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Tunneling mechanism in a (Ga,Mn)As/GaAs-based spin Esaki diode investigated
by bias-dependent shot noise measurements
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Electron transport across a tunneling barrier is governed by intricate and diverse causes such as interface
conditions, material properties, and device geometries. Here, by measuring the shot noise, we investigate
electron transport in a (Ga,Mn)As/GaAs-based spin Esaki diode junction over a wide range of bias voltage.
The asymmetric electronic band profile across the junction allows us to tune the types of tunneling process.
By changing the bias voltage in a single device, we successively address the conventional direct tunneling, the
excess current conduction through the mid-gap localized states, and the thermal excitation current conduction.
These observations lead to a proper comparison of the bias dependent Fano factors. While the Fano factor is
unity for the direct tunneling, it is pronouncedly reduced in the excess current region. Thus, we have succeeded
in evaluating several types of conduction process with the Fano factor in a single junction.
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I. INTRODUCTION

Shot noise is a useful probe for investigating transport
phenomena of mesoscopic devices [1]. It is caused by the
electron partition process under a finite bias condition, where
the current spectral density can be described as SI = 2eIF .
Here, e is the elementary charge, I is the time-averaged
current, and F is a dimensionless quantity called the Fano
factor. It shows a universal value in some ideal situations:
F = 1/3 for a diffusive mesoscopic conductor [2], F = 1/2
for a dirty interface [3], and F = 1/4 for a chaotic cavity [4].
In a classical tunnel barrier, the tunneling is well described
by a Poissonian process with F = 1 [5–7]. The actual Fano
factor, however, often deviates from 1 in the presence of the
excess current through localized states (LSs). It is, therefore,
of fundamental significance as well as of technical interest
to systematically understand the Fano factors in electron
transport.

In thin tunneling barriers with LSs, a resonant tunneling
is dominant at low temperature where electrons adiabatically
transport via a single localized state [8]. A theoretical work
predicted a universal case F = 3/4 when LSs are randomly
distributed around the center of a tunnel barrier [9]. As this
ideal situation is not easy to achieve experimentally, F usually
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ranges from 1/2 to 1 depending on the symmetry of the
coupling to both leads and the Coulomb interaction [9–16]. In
addition, F > 1 was reported for the case of strong Coulomb
interaction [17,18], and F < 1/2 s observed in the presence
of leaky barriers [19,20]. When the tunnel barrier is thick,
multiple hopping through the LS network becomes dominant
[21]. In this case, F decreases from unity, depending on
the number of hopping events (N), the network structure,
and dimensionality [22–28]. In a simple one-dimensional
network with N identical barriers, theory gives F = 1/N [22].
Thus, tunneling is strongly affected by the material properties,
the number of LSs, their spatial distributions, and device
geometries.

The Esaki diode [29] is an ideal system for investigating
such transport phenomena in a single device. This is because
the type of tunneling process can be systematically tuned by
changing the bias voltage in a single device: direct tunneling
occurs at nearly zero or negative bias, a negative differential
resistance is realized at a finite positive bias, and a thermal
excitation current develops at large positive bias. In addition,
actual devices are affected by the excess current flow through
LSs formed by doping or defects [30]. In the case of a
(Ga,Mn)As/GaAs-based spin Esaki diode, it has been well
studied that the LSs affect the tunneling process [31–40]. A
theoretical work where the exchange energy of (Ga,Mn)As
and the impurity band are taken into account successfully
reproduced the I-V characteristics of the spin Esaki diode [41].
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This motivates us to think that investigating shot noise in a
(Ga,Mn)As/GaAs-based spin Esaki diode provides consider-
able insight into the mechanism of electron transport through
LSs and the spin transport in the spin Esaki diode [42,43].

In this article, we report shot noise properties of
(Ga,Mn)As/GaAs-based spin Esaki diode junctions. To in-
vestigate the electron transport mechanisms in detail, we
measured the shot noise over a wide bias voltage range.
We found that the Fano factor shows unity (F = 1) around
zero-bias (direct tunneling) and at large positive bias (thermal
diffusion), while it is reduced (0.87 < F < 1) for bias values
in the region of negative differential resistance and at large
negative bias. We argue that the observed noise reduction
originates from the excess current via LSs in the tunnel
barrier. We also measured the shot noise in a series circuit
of two adjacent junctions to verify the influence of the spin
accumulation in the GaAs. As a result, we determined that
the influence of the spin accumulation on the shot noise was
negligibly small in this configuration and the obtained results
were well explained based on the measured shot noise in the
single junction.

This paper is organized as follows: In Sec. II A, sample
fabrication and a typical I-V characteristic of our sample are
provided. In Sec. II B, the measurement setup and the analysis
method are described in detail. Section III is devoted to the
experimental results and discussion. In Sec. III A, we focus
on the results of a single spin Esaki diode junction. The bias
voltage dependence of the Fano factor and its origins are
discussed. In Sec. III B, we show the results of two junctions
connected in series. The consistency with the single junction
case is discussed. In Sec. IV, we conclude our study.

