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Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids
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Dipolar (or spatially indirect) excitons (IXs) in semiconductor double quantum well (DQW) subjected to an
electric field are neutral species with a dipole moment oriented perpendicular to the DQW plane. Here, we
theoretically study interactions between IXs in stacked DQW bilayers, where the dipolar coupling can be either
attractive or repulsive depending on the relative positions of the particles. By using microscopic band structure
calculations to determine the electronic states forming the excitons, we show that the attractive dipolar interaction
between stacked IXs deforms their electronic wave function, thereby increasing the inter-DQW interaction
energy and making the IX even more electrically polarizable. Many-particle interaction effects are addressed
by considering the coupling between a single IX in one of the DQWs to a cloud of IXs in the other DQW, which
is modeled either as a closed-packed lattice or as a continuum IX fluid. We find that the lattice model yields IX
interlayer binding energies decreasing with increasing lattice density. This behavior is due to the dominating role
of the intra-DQW dipolar repulsion, which prevents more than one exciton from entering the attractive region
of the inter-DQW coupling. Finally, both models shows that the single IX distorts the distribution of IXs in the
adjacent DQW, thus inducing the formation of an IX dipolar polaron (dipolaron). While the interlayer binding
energy reduces with IX density for lattice dipolarons, the continuous polaron model predicts a nonmonotonous
dependence on density in semiquantitative agreement with a recent experimental study [cf. Hubert et al., Phys.
Rev. X 9, 021026 (2019)].
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I. INTRODUCTION

The dipolar coupling is the dominating interaction mech-
anism between charge-neutral species. This interaction is
presently receiving considerable attention due to its special
properties. For two equal collinear dipoles with dipole mo-
ment pẑ oriented along the ẑ direction in a medium with
dielectric constant εε0, the dipolar interaction energy can be
expressed as

Udd (r) = p2

4πεε0

(1 − 3 cos2 θ )

r3
. (1)

Here, θ is the angle between the unit vector ẑ and the vector
r connecting the two dipoles. The dipolar interaction has a
long-range decay proportional to r−3 and is a nonmonotonic
function of θ . Furthermore, the interaction strength depends
not only on the magnitude of r but also on its orientation.
In particular, the interaction between equal dipoles changes
from repulsive to attractive for angles θ < arccos [1/

√
3].

This behavior contrasts to the Coulomb interaction between
two equally charged particles, which is always repulsive and
only depends on the distance between the particles.

The interplay between dipolar attraction and repulsion
gives rises to interesting phenomena in dipolar fluids [1]. A
typical example in classical systems is the formation of pat-
terns in ferrofluids [2]. Recently, several investigations have
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addressed dipolar interaction in ensembles of ultracold mag-
netic atoms and dipolar molecules. The anisotropic character
of dipolar interactions affects the stability and determines the
shape of clouds of atomic dipolar [1,3]. Due to the attractive
dipolar component, the dispersion relation for density fluc-
tuations in these systems can exhibit a roton-maxon feature
characterized by a local minimum for nonzero wave vec-
tors [4,5]. Under appropriate conditions, instabilities around
these local minima can induce the symmetry break leading
to the formation of self-organized droplet crystals [2]. Re-
cently, these systems have been also shown to exhibit super-
solidity, the combination of spatial ordering with superfluidity
[6–9].

In the solid state, promising systems for the investigation
of the coupling between mobile dipoles include excitons in
bilayer electron systems [10,11] and spatially indirect exci-
tons (IXs) in semiconductor double quantum well (DQW)
structures [see Fig. 1(a)] [12–14]. The latter consists of two
QWs separated by a thin tunnel barrier (i.e., with a thickness
much smaller than the exciton Bohr radius). The DQWs are
normally inserted within the intrinsic region of a reversed
bias p-i-n junction to allow the application of a transverse
electric field Fzêz, as shown for an (Al,Ga)As structure in
Fig. 1(a). Field-induced tunneling drives photoexcited elec-
trons and holes to different QWs, thus creating excitons with
a permanent dipole moment pêz oriented anti-parallel with
respect to the field direction.

Most studies of IX dipoles have been restricted to particles
confined in a plane perpendicular to their dipole orientation.
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FIG. 1. Dipolar interaction between indirect excitons (IXs) in
stacked double quantum wells (DQWs). (a) DQWs consisting of
GaAs QWs separated by a thin Al0.3Ga0.67As barrier are inserted
within the intrinsic region of a reversed-biased Schottky diode sub-
jected to a voltage VT . The associated electric field Fz induces the
formation of IXs with dipole moment p under optical excitation.
(b) Intra-DQW (Uc) and inter-DQW (Ut ) dipolar interaction between
two IXs.

In this configuration, the inter-IX interactions are only of
repulsive nature. Recently, we have proposed and demon-
strated a concept to access the attractive dipolar coupling
between IXs using stacked DQWs [see Fig. 1(b)] [15]. These
configuration enables the orientation of dipoles with angles
θ < arccos [1/

√
3]. The barrier between the two DQW bi-

layers was chosen to be sufficiently large to prevent single-
particle tunneling but small enough to allow for electrostatic
coupling between them. Under these conditions, the attractive
inter-DQW dipolar interaction becomes sufficiently strong to
induce density correlations and dragging between IX clouds in
the two DQW bilayers. In addition, the inter-bilayer binding
energies was determined from the energetic shifts of the
photoluminescence lines from the interacting IX clouds. In-
terestingly, the latter was found to increase with bilayer
density up to densities of approx. 5 × 1010 cm−2, where it
reaches values exceeding 5 meV, and then to decrease for
higher densities (cf. Fig. 6 of Ref. [15]). It is interesting to
note that depending on density, the interlayer binding can
thus be comparable to the intralayer IX binding energy in
GaAs QWs.

