT φL(x), (B11)

where ηL = η0 + β − π . We will show that the barrier eigen-
states can also satisfy this symmetry so that the boundary
conditions can be fulfilled at both x = −d/2 and x = d/2.

If all the barrier eigenstates are propagating [Fig. 12(a)],
their spinors can always be written as χ̃i = ( 1

eiγi ). Since no
matter which energy band the states belong to they share the
same properties in spinors and wave vectors, we do not need
to distinguish λ′ = ±1. The scattering states in the barrier can
then be written as

φB(x) =
4∑

i=1

Aie
ĩkixχ̃i. (B12)

We notice that for the spinor of a propagating barrier eigen-
state, σzT χ̃i = −e−iγi χ̃i. Applying the operation PσzT on the
barrier states, we have

PσzT φB(x) =
4∑

i=1

Aie
−i(2Arg(Ai )+γi−π )eĩkixχ̃i. (B13)

The phase difference arising from the transformation for each
term can be written as

ηi = 2Arg(Ai ) + γi − π. (B14)

The resonance will occur when and only when all the phase
differences are equal or have difference of 2nπ , i.e.,

η1 + 2n1π = η2 + 2n2π = η3 + 2n3π = η4, (B15)

where ni are integers.
If there are two decaying states and two propagating states

in the barrier [Fig. 12(b)], the scattering states in the barrier
can be written as

φB(x) =
2∑

i=1

Aie
ĩkixχ̃i +

2∑
i=1

Bie
ĩk′

ixχ̃ ′
i, (B16)

where the spinors of the first two propagating states
are given by χ̃i = ( 1

eiγi ), with γi = θ̃
(i)
λ′=−1 + π/2. We re-

call that θ̃
(i)
λ′=−1 is defined in Sec. II from Eq. (3) and

the spinors of the last two decaying ones are given
by χ̃ ′

1 = ( 1
w), χ̃ ′

2 = (w
∗

1 ), with w = [−i(k̃′
1 + �y/α) + (ky −

�x/α)]/
√

(k̃′
1 + �y/α)2 + (ky − �x/α)2. For the decaying

states their x component of the wave vectors are complex
conjugates to each other. Thus, assuming k̃′

Im > 0, we can
write them in the following form

k̃′
1,2 = k̃′

Re ∓ ĩk′
Im. (B17)

Similar to the decaying lead states, the spinors of the decaying
barrier states χ̃ ′

i also have the following relation under the
operation PσzT ,

σzT χ̃ ′
1,2 = −χ̃ ′

2,1. (B18)

Applying the operation PσzT on the barrier states, we obtain

PσzT φB(x) =
2∑

i=1

Aie
−i(2Arg(Ai )+γi−π )eĩkixχ̃i

+ e−i[Arg(B1 )+Arg(B2 )−π]eik̃
′
Rex

×
(∣∣∣∣B2

B1

∣∣∣∣B1ẽk′
Imxχ̃ ′

1 +
∣∣∣∣B1

B2

∣∣∣∣B2e−k̃′
Imxχ̃ ′

2

)
.

(B19)

The resonance will occur when and only when

2Arg(A1) + γ1 = 2Arg(A2) + γ2 + 2nπ,

2Arg(A1) + γ1 = Arg(B1) + Arg(B2) + 2mπ,

|B1| = |B2|,
(B20)

where m, n are integers. These resonance conditions show
that the two propagating and two decaying states satisfy the
symmetry independently and finally their phase changes are
required to be the same. As a result, the scattering states in the
barrier satisfies the following symmetry

φB(x) = eiηBPσzT φB(x), (B21)

where ηB = Arg(B1) + Arg(B2) − π + 2nπ with a certain in-
teger n that makes ηB ∈ [0, 2π ]. Under the operation PσzT ,
the phase shift of barrier and lead states are required to be the
same, i.e., ηL = ηB ≡ η, which determines η0 = Arg(B1) +
Arg(B2) + 2nπ − β.

By combining Eqs. (B11) and (B21), we have the symme-
try for the whole scattering states

φ(x) = eiηPσzT φ(x) = eiησzT φ(−x), (B22)

while for its first derivative it follows

φ′(x) = −eiηPσzT φ′(x) = −eiησzT φ′(−x). (B23)

These symmetry requirements will add three more constraints
to the system of three real equations: Eq. (B15) for four
propagating barrier eigenstates or Eq. (B20) for two propagat-
ing and two decaying barrier eigenstates. Together with the
boundary conditions at x = −d/2, which are four complex
equations or equivalently eight real equations, we are able to
solve for the total of five complex variables (reflection r and
four coefficients for the barrier states) and one real system
parameter for resonances. For example, we may find out the
magnitude of the proximity-induced exchange field � for the
resonance with fixed Fermi energy EF , barrier potential V0,
and barrier width d . At x = d/2, since the barrier and lead
states both satisfy the symmetry, the boundary conditions
will be fulfilled automatically. Now we can conclude that the
system at higher-order resonances does obey the symmetry
PσzT and the conditions given by Eq. (B15) or Eq. (B20) are
the condition for these resonances.