II. EXPERIMENTS

A. Sample and I-V characteristic

Our device has a lateral spin valve structure [44–47], con-
sisting of the p-type (Ga,Mn)As ferromagnetic electrode and
n-GaAs channel, which form a spin Esaki diode as shown in
Fig. 1(a). Such a spin valve structure is important not only for
the realization of all-semiconductor spin current devices, but
also from the viewpoint of fundamental physics exploring spin
injection into a two-dimensional electron system [35–37],
control of nuclear spins [38,39], and shot noise associated
with spin accumulation [40]. In this study, we focus on
transport properties of the spin Esaki diode junction itself.

The detail of the sample fabrication is as follows. The
epitaxial multilayer stack has been grown on a (001) GaAs
substrate by a molecular beam epitaxy. It consists of a GaAs
buffer, an AlGaAs/GaAs superlattice, a 1 μm n-GaAs chan-
nel, a 15-nm GaAs with linearly graded doping n → n+ (n =
2×1016cm−3 and n+ = 5×1018cm−3), an 8 nm n+− GaAs,
a 2.2 nm low-temperature (LT)-grown AlGaAs, and a 50-nm
LT-grown (Ga0.945Mn0.055)As. As shown in the right panel
of Fig. 1(a), due to the large difference in concentration of
dopants, the depletion layer forms almost entirely on the GaAs
side. The dopants and defects caused by the LT growth are
considered to form LSs.

The wafer was patterned into 50-μm wide mesas along
the [110] direction by standard photolithography and wet
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FIG. 1. (a) Schematic illustration of our lateral spin valve devices
with two spin Esaki junctions (J1 and J2). Right panel shows the
band diagram of the (Ga,Mn)As/GaAs epitaxial multilayer stacks
and energy of electrons. In the electron band diagram, the vertical
dashed green line represents the Fermi energy. (b) Current-voltage
(I-V) characteristics of each spin Esaki diode junctions. (c)–(f)
Energy diagrams for several bias voltage conditions; the red dashed
arrows sketch typical transport mechanisms, where (c), (d), (e), and
(f) correspond to the bias regimes (i), (ii), (iii), and (iv) in (b),
respectively.

chemical etching. Then the ferromagnetic (Ga,Mn)As elec-
trodes with a width of 0.5 µm were formed by electron
beam lithography and reactive ion etching, where the etching
process was stopped above the n-GaAs channel layer. In this
study, we used two junctions located in the center of the mesa,
namely Junction 1 (“J1”) and Junction 2 (“J2”), with a size of
0.5 µm×50 µm and a center-to-center distance of 5 µm, as
shown in the left panel of Fig. 1(a). Additionally, we used two
large Esaki diode junctions of a size 150 µm×150 µm placed
at the edges of the mesa, as reference contacts for electrical
measurements [see Fig. 2]. Note that the top (Ga,Mn)As is
a heavily doped p-type conductor, the interface between the
Au/Ti electrode and (Ga,Mn)As forms an ohmic junction.

All the measurements were performed at a low temperature
(1.6 K) to reduce thermal noise, using a variable temperature
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FIG. 2. Schematics of the noise measurement setups including
the equivalent circuit of the sample (see text for detail). By using
a homemade sample holder, the low-temperature resistors and a
capacitor are placed very close to the sample.

insert (Oxford Instrument plc.) equipped with a superconduct-
ing magnet. Although an external magnetic field was applied
parallel to the long axis of the ferromagnetic electrodes to sat-
urate their magnetization along this direction, it was set to zero
before the actual measurement was performed. Figure 1(b)
shows the I-V characteristics of the J1 and J2 measured at 1.6
K using three-terminal configuration as explained in Sec. II B.
These two curves are almost identical. The nonlinear behavior,
typical to the Esaki diode, is clearly pronounced. It consists
of the following four regions (i, ii, iii, and iv) as shown in
Figs. 1(c), 1(d), 1(e), and 1(f), respectively. At the large nega-
tive bias region (i), nonlinearity appears due to the expansion
of the depletion layer [Fig. 1(c)]. In region (ii) the direct
tunneling between the valence band of (Ga,Mn)As and the
conduction band of n-GaAs [Fig. 1(d)] dominates. The region
(iii) is a so-called negative differential resistance region where
the direct tunneling is forbidden [Fig. 1(e)]. However, a clear
dip, constituting a truly “negative” resistance, expected for an
ideal Esaki diode, is not seen in the present spin Esaki diode.
This is due to the excess current through LSs as discussed
below. Finally, (iv) is a region where the thermal excitation
current across the built-in potential, as in conventional p-n
junctions becomes dominant, resulting in a rapid increase of
the current [Fig. 1(f)].

