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Spiraling vortices in exciton-polariton condensates
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We introduce the phenomenon of spiraling vortices in driven-dissipative (nonequilibrium) exciton-polariton
condensates excited by a nonresonant pump beam. At suitable low pump intensities, these vortices are shown to
spiral along circular trajectories whose diameter is inversely proportional to the effective mass of the polaritons,
while the rotation period is mass independent. Both the diameter and rotation period are inversely proportional to
the pump intensity. Stable spiraling patterns in the form of complexes of multiple mutually interacting vortices
are also found. At elevated pump intensities, which create a stronger homogeneous background, we observe
more complex vortex trajectories resembling Spirograph patterns.
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I. INTRODUCTION

Vortices, or wave front singularities, nested in wave or
matter fields evolving in nonlinear media are fascinating
topological objects that have been widely studied in vari-
ous physical systems, including superfluids [1], superconduc-
tors [2], atomic condensates [3–6], optics [7,8], and exciton-
polaritons [9–11]. They are characterized by a discrete
topological charge, or winding number, given by the phase
accumulated around a closed contour surrounding the phase
dislocation where the intensity of the wave must vanish.
Vortices are ubiquitous also in linear media, but they show
specific features in systems that exhibit a nonlinear response.
In particular, the latter may compensate diffractive broadening
and result in the formation of self-sustained vortex solitons
that can be bright (i.e., have the form of a localized vortex
ring) or dark (i.e., a localized low-density feature nested
in an extended flat-top wave) in media with attractive or
repulsive nonlinearity, respectively. Such vortex solitons in
uniform conservative nonlinear media are radially symmetric
structures that can be excited by various techniques. In atomic
Bose-Einstein condensates the loss of particles may result in
the spiraling motion of the vortices towards the edge of the
cloud and towards the regions where they vanish [5,6,12–14].

Exciton-polariton condensates form in the regime of strong
coupling between photons and excitons in a semiconductor
microcavity, inheriting the properties of their optical and
matter constituents. The former lends a small effective mass
to the polaritons, while the latter introduces strong repulsive
nonlinearity due to exciton-exciton interactions. Polaritons
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may undergo condensation [15,16] and can be excited by
both resonant and nonresonant pumping. Under resonant ex-
citation, the pump determines the phase profile of the vortex
wave function [10,17–19]. A nonresonant pump with its en-
ergy far above the excitonic resonance creates an excitation
reservoir that determines the condensate formation dynamics
and spatial distribution. Due to the nonequilibrium nature and
reservoir-polariton interactions, both bright [20,21] and dark
vortex states [9,22] can be excited.

Generally, a symmetric single polariton vortex does not
move in a uniform background [23], while in a nonuniform
background it can spiral out from the center [24] as in dissi-
pative Bose-Einstein condensates, unless a trapping potential
is used to prevent the motion to the periphery [25]. The
interaction between vortices typically leads to creeping, irreg-
ular oscillations or even mutual annihilation [17,22,26–28].
However, in a nonequilibrium polariton condensate, multiple
spontaneously generated vortices may create nonconventional
vortical structures showing periodic evolution dynamics [22],
whose origins remain unexplored. Spiraling waves have been
studied in the context of the complex Ginzburg-Landau equa-
tion in the presence of considerable diffusion [29,30]. How-
ever, in such works the vortex profiles are spatially symmetric,
and the core may become unstable in the parameter range
where diffusive effects are weak compared to dispersion.

In this paper, we report on the formation of spiraling vor-
tices in a planar semiconductor microcavity without a built-in
external potential and using only nonresonant optical excita-
tion as sketched in Fig. 1(a). In the resulting self-sustained
dynamical state of a spiraling wave, the vortex nested in its
center [Fig. 1(b)] tends to drive any other phase singularities
away from it to a certain minimal distance. At low pump
intensities the phase singularity as such is very stable but
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FIG. 1. (a) Sketch of a planar semiconductor quantum-well mi-
crocavity with nonresonant continuous-wave (CW) optical excita-
tion. The light emitted from the surface of the distributed Bragg
reflector (DBR) shows the presence of a spiraling vortex. The ro-
tation direction of the phase singularity (condensate) is indicated
by the gray (red) arrow. (b) Density profile |�|2 (in μm−2) of
a spiraling vortex structure with its core traveling along a closed
trajectory as indicated by the arrow. (c) Phase arg(�) of the spiraling
vortex in (b).