In a previous theoretical study [16], we have calculated the
interlayer binding energy of an IX molecule consisting of two
IXs, each in one of the DQW bilayer. This binding energy
for the sample used in Ref. [15] reaches only a few tens of
μeV and is thus much smaller than the measured interlayer
binding energies. The calculations were carried out using the
point charge approximation (PCA), which assumes that the
electrons and holes constituting the IX to be described as
point charges located at the center of the QWs. They neglect,
therefore, the internal charge distribution within the dipolar
species. The PCA is a very good approximation for diluted
gases of atomic and molecular dipoles, where the dipolar
field can be considered slowly varying over the length of the
dipoles. It may fail, however, when the interdipolar distances
become comparable to the length of the dipoles.

In this work, we theoretically investigate the dipolar cou-
pling between single IXs as well as multiple IXs, thus also
including many particle effects not previously addressed for

DQW bilayers. Due to the different degrees of complexity
and length scales, the problem is addressed using different
techniques. We first analyze the dipolar coupling beyond
the PCA approximation by addressing the coupling between
extended dipoles with interdipolar separations comparable to
the dipole lengths. For that purpose, we have carried out
self-consistent calculations of the energy and wave functions
of electrons and holes for the system of two interacting IXs
shown in Fig. 1(b). The wave functions were determined using
the tight-binding (TB) approach to be described in Sec. II.
This method enables the determination of the distortion of the
wave functions induced by the applied electric field, which
makes the dipole moments field-dependent (Sec. III B). We
have also applied the TB method to account for modifications
of the potential in one DQW induced by the presence of an IX
in the other DQW. We show that polarization effects induced
by the interaction between two IXs lead to non-negligible
corrections to the binding energy of IX molecules as well as
of indirect trions, as is described in detail in Sec. III C.

The large interlayer binding energies reported in Ref. [15]
were measured in an IX density regime, where the average
separation between IXs within a DQW-bilayer is comparable
to the separation between the bilayers, thus indicating that
they may arise from many-body interaction effects, which
are addressed in Sec. IV. Here, we start by considering the
coupling between a single dipole in one DQW bilayer with a
cloud of dipoles in the adjacent DQW (Sec. IV A). The dipoles
in the cloud are assumed to be arranged in a regular lattice.
We show using an electrostatic model that the lattice dipo-
lar interaction energy reduces with the lattice density. This
model is complemented by an exact diagonalization model
(Sec. IV B) for the interaction between one-dimensional (1D)
dipolar bilayers, which predicts the experimentally observed
minimum of the interlayer binding energy for equal IX den-
sities in the two DQW bilayers. The IX interlayer binding
energies predicted by the lattices models are, however, much
smaller than the measured ones.

The last sections are devoted to dipolaron models for
the interlayer interaction. We first demonstrate that the local
deformation of the lattice due to the coupling to a single
IX in a remote DQW can lead to the formation of a dipo-
laron, which further increases the IX interlayer binding en-
ergy (Sec. IV C 1). The lattice dipolaron corrections to the
interlayer binding energies are, however, very small. Finally,
Sec. IV C 2 introduces a continuous model for a Fröhlich-type
dipolarons based on an interaction Hamiltonian, which can
be exactly diagonalized. An analogous treatment has been
recently proposed for dipolar cold atoms [17]. Preliminary
results for dipolaron in coupled DQW bilayers have been pre-
sented in Ref. [15]. This model allows us to address the impact
of interactions within the IX fluids on the dipolaron formation
energy. Its predictions depend on the correlation state of the
IX gas. In the low density regime, where correlations are
not expected to be important, the interlayer binding energy
increases with the gas density. As the density increases,
one expects a transition to a correlated regime, where the
interlayer binding energy is small and reduces with density.
This behavior is in qualitative agreement with the predic-
tions of the lattice model, which implicitly assumes corre-
lated species. The dipolaron model also semi-quantitatively
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describes the density dependence of the interlayer binding
energies reported in Ref. [15]. The main conclusions are
summarized in Sec. V.

II. CALCULATION PROCEDURE

We have investigated the prototype structure sketched in
Fig. 1 consisting of two DQWs, each formed by two 10-
nm-wide (001) GaAs QWs separated by 4-nm-wide outer
Al0.3Ga0.7As barriers. The DQWs are separated by a 10-nm-
thick Al0.3Ga0.7As barrier thus yielding a vertical separation
between the DQW centers of Lz = 34 nm [cf. Fig. 1(b)].

Equation 1 yields the electrostatic interaction energy be-
tween two IXs in the PCA in the far field. Since the vertical
separation between the dipoles is only a few times larger than
the dipole length dl for the studied sample, we have used for
the determination of the interactions the full expression for the
electrostatic energy between four charged particles given by

U (c)
dd (r) = e

4πεε0

(
− 1√

(dl + Lz )2 + r2
‖

− 1√
(Lz − dl )2 + r2

‖
+ 2√

L2
z + r2

‖

)
. (2)

Here, e is the electron charge, ε = 12.9 the effective dielec-
tric constant of the layer structure, and dl = p