B. Noise measurement

The equivalent circuit of our noise measurement system
is shown in Fig. 2. In this study, electrical measurements
were performed in two different experimental setups: single

junction (Setup S) and two junctions connected in series
(Setup D) as shown in the bottom panel of Fig. 2. The
“sample” indicates J1 (Rd1) alone in Setup S, and the series
circuit of J1 and J2 (Rd1 + R9 + Rd2) in Setup D, where
Rd1 and Rd2 are the differential resistance of the J1 and J2,
respectively. Here we first describe the common parts. A dc
bias current (I) is fed to the sample by using a programmable
dc voltage source with the output voltage VS and two re-
sistors (R1 = 100 k� at RT and R2 = 200 k� at 1.6 K).
The voltages (V1 and V2) across the sample were monitored
by two digital multimeters, respectively. Here, I is deduced
by I = (VS − V1)/(R1 + R2) and the bias voltage (V ) across
the sample is given by V = V1 − V2. Note that the reference
voltages (V2) are measured at the right edge of the channel in
Setup S and the contact on J2 in Setup D, respectively. We
also measured the differential resistance at a given bias by
modulating I and measuring V in response.

The time domain voltage fluctuation signal was measured
by a digitizer (National Instruments PCI-5922) after am-
plification with a low-noise amplifier (NF Corporation SA-
420F5). Then, the voltage spectral density SV was obtained
by fast Fourier transformation (FFT). The resistances and the
capacitance of the coaxial cables (∼300 pF in total) work as a
low-pass filter. To increase the cutoff frequency, we use R5 =
200 � and C1 = 1 μF at 1.6 K in parallel with the sample.
Moreover, R2, R3 = 100 k� and R4 = 100 k� are placed just
near the sample to cut the capacitance of the coaxial cables
that are connected to the RT measurement system. Here, since
R5 is small compared to other resistances, it dominates the
conversion from the current spectral density of the sample
SI to SV . Thus, SV ≈ G2R5

2SI where G is the gain of the
amplifier. The frequency independent component of SV was
estimated by fitting the spectrum taking the low-pass cutoff
into account in the frequency range between 1.4 and 5 MHz.

In Setup S, SI is equal to the current noise generated by
J1 (SI = SJ1

I ). However, SV contains not only SI but also
the thermal noise from the constant resistors (SR5

I = 4kBT/R5

and SR8
I = 4kBT/R8), and other external current noise and

voltage noise contributions (Soffset
I and Soffset

V ) mainly due to
the amplifier. The relation between SV and SI is given by

SV = G2

[(
Rd1R5

Rd1 + R5 + R8

)2

SI +
(

(Rd1 + R8)R5

Rd1 + R5 + R8

)2

× (
SR5

I + Soffset
I

) +
(

R5R8

Rd1 + R5 + R8

)2

SR8
I + Soffset

V

]
.

(1)

Since Rd1 varies depending on the bias voltage, two un-
known variables (Soffset

I and Soffset
V ) are carefully calibrated. R7

and R8 are the sums of the junction resistance of the reference
contact at the left and the right edge of the mesa and the
longitudinal resistance of the ∼300-µm-long channel between
the corresponding reference contact and J1, respectively. The
large size of the reference contact, however, makes its resis-
tance negligible compared to the channel resistance. Note that,
without R6 = 100 k�, the noise signal SI leaks to the ground
side, resulting in a slight deviation from Eq. (1).
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FIG. 3. (a) I and Rd1 of junction J1 as a function of bias voltage.
(b) Measured SI in Setup S and calculated full-shot noise (2eI).
(c) Estimated F (≡SI/2eI) by using the data in (b).

In the case of Setup D, SI is generated by the series
circuit of J1, J2, and n-GaAs channel (Rd1 + Rd2 + R9 ≡ Rd).
The relation between SV and SI of the series circuit is then
expressed as

SV = G2

[(
RdR5

Rd + R5

)2(
SI + SR5

I + Soffset
I

) + Soffset
V

]
. (2)

In the absence of spin accumulation in the n-GaAs channel,
one can express SI of the series circuit based on the shot noise
generated by each single junction. By using Rd1 + Rd2 � R9

and defining the current noise generated by J2 as SJ2
I , SI is

expressed as

SI = Rd1
2SJ1

I + Rd2
2SJ2

I

(Rd1 + Rd2)2 . (3)