persistently moves along a helical trajectory in the (x, y, t )
space [Fig. 2(a)]. The phase distribution in such structures
is also spiraling in the entire (x, y) plane [Fig. 1(c)], even
in the regions far from the vortex center, where the back-
ground is nearly homogeneous. Remarkably, the direction of
motion of the phase singularity in the transverse plane and
the tangential component of the outgoing propagating currents
in the condensate are found to be opposite to each other, as
indicated by the arrows in Fig. 1(a). Higher pump intensities
lead to considerably more complex, but still regular, vortex
trajectories. We predict that the described dynamics should be
readily observable and show that it occurs for a broad range of
pump intensities in a physical setting that features experimen-
tally available effective polariton masses and polariton decay
rates.

II. THEORETICAL MODEL

The dynamics of a polariton condensate in a semiconductor
microcavity at the bottom of the lower-polariton branch is
described by the driven-dissipative Gross-Pitaevskii equation
coupled to the density of the exciton reservoir [31]:

ih̄
∂�(r, t )

∂t
=

[
− h̄2

2meff
∇2

⊥ − ih̄
γc

2
+ gc|�(r, t )|2

+
(

gr + ih̄
R

2

)
n(r, t )

]
�(r, t ), (1)

∂n(r, t )

∂t
= [−γr − R|�(r, t )|2]n(r, t ) + P(r, t ) . (2)

Here, �(r, t ) is the polariton wave function, and n(r, t ) is the
exciton reservoir density. The effective mass of polaritons is
meff = a × 10−4me, where a is a variable mass coefficient and
me is the free-electron mass. We include a finite polariton
lifetime of 3 ps with γc = 0.33 ps−1 and a reservoir decay

FIG. 2. (a) Time-dependent trajectory of a phase singularity.
(b)–(e) Density (in μm−2) (top row) and phase (bottom row) dis-
tributions of the spiraling vortex with topological charge m = 1 in
(a) at different moments in time, (b) t = 0 ps, (c) t = 75 ps (∼PT/3),
(b) t = 150 ps (∼2PT/3), and (b) t = 225 ps (∼PT), corresponding
to the brown points in (a). PT is the temporal helix period.

of γr = 1.5γc. The polariton condensate is replenished in a
stimulated manner by the coupling to the reservoir density
n(r, t ) with R = 0.01 μm2 ps−1. The reservoir is excited by
a nonresonant spatially homogeneous pump P(r, t ) = P0Pthr,
where Pthr = γcγr/R is the threshold pump intensity above
which condensation occurs, while P0 > 1 is the dimensionless
factor introduced for convenience. Far from the vortex core,
in the region where the condensate becomes homogeneous,
its density (which does not change with time, in contrast to
the density in close proximity to the vortex core) is given
by |�hs|2 = (P0 − 1)γr/R. In this region, the exciton reser-
voir density is given by n = P/(γr + R|�hs|2) = γc/R. These
relations follow from Eqs. (1) and (2) if one requires that
losses in the homogeneous region are exactly compensated by
the pump and that ∂n/∂t = 0 in this region. The interaction
strength between polaritons is given by gc = 6 μeV μm2,
and the interaction strength between the polariton and reser-
voir is given by gr = 2gc. These are typical parameters for
GaAs-based semiconductor microcavities. Substitution of the
expression for the asymptotic reservoir density n = P/(γr +
R|�hs|2) into Eq. (1) yields a conservative nonlinearity of
the form gc|�hs|2 + grP(γr + R|�hs|2)−1, which in the low-
density limit transforms into (gc − grP0γc/γr )|�hs|2 (at higher
densities one has to take into account contributions from the
higher powers of |�hs|2), indicating that the reservoir does
affect polariton-polariton interactions and thus the character-
istic scales of the vortices if they are present in the wave
function �. The spiraling vortices reported here are obtained
by numerically solving Eqs. (1) and (2) for different system
parameters, as indicated below.
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FIG. 3. Dependence of the diameter DT and temporal period PT

of the helical trajectory of the vortex on (a) the effective mass of
polaritons and (b) pump intensity. Dependencies of the diameter of
the vortex core Deff and the background density |�|2 on (c) the
effective mass of polaritons and (d) pump intensity. P0 = 1.5 for
(a) and (c) and a = 2 for (b) and (d).