2. Resonances due to interference

In the square barrier model, when the barrier width is
increased to 50 nm, we can see in Fig. 13 more than one
resonance for the transmission. The one near � = V0 is
due to the barrier contour matching. The others arise from
the formation of standing de Broglie waves in the barrier
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FIG. 13. (a) Dependence of the TAMR amplitude on V0 and �

for 2DEG system with a d = 50 nm thick barrier, EF = 10 meV,
and α = 0.093 eV Å. (b) The corresponding conductances with fixed
V0 = 15 meV, where blue and yellow curves denote conductance for
m ‖ x and m ‖ y, respectively.

due to constructive interference. The resonance condition is
(k̃2 − k̃1)d = 2nπ − δ, where n = 1, 2, 3 . . ., k̃1,2 are the x
component of the propagating wave vectors in the barrier
(assuming k̃2 > k̃1), d is the width of the barrier, δ is a
correction proportional to 1/

√
� (see next subsection). Since

the higher-order resonances occur at lager �, the magnitude
of the propagating barrier wave vector is much larger than ky.
Therefore, the x component of the propagating barrier wave
vector is almost the same for all the incoming states with
different incident angles, which means the transmission reso-
nances occur for all the incoming states simultaneously when
the resonance condition is satisfied and thus the maximum
conductance is reached.

In the limit of α → 0, we have the maximum condition

� = V0 − EF + π2h̄2n2

2m∗d2
, (B24)

for both G(0) and G(π/2). However, when α �= 0, k̃2 − k̃1

varies as M is rotated, which means the maxima for G(0) and
G(π/2) will be achieved at different �. Therefore, similar to
the situation near V0 = �, a resonant TAMR will arise from
the small difference in the peak conditions. With fixed EF and
V0, up to the lowest order correction of α, we can derive the
difference in � at the same order maxima of G(0) and G(π/2)

�diff = π2h̄2n2/(2m∗d2) − V0 + EF

π2h̄2n2/(2m∗d2) + V0 − EF
× α2m∗

2h̄2 . (B25)

3. Resonances in the strong magnetic proximity limit

The higher-order resonances with large � in Fig. 13 are
in the regime of Case 2, with two propagating and two
decaying barrier states. The barrier wave function is given
by Eq. (B16). The wave functions at resonance satisfy the
symmetry PσzT and the resonance condition Eq. (B20). On
the other hand, such resonances arising from the formation
of standing waves require the phase of the propagating waves
to remain unchanged after one cycle of travel in the barrier.
The total phase change during one cycle comes from the
propagation of the waves and the phase changes due to the
reflections at the interfaces. The phase change coming from
the propagation is ϕ1 = k̃2d − k̃1d . The phase change at the
interfaces ϕ2 can be estimated by considering the scattering

at one interface while ignoring the other one. By treating the
left-moving (right-moving) barrier propagating state as the
incident state at the left (right) interface, we can write the
scattering states of such single-interface models as

φs1(x) =
{

ts1e−ik1xχ (−) + ts1
′e|k2|xχ ′(−), x < 0,

eĩk1xχ̃1 + rs1eĩk2xχ̃2 + rs1
′eĩk′

2xχ̃ ′
2, x > 0

(B26)

for the left interface and

φs2(x) =
{

eĩk2xχ̃2 + rs2eĩk1xχ̃1 + rs2
′eĩk′

1xχ̃ ′
1, x < 0,

ts2eik1xχ (+) + ts2
′e−|k2|xχ ′(+), x > 0

(B27)

for the right interface, where k1 ≡ kx,λ=−1 (k2 ≡ kx,λ=1) is the
x-component wave vector of the propagating (decaying) lead
states (defined in Appendix A), k̃1,2 (k̃′

1,2) are the x-component
wave vectors of the propagating (decaying) barrier states
[assuming k̃1 < k̃2 and Im(k̃′

1) < Im(k̃′
2)]. The spinors of the

lead states are defined above Eqs. (B8) and (B9), while the
barrier spinors are the same as those defined in Eq. (B16). The
total phase change due to the reflections at the two interfaces
is given by

ϕ2 = Arg(rs1) + Arg(rs2). (B28)

For clarity, we consider the large � limit and assume m ‖
x. In such a case, k̃1,2 ≈ ∓√

2m∗�/h̄, k̃′
1,2 ≈ ∓i

√
2m∗�/h̄

and we introduce the following dimensionless quantity ε =√
(2m∗α2)/(h̄2�). Up to the lowest order in ε, the barrier

spinors can be written as χ̃1,2 = ( 1
e∓iε ) for propagating states

and χ̃ ′
1 = ( 1

−1 − ε), χ̃ ′
2 = (−1 − ε

1 ) for decaying states. We can
obtain the reflection coefficients in the limit of small ε,

rs1,s2 = 1 −
[±(1 + eiβ )(u − 1)k1

(eiβ − u)k0

+ i(eiβ − 1)(1 + u)|k2|
(eiβ − u)k0

± i

]
ε + O(ε2), (B29)

with k0 ≡ 2m∗α/h̄2. Here, u, β are defined in the spinors for
the lead eigenstates related to the Eq. (B7).

The total phase shift at the interfaces is given by

ϕ2 = (1 + u)2|k2|(cos β − 1) + (1 − u2)k1 cos β

(1 + u2 − 2u cos β )k0

× 2ε + O(ε2). (B30)

The formation of standing waves in the barrier requires ϕ1 +
ϕ2 = 2nπ with integer n, which gives the special resonance
condition

(k̃2 − k̃1)d = 2nπ − δ, (B31)

with correction (up to the lowest order in ε)

δ = (1 + u)2|k2|(cos β − 1) + (1 − u2)k1 cos β

(1 + u2 − 2u cos β )k0
2ε. (B32)

The higher-order resonances in Fig. 13 occur at large
proximity-induced exchange field, so the correction δ in
Eq. (B32) is negligibly small. As a result, the resonance
condition analogous to the spinless systems

(k̃2 − k̃1)d = 2nπ, with n integer (B33)

still works well in such cases.
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