III. RESULTS AND DISCUSSION

A. Single junction (Setup S)

Figure 3(a) shows the bias voltage (V = V1 − V2) depen-
dence of I and Rd1 [the dotted curve is the same as shown
in Fig. 2(b)]. Applying a positive bias voltage, Rd1 gradually
decreases, except for a peak in region (iii). This peak reflects
the negative differential resistance and reaches its maximum
around V ∼ 0.35V . For a negative bias, Rd1 first similarly
decreases, and then increases in regions (i). As mentioned

above, full-shot noise (F = 1) is expected for the Poissonian
process in a conventional tunnel barrier. To see the difference
from this value, the obtained SI through Eq. (1) and calculated
SI = 2eI under the assumption that F = 1 are plotted in
Fig. 3(b). In regions (ii) and (iv), the measured shot noise is in
good agreement with the calculated curve, while reductions in
SI are observed in regions (i) and (iii). To see these reductions
more clearly, the bias voltage dependence of the estimated
F (≡SI/2eI) is shown in Fig. 3(c). In the region (ii), F is very
close to unity, although the data points are scattered. On the
other hand, in the region (iii), F has a broad dip structure with
a local minimum F = 0.87 at V ∼ 0.35V , which is in accord
with the peak in Rd1.

Let us focus on the transport properties in the region
(ii). Since the direct tunnel process [see Fig. 1(d)] is sup-
posed to be dominant in this region, our result (F ∼ 1) is
not surprising. The experiments on germanium Esaki diodes
[48,49] reported full-shot noise in this region. However, it
is important to confirm the full-shot noise in the spin Esaki
diode junction to evaluate the device quality. In fact, many
types of deviation mechanisms from the full-shot noise limit
have been studied both theoretically [1,9,10,16,22,24,43] and
experimentally [7,11–14,17–19,23,25–27,50,51]. Our result
of F ∼ 1 indicates that the junction conductance in this bias
region is purely governed by direct tunneling without leaking
process such as sequential tunneling via defects.

In the previous paper [40], instead of F = 1.0, we reported
F = 0.78 ± 0.04 in the region (ii) using the same device.
This difference in Fano factor is due to the measurement
circuit, namely, the leakage of the noise signal through the
ground loop was not well treated in the previous work [40].
This effect results in a systematic deviation in the noise
signal, leading to the reported Fano factor less than 1. The
important aspect here is the relative relationship between
the resistance of the undesired parallel path via ground and
the resistance of the signal line. In the present work, to prevent
the leakage effect, we have inserted a large resistance R6 and
choose a smaller resistance for R5, as shown in Fig. 2. R6

increases the resistance of the parallel path, while the smaller
R5 decreases the resistance of the signal line. The proper
combination of the used resistances has perfectly eliminated
the artifact, enabling us to observe F ∼ 1.0 as expected.
Note that the difference in the absolute value of the Fano
factor does not change at all the validity of the discussion
in Ref. [40].

Next, we discuss the region (iv) where Rd1 rapidly de-
creases in increasing of V due to the influence of a thermal
excitation current [see Fig. 1(f)]. Although the noise signals
are scattered, the average value of the Fano factor approaches
F ∼ 1. This full-shot noise behavior has a different origin
from that observed in region (ii). The thermal excitation
current consists of the following processes. An electron is
excited to the conduction band of (Ga,Mn)As by thermal ag-
itation, followed by a radiative recombination after diffusion,
as shown in Fig. 1(f). This process is the same as in a usual p-n
junction under forward bias. In this situation, full-shot noise is
theoretically expected, as the thermal excitation and radiative
recombination generate two-thirds and one-third of the full-
shot noise, respectively. Thus full-shot noise is realized in
total [52].
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Now we discuss the mechanism of the reduced Fano factor
in the region (iii). As direct tunneling is energetically pro-
hibited here, electrons in the n-GaAs have to pass through
LSs within the (Ga,Mn)As [30], as shown in Fig. 1(e). In a
germanium Esaki diode exhibiting a clear negative differential
resistance, full-shot noise is reported in this region [48].
The present reduced Fano factor obtained in region (iii) is
most likely due to LSs. The obtained Fano factor >0.87
is always larger than expected for a random distribution
(F = 3/4 = 0.75) [9], indicating that LSs are nonuniformly
distributed. This is consistent with the concentration of
dopants being much larger on the (Ga,Mn)As side than on
the n-GaAs side, as shown in Fig. 1(e). The importance of
the LSs for tunneling in (Ga,Mn)As spin Esaki diodes has
been demonstrated also in other studies. Tunneling anisotropic
magnetoresistance measurements on similar devices have
shown the change of the transport mechanism between regions
(ii) and (iii) [34]. Further, the I-V characteristic of the present
junction is well explained by theoretical work taking the
impurity band in (Ga,Mn)As into account [41].

Finally, in the region (i), the reduction of the Fano factor
can be explained as follows. The negative bias voltage widens
the depletion layer [53], resulting in an increase of the contri-
bution of sequential tunneling events, as shown in Fig. 1(c).
In this region, only the LSs on the n-GaAs side can contribute
to the sequential process. Consequently, the reduction of the
Fano factor is likely due to the sequential tunneling through
the LSs in the depletion layer.