III. ROTATION DYNAMICS

The helical trajectory of a representative spiraling vortex
in the (x, y, t ) space is illustrated in Fig. 2(a), showing pe-
riodic vortex rotation around the x, y = 0 point with time.
Figures 2(b)–2(d) show snapshots of density and phase dis-
tributions at different moments in time within one rotation
period. Interestingly, one can see from the density profiles that
the phase singularity rotates clockwise, while the tangential
component of the current direction in the condensate (deter-
mined by its phase distribution) is actually counterclockwise,
as indicated by the gray and red arrows in Fig. 1(a). The
rotation direction of the condensate is linked to the sign of the
topological charge of the spiraling vortex; that is, a positive
(negative) charge corresponds to an overall counterclockwise
(clockwise) condensate rotation. To check the robustness of
such behavior, we perturbed the obtained spiraling solutions
� by adding complex (amplitude and phase) broadband noise
and let them evolve over long times. No instabilities were
observed in the numerical evolution. We have also verified that
spiraling vortices excited by a broad super-Gaussian pump
with a flat-top shape are indistinguishable from those excited
by a plane-wave pump.

The dynamics of the spiraling vortex strongly depend on
the effective mass of the condensate. Figure 3(c) shows that
the diameter of the vortex core Deff is inversely proportional
to the square root of the effective mass. Figure 3(a) shows that
the diameter of the vortex trajectory DT has a trend (∼m−1/2

eff )
similar to the effective diameter of the vortex core Deff from
Fig. 3(c). The values of DT and Deff are almost the same for
P0 = 1.5, as shown in Figs. 3(a) and 3(c). An essential factor
that impacts the spiraling vortex is the pump intensity. For low
pump intensities only slightly above the condensation thresh-
old the background density |�hs|2 ∼ (P0 − 1) is relatively

FIG. 4. Dependence of the diameter DT and temporal period PT

of the helical trajectory of the vortex on polariton lifetime when (a) P0

varies according to P0 = 0.165/γc + 1 and (c) when it is fixed at
P0 = 1.5. Dependence of the diameter of the vortex core Deff and the
background density |�|2 on polariton lifetime (b) when P0 varies as
P0 = 0.165/γc + 1 and (d) for P0 = 1.5. Here, a = 2 and γr = 1.5γc.

low, leading to larger sizes of the vortex core ∼(P0 − 1)−1

and large diameters DT of the rotation trajectory at fixed
effective mass [see Figs. 3(b) and 3(d)]. As the pump intensity
increases, DT decreases and leads to larger angular rotation
velocities and smaller helix periods, which approximately
behave as PT ∼ D1/2

T [Fig. 3(b)].
The dynamics of the spiraling vortices also depend on the

lifetime 1/γc of polaritons, in addition to the dependence
on the effective polariton mass and pump intensity. When
studying the dependence of the dynamics of the spiraling vor-
tices on the lifetime of polaritons, we first make sure that the
background density of the vortex defined by |�hs|2 = (P0 −
1)γr/R remains unchanged. This requires proper adjustment
of the pump intensity P0 in accordance with the selected γc

(and hence γr) value since we assume that the ratio γr ≡ 1.5γc

is fixed. Having the same background density for different
lifetimes, as shown in Fig. 4(b), one can observe that the size
of the vortex core Deff gradually increases with an increase
of the polariton lifetime [Fig. 4(b)]. The increased spatial
coherence of the condensate allows the vortex to experience
a stronger influence from the background density, so that for
a fixed background density, both the diameter of the spiraling
trajectory DT and its temporal period PT decrease when the
lifetime increases [see Fig. 4(a)]. In Figs. 4(a) and 4(b), we
considered the pump intensity factor to be P0 = 0.165/γc + 1,
i.e., P0 = 1.5 for γc = 0.33.

For a set ratio of the pump intensity to the condensa-
tion threshold, e.g., P0 = 1.5, when the polariton lifetime
increases, the reduction of the loss rate results in a decrease of
the condensation threshold, Pthr = γcγr/R. This implies a re-
duction of the pump strength P = P0Pthr with a decrease of γc,
which, in turn, causes a reduction of the condensate density,
as shown in Fig. 4(d). As a consequence, the size of the vortex
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FIG. 5. (a)–(c) Trajectories of spiraling vortices with a = 2 for
different pump intensities with (a) P0 = 1.7, (b) P0 = 1.9, and
(c) P0 = 2.1. Different colors in the trajectory plots are used to dis-
tinguish positions at different moments in time of several subsequent
rotation periods. The arrows in (b) and (c) indicate the starting points
(t = 0 ps). (d)–(i) Density (in μm−2) profiles of the condensate (left
column) and the reservoir (right column) at t = 45, 70, 80, 90, 105,
and 120 ps, respectively, corresponding to the black points in (b).