B. Double junction (Setup D)

In the Setup D, one has to distinguish between parallel
(P) and antiparallel (AP) configurations of the relative mag-
netization directions of the two ferromagnetic (Ga,Mn)As
electrodes. In the AP configuration, the spin accumulation
in the GaAs channel underneath and between ferromagnetic
electrodes is typically much larger than in case of the P
configuration [37]. Figure 4(a) shows the I-V characteristics
for P and AP configurations (the left axis) and the differential
resistance of each junction for P configuration (the right
axis). Although V shows a clear spin valve signal [33] in
the magnetic field sweep, it is just 0.2% of the offset signal
due to the large junction resistance. Hence, it is hard to see
a difference in I-V characteristics between the P and AP
configurations. In this study, the current polarity is defined as
the forward direction for J1, which is the opposite direction for
J2. Thus, the sign of the bias is opposite for the two junctions,
and therefore the negative differential resistance region (iii)
is achieved at around V = +0.5V and −0.5 V for J1 and J2,
respectively. Note that when one junction is in the region (iii),
the other is in the direct tunnel region (ii), as clearly seen in
the right axis in Fig. 4(a).

Figure 4(b) shows the bias dependence of the obtained SI

extracted from Eq. (2). SI is clearly the same for AP and P
configurations, which indicates the negligibly small influence
of the spin accumulation. Assuming the latter, we can now
discuss the relation between SI in Setup D and Setup S.
Equation (3) indicates that SI depends on the quantitative
balance between Rd1 and Rd2. Based on the result in Setup S,
we first consider the situation that shot noise of each junction
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FIG. 4. (a) I-V characteristics of the junctions in series as a
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for P configuration. (b) Measured SI in Setup D for P and AP. The
solid and dashed lines show two shot noise limits. (c) Estimated
F (≡SI/2eI) by using the data in (b).

exhibits the full-shot noise (SJ1
I = SJ2

I = 2eI). As a result, SI

in the series junction is expected to be eI for Rd1 ∼ Rd2 and
2eI for Rd1 � Rd2 or Rd1 � Rd2. In Fig. 4(b), the measured
SI is compared with these two limits, namely, a solid line for
SI = 2eI and a broken line for SI = eI . Except for the strong
asymmetric case due to the negative differential resistance
regions around V = ±0.5 V, SI matches the broken line.
This result indicates full-shot noise in region (ii), which is
consistent with the result for Setup S.

In order to see it more clearly, the bias voltage dependence
of the estimated F (≡SI/2eI) is plotted in Fig. 4(c). Here, the
two limits yield F = 1/2 for Rd1 ∼ Rd2 [horizontal dotted line
in Fig. 4(c)] and F = 1 for Rd1 � Rd2 or Rd1 � Rd2. It is clear
that the curves are in good agreement with the F = 1/2 line
except around V = ±0.5 V. For these voltages the maximum
values of F are clearly smaller than unity. Now, defining the
Fano factor of J1 and J2 junctions as F1 and F2, respectively,
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we obtain the relations: F = F1 for Rd1 � Rd2 and F = F2 for
Rd1 � Rd2. Indeed, the maximum values of the F peaks agree
with value of F1(=0.87) obtained in region (iii) of Setup S,
as shown in Fig. 4(c) as a horizontal solid line. These results
indicate that Setup S and Setup D show consistent results.

The present series circuit consists of a nonmagnetic chan-
nel sandwiched by two ferromagnetic materials through a tun-
nel barrier. The shot noise in such a system has been studied
theoretically [54,55], indicating that the Fano factor depends
on the magnetic configuration. In fact, experimental studies
on layered double-barrier magnetic tunnel junctions report
magnetic configuration dependent shot noise and discuss spin
relaxation in the middle layer [56,57]. However, no significant
difference of the Fano factor between P and AP configurations
was detected in the present study. In our lateral device, the spin
accumulation in the n-GaAs channel is energetically small
compared to the voltage drop across J1 and J2, thus too small
to affect the tunneling current across the junctions.

IV. CONCLUSION

We measured shot noise properties of (Ga,Mn)As/GaAs-
based spin Esaki diode junctions over a wide bias voltage
range. We have clarified that transport through the Esaki junc-

tion changes dramatically depending on an applied bias. In the
low bias voltage regime, full-shot noise (F = 1) associated
with direct tunneling was observed. This was also observed
in the large positive bias region, resulting from recombina-
tion of the thermal diffusion current. On the other hand, we
observed the reduced Fano factor in the negative differential
resistance region and in the large negative bias region. These
reductions can be explained by taking the excess current via
LSs into consideration. In addition, we also measured shot
noise of a series circuit of two spin Esaki diode junctions
in a lateral geometry and obtained consistent results for the
single junction and double junction cases. Our findings of
bias dependence of the Fano factor in the Esaki diode junction
provide an important information for in-depth understanding
of the transport mechanism in the presence of the LSs.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grants
No. JP18H01815, No. JP16H05964, No. JP19H00656, No.
JP15H05699, and No. JP19H05826. We also acknowledge
funding by the Deutsche Forschungsgemeinschaft (DFG) via
the Collaborative Research Center SFB 689.

[1] Y. M. Blanter and M. Büttiker, Shot noise in mesoscopic
conductors, Phys. Rep. 336, 1 (2000).

[2] Y. V. Nazarov, Limits of Universality in Disordered Conductors,
Phys. Rev. Lett. 73, 134 (1994).

[3] K. M. Schep and G. E. W. Bauer, Universality of Transport
Through Dirty Interfaces, Phys. Rev. Lett. 78, 3015 (1997).

[4] H. U. Baranger and P. A. Mello, Mesoscopic Transport Through
Chaotic Cavities: A Random s-Matrix Theory Approach,
Phys. Rev. Lett. 73, 142 (1994).

[5] W. Schottky, Über spontane stromschwankungen in verschiede-
nen elektrizitätsleitern, Ann. Phys. 362, 541 (1918).

[6] L. Spietz, K. W. Lehnert, I. Siddiqi, and R. J. Schoelkopf,
Primary electronic thermometry using the shot noise of a tunnel
junction, Science 300, 1929 (2003).

[7] Y. Chen and R. A. Webb, Full shot noise in mesoscopic tunnel
barriers, Phys. Rev. B 73, 035424 (2006).

[8] A. B. Fowler, G. L. Timp, J. J. Wainer, and R. A. Webb,
Observation of Resonant Tunneling in Silicon Inversion Layers,
Phys. Rev. Lett. 57, 138 (1986).

[9] Y. V. Nazarov and J. J. R. Struben, Universal excess noise in
resonant tunneling via strongly localized states, Phys. Rev. B
53, 15466 (1996).

[10] L. Y. Chen and C. S. Ting, Noise characteristics of sequential
tunneling through double-barrier junctions, Phys. Rev. B 46,
4714 (1992).

[11] P. Ciambrone, M. Macucci, G. Iannaccone, B. Pellegrini, M.
Lazzarino, L. Sorba, and F. Beltram, Noise measurements in
resonant tunnelling structures as a function of current and
temperature, Electron. Lett. 31, 503 (1995).

[12] H. C. Liu, J. Li, G. C. Aers, C. R. Leavens, M. Buchanan, and
Z. R. Wasilewski, Shot-noise suppression in resonant tunneling,
Phys. Rev. B 51, 5116 (1995).

[13] A. Przadka, K. J. Webb, D. B. Janes, H. C. Liu, and Z. R.
Wasilewski, Microwave measurement of shot noise in resonant
tunneling diodes, Appl. Phys. Lett. 71, 530 (1997).

[14] R. Guerrero, F. Aliev, Y. Tserkovnyak, T. Santos, and J.
Moodera, Shot Noise in Magnetic Tunnel Junctions: Evidence
for Sequential Tunneling, Phys. Rev. Lett. 97, 266602 (2006).

[15] I. Maione, M. Macucci, G. Iannaccone, G. Basso, B. Pellegrini,
M. Lazzarino, L. Sorba, and F. Beltram, Probing Pauli blocking
with shot noise in resonant tunneling diodes: Experiment and
theory, Phys. Rev. B 75, 125327 (2007).

[16] G. Iannaccone, F. Crupi, B. Neri, and S. Lombardo, Theory and
experiment of suppressed shot noise in stress-induced leakage
currents, IEEE Trans. Electron Devices 50, 1363 (2003).

[17] V. V. Kuznetsov, E. E. Mendez, J. D. Bruno, and J. T. Pham,
Shot noise enhancement in resonant-tunneling structures in a
magnetic field, Phys. Rev. B 58, R10159 (1998).

[18] S. S. Safonov, A. K. Savchenko, D. A. Bagrets, O. N. Jouravlev,
Y. V. Nazarov, E. H. Linfield, and D. A. Ritchie, Enhanced Shot
Noise in Resonant Tunneling via Interacting Localized States,
Phys. Rev. Lett. 91, 136801 (2003).

[19] T. Tanaka, T. Arakawa, M. Maeda, K. Kobayashi, Y. Nishihara,
T. Ono, T. Nozaki, A. Fukushima, and S. Yuasa, Leak current
estimated from the shot noise in magnetic tunneling junctions,
Appl. Phys. Lett. 105, 042405 (2014).

[20] Y. Kim, H. Song, T. Lee, and H. Jeong, Shot noise suppression
in sige resonant interband tunneling diodes, Jpn. J. Appl. Phys.
47, 8752 (2008).