core, characterized by Deff, grows due to the weakening of the
suppression from the background density. The diameter DT

and temporal period PT of the helical trajectory of the spiraling
vortex show a similar trend and increase with the increase of
the polariton lifetime 1/γc [Fig. 4(c)]. Importantly, the results
shown in Figs. 4(c) and 4(d) indicate that the spiraling vortices
can exist for a broad range of polariton lifetimes.

Besides slowing down the circular motion of the vortex,
a larger pump intensity also increases the density of the
reservoir. As a result, the reservoir-condensate interaction
becomes stronger, and it starts affecting the trajectory of the
vortex. It is readily visible that the trajectory in Fig. 5(a)
corresponding to P0 = 1.7 already slightly deviates from the
ideal circle, even though the deviation is small. As the pump
intensity increases, the vortex trajectory gradually transforms
into a Spirograph pattern [Fig. 5(b)]. In this case, the reservoir
density that creates a repulsive potential for polaritons shows a

FIG. 6. Spectra of spiraling vortices at (a) P0 = 1.5, (b) P0 = 1.7,
(c) P0 = 1.9, and (d) P0 = 2.1, corresponding to the solutions in
Figs. 2, 4(a), 4(b), and 4(c), respectively, with a = 2 and γc = 0.33
(lifetime is 3 ps). The data show the Fourier transform of the time
evolution of the solution in the x-t plane at y = 0.

clear peak at the position of the vortex core [Fig. 5(d)]. During
the temporal evolution, the strong reservoir-induced potential
repels the condensate and creates an outward flow, leading
to the broadening of the vortex core and further contraction
of the localized spot in the reservoir density [Fig. 5(e)]. The
sharp reservoir density spot then leads to an increase of the
condensate density in the middle of the broad vortex core
[Fig. 5(f)] and the simultaneous depletion of the reservoir
in the center of the localized spot [Fig. 5(g)]. A growing
condensate density leads to the displacement of the vortex
core, as shown in Figs. 5(h) and 5(i), and to the subsequent
accumulation of reservoir density within the core. These out-
of-phase density oscillations lead to a Spirograph trajectory
of the phase singularity. Such a trajectory can further change
for even larger pump intensities [Fig. 5(c)]. When the ho-
mogeneous background becomes even larger as the pump
is increased further, the vortex can be spatially pinned. A
video showing the temporal evolution of a spiraling state as
the pump intensity increases is provided in the Supplemental
Material [32].

Since the pump used in the present work is nonresonant,
the definition of the excitation energy of the spiraling vortex is
not straightforward. However, one can still extract information
about the energy or frequency and momentum information
from the Fourier transform of their temporal evolution. To
that end, we store the evolution of the complex amplitude of
the polariton field along the line y = 0 passing through the
center of the rotation trajectory, over several rotation periods,
and then Fourier transform the recorded x-t data into the
momentum-energy domain, related to the far-field photolumi-
nescence spectra that are measured in the experiments. Due to
the unique rotation period and fixed topological charge carried
by the vortex, after the Fourier transform well-defined energy
or frequency and momentum of the vortex can be obtained.
Illustrative numerical spectra for different spiraling vortices
at the different pump intensities are shown in Fig. 6. One

045309-4



SPIRALING VORTICES IN EXCITON-POLARITON … PHYSICAL REVIEW B 102, 045309 (2020)

FIG. 7. Density (in μm−2; top row) and phase (bottom row) profiles of spiraling patterns with multiple vortices. The number N (global
topological charge m of the pattern) of the spiraling vortices is (a) N = 2 (m = 2), (b) N = 3 (m = 3), (c) N = 4 (m = 4), (d) N = 8 (m = 8),
and (e) N = 8 (m = 0). Here, P0 = 1.5, and a = 2. Videos of the time evolution of the spiraling vortices depicted in (c)–(e) are available in the
Supplemental Material [32].

can see from Fig. 6(a) that the asymmetric distribution of
the spiraling vortex in real space gives rise to an asymmetric
spectrum in k space. When the pump intensity increases for
vortices showing circular motion, the reduced diameter DT of
the helical trajectory and the vortex core Deff lead to a broader
distribution in the momentum space, as shown in Fig. 6(b).
When solutions transform into states exhibiting the Spiro-
graph trajectory shown in Figs. 4(b) and 4(c), the width of
the distribution in the momentum space starts decreasing with
an increase of the pump intensity [see Figs. 6(c) and 6(d)]. In
most cases spiraling vortices have well-defined energy values.