[21] Y. Xu, D. Ephron, and M. R. Beasley, Directed inelastic hop-
ping of electrons through metal-insulator-metal tunnel junc-
tions, Phys. Rev. B 52, 2843 (1995).

[22] A. N. Korotkov and K. K. Likharev, Shot noise suppression at
one-dimensional hopping, Phys. Rev. B 61, 15975 (2000).

045308-6

https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1103/PhysRevLett.73.134
https://doi.org/10.1103/PhysRevLett.78.3015
https://doi.org/10.1103/PhysRevLett.73.142
https://doi.org/10.1002/andp.19183622304
https://doi.org/10.1126/science.1084647
https://doi.org/10.1103/PhysRevB.73.035424
https://doi.org/10.1103/PhysRevLett.57.138
https://doi.org/10.1103/PhysRevB.53.15466
https://doi.org/10.1103/PhysRevB.46.4714
https://doi.org/10.1049/el:19950315
https://doi.org/10.1103/PhysRevB.51.5116
https://doi.org/10.1063/1.119599
https://doi.org/10.1103/PhysRevLett.97.266602
https://doi.org/10.1103/PhysRevB.75.125327
https://doi.org/10.1109/TED.2003.812500
https://doi.org/10.1103/PhysRevB.58.R10159
https://doi.org/10.1103/PhysRevLett.91.136801
https://doi.org/10.1063/1.4891556
https://doi.org/10.1143/JJAP.47.8752
https://doi.org/10.1103/PhysRevB.52.2843
https://doi.org/10.1103/PhysRevB.61.15975


TUNNELING MECHANISM IN A … PHYSICAL REVIEW B 102, 045308 (2020)

[23] V. V. Kuznetsov, E. E. Mendez, X. Zuo, G. L. Snider, and
E. T. Croke, Partially Suppressed Shot Noise in Hopping Con-
duction: Observation in SiGe Quantum Wells, Phys. Rev. Lett.
85, 397 (2000).

[24] V. A. Sverdlov, A. N. Korotkov, and K. K. Likharev, Shot-
noise suppression at two-dimensional hopping, Phys. Rev. B 63,
081302 (2001).

[25] F. E. Camino, V. V. Kuznetsov, E. E. Mendez, M. E.
Gershenson, D. Reuter, P. Schafmeister, and A. D. Wieck,
Hopping conductivity beyond the percolation regime probed by
shot-noise measurements, Phys. Rev. B 68, 073313 (2003).

[26] A. K. Savchenko, S. S. Safonov, S. H. Roshko, D. A. Bagrets,
O. N. Jouravlev, Y. V. Nazarov, E. H. Linfield, and D. A.
Ritchie, Shot noise as a probe of electron transport via localised
states in sub-micrometer barriers, Phys. Status Solidi B 242,
1229 (2005).

[27] R. Danneau, F. Wu, M. Y. Tomi, J. B. Oostinga, A. F. Morpurgo,
and P. J. Hakonen, Shot noise suppression and hopping con-
duction in graphene nanoribbons, Phys. Rev. B 82, 161405
(2010).

[28] E. S. Tikhonov, V. S. Khrapai, D. V. Shovkun, and D.
Schuh, Finite-size effect in shot noise in hopping conduction,
JETP Lett. 98, 121 (2013).

[29] L. Esaki, New phenomenon in narrow germanium p-n junctions,
Phys. Rev. 109, 603 (1958).

[30] A. Chynoweth, W. Feldmann, and R. Logan, Excess tun-
nel current in silicon Esaki junctions, Phys. Rev. 121, 684
(1961).

[31] M. Kohda, Y. Ohno, K. Takamura, F. Matsukura, and H. Ohno,
A spin Esaki diode, Jpn. J. Appl. Phys. 40, L1274 (2001).

[32] M. Ciorga, A. Einwanger, U. Wurstbauer, D. Schuh, W.
Wegscheider, and D. Weiss, Electrical spin injection and de-
tection in lateral all-semiconductor devices, Phys. Rev. B 79,
165321 (2009).

[33] J. Shiogai, M. Ciorga, M. Utz, D. Schuh, M. Kohda, D.
Bougeard, T. Nojima, J. Nitta, and D. Weiss, Giant enhance-
ment of spin detection sensitivity in (Ga,Mn)As/GaAs Esaki
diodes, Phys. Rev. B 89, 081307 (2014).

[34] J. Shiogai, M. Ciorga, M. Utz, D. Schuh, M. Kohda, D.
Bougeard, T. Nojima, D. Weiss, and J. Nitta, In-plane tunnel-
ing anisotropic magnetoresistance in (Ga,Mn)As/GaAs Esaki
diodes in the regime of the excess current, Appl. Phys. Lett.
106, 262402 (2015).

[35] M. Oltscher, M. Ciorga, M. Utz, D. Schuh, D. Bougeard, and D.
Weiss, Electrical Spin Injection into High Mobility 2D Systems,
Phys. Rev. Lett. 113, 236602 (2014).

[36] M. Ciorga, Electrical spin injection and detection in high mo-
bility 2DEG systems, J. Phys.: Condens. Matter 28, 453003
(2016).

[37] M. Oltscher, F. Eberle, T. Kuczmik, A. Bayer, D. Schuh,
D. Bougeard, M. Ciorga, and D. Weiss, Gate-tunable large
magnetoresistance in an all-semiconductor spin valve device,
Nat. Commun. 8, 1807 (2017).

[38] J. Shiogai, M. Ciorga, M. Utz, D. Schuh, T. Arakawa,
M. Kohda, K. Kobayashi, T. Ono, W. Wegscheider, D.
Weiss, and J. Nitta, Dynamic nuclear spin polarization in
an all-semiconductor spin injection device with (Ga,Mn)As/n-
GaAs spin Esaki diode, Appl. Phys. Lett. 101, 212402
(2012).

[39] J. Shiogai, M. Ciorga, M. Utz, D. Schuh, M. Kohda, D.
Bougeard, T. Nojima, D. Weiss, and J. Nitta, Spatial variation
of dynamic nuclear spin polarization probed by the non-local
Hanle effect, Appl. Phys. Lett. 112, 132403 (2018).

[40] T. Arakawa, J. Shiogai, M. Ciorga, M. Utz, D. Schuh, M.
Kohda, J. Nitta, D. Bougeard, D. Weiss, T. Ono, and K.
Kobayashi, Shot Noise Induced by Nonequilibrium Spin Ac-
cumulation, Phys. Rev. Lett. 114, 016601 (2015).

[41] P. Pereyra and D. Weiss, Exchange energy and impurity band
effects in the I−V characteristics of (Ga,Mn)As/GaAs spin
injectors, Phys. Rev. B 90, 245310 (2014).

[42] F. Aliev and J. P. Cascales, Noise in Spintronics: From Un-
derstanding to Manipulation, 1st ed. (Taylor and Francis,
New York, 2018).

[43] F. M. Souza, J. Del Nero, and J. C. Egues, Shot noise in a spin-
diode geometry, J. Supercond. Nov. Magn. 23, 45 (2009).

[44] F. J. Jedema, H. B. Heersche, A. T. Filip, J. J. Baselmans, and
B. J. van Wees, Electrical detection of spin precession in a
metallic mesoscopic spin valve, Nature (London) 416, 713
(2002).

[45] X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang,
K. S. M. Reddy, S. D. Flexner, C. J. Palmstrøm, and P.
A. Crowell, Electrical detection of spin transport in lateral
ferromagnet–semiconductor devices, Nat. Phys. 3, 197 (2007).

[46] H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han, and
M. Johnson, Control of spin precession in a spin-injected field
effect transistor, Science 325, 1515 (2009).

[47] Y. Niimi, D. Wei, and Y. Otani, Effect of magnetic fluctuations
on spin current, J. Phys. Soc. Jpn. 86, 011004 (2016).

[48] J. J. Tiemann, Shot noise in tunnel diode amplifiers, Proc. IRE
48, 1418 (1960).

[49] A. Yariv and J. S. Cook, A noise investigation of tunnel-diode
microwave amplifiers, Proc. IRE 49, 739 (1961).

[50] T. Arakawa, K. Sekiguchi, S. Nakamura, K. Chida, Y.
Nishihara, D. Chiba, K. Kobayashi, A. Fukushima, S. Yuasa,
and T. Ono, Sub-Poissonian shot noise in CoFeB/MgO/CoFeB-
based magnetic tunneling junctions, Appl. Phys. Lett. 98,
202103 (2011).

[51] T. Tanaka, T. Arakawa, K. Chida, Y. Nishihara, D. Chiba, K.
Kobayashi, T. Ono, H. Sukegawa, S. Kasai, and S. Mitani, Sig-
nature of coherent transport in epitaxial spinel-based magnetic
tunnel junctions probed by shot noise measurement, Appl. Phys.
Express 5, 053003 (2012).

[52] M. J. Buckingham, Noise in Electronic Devices and Systems
(Prentice Hall, Upper Saddle River, NJ, 1983).

[53] S. M. Sze, Semiconductor Devices: Physics and Technology
(Wiley, New York, 1986), Chap. 4.

[54] Y. Tserkovnyak and A. Brataas, Shot noise in ferromagnet–
normal metal systems, Phys. Rev. B 64, 214402 (2001).

[55] E. G. Mishchenko, Shot noise in a diffusive ferromagnetic-
paramagnetic-ferromagnetic spin valve, Phys. Rev. B 68,
100409 (2003).
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