IV. EXCITATION DYNAMICS

Generally, spiraling vortices can build up from interacting
vortices in a polariton condensate [22]. However, this process
is spontaneous and uncontrollable. To initialize a spiraling
vortex state in a selected region inside the microcavity con-
densate, which initially does not carry any vorticity, we first
excite a vortex that forms in the center of a ring-shaped
profile of a nonresonant pump beam [33]. Under such condi-
tions, a spiraling phase distribution forms spontaneously, but
the phase singularity located at the center remains spatially
pinned. Subsequently, changing the pump shape from a local-
ized ring to a plane wave typically conserves the central phase
singularity and leads to a gradual increase of the condensate
density in the entire transverse plane. Simultaneously, the
disappearance of the ring-shaped potential created by the ring
pump releases the twisted phase carried by the vortex and
the vortex core, which rotates supported by the homogeneous
background density in the opposite direction compared to
the current in the condensate. The balance of the rotation
of the vortex core and the current of the condensate results
in the excitation of the spiraling vortex. When the pump
intensity only slightly exceeds the threshold value, 1.0 <

P0 < 1.3, the homogeneous background appears to be too
weak to host the spiraling vortices. In this case, upon a change
in the pump shape one observes fast diffraction of the initial

vortex. We also observed that a much stronger background
density significantly squeezes the size of the vortex core. In
some cases the size of the vortex core and the diameter of the
trajectory even collapse [see Figs. 3(b) and 3(d)], preventing
the circular motion of the vortex core.

V. COMPLEX STATES

Previously, it was found that increasing the radius of the
ring-shaped pump enables the creation of bright vortices
with higher charge [33]. In the present work, we find that
such vortex states with higher charge allow for the creation
of complexes of spiraling vortices where the central phase
singularity splits into several separate singularities [10,34].
Figure 7 shows representative patterns containing different
numbers of spiraling vortices. In most cases the number of
emerging spiraling vortices is equal to the topological charge
of the initial phase singularity, as shown in Figs. 7(a)–7(d).
A special case is presented in Fig. 7(e), where four vortex-
antivortex pairs are formed. This situation arises as a result
of the quadrupolelike initial condition with flat phase, i.e.,
m = 0, so that the global topological charge of the pattern also
remains zero. The dynamics and parameters of each spiraling
vortex in the cluster depicted in Fig. 7 are the same as for
the single spiraling vortex shown in Fig. 2 with the exception
of the phase and, in the case m = 0, the direction of rotation
(see [32]). Namely, each vortex in the complexes moves along
its own spiraling trajectory.

VI. CONCLUSIONS

We have shown that single and multiple vortices can form
robust spiraling structures in polariton condensates. To ex-
cite such structures systematically a sudden change in the
continuous-wave pump profile from localized ring shaped to
an extended plane wave shape can be used. The phase sin-
gularities originally formed in the ring-shaped pump survive,
and we find them to evolve into spiraling vortices residing
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on the extended condensate background. The trajectory of a
spiraling vortex forms a ring at low pump intensities and a
Spirograph pattern when the pump intensity is sufficiently
large. We found that the formation of spiraling vortices is a
robust phenomenon that occurs for a broad range of effective
masses, pump intensities, and polariton decay rates. Also, we
elucidated that it occurs for values of parameters that are
readily accessible experimentally in exciton-polariton systems
in planar semiconductor microcavities. We also tested the
impact of small disorder (with a characteristic magnitude of
0.1–0.2 meV) on the dynamics of the spiraling states and
found that even though the trajectory of the vortex core does
not follow a perfect spiral for elevated disorder levels, the
vortices do not become spatially pinned and still move in
the transverse plane. Naturally, the deviation from a perfect
spiraling trajectory increases with increasing the level of
disorder. From these findings we conclude that the vortex
patterns studied in the present work should be observable with
currently available technology but would benefit from the use

of samples with reduced spatial inhomogeneity such as those
reported in Refs. [35,36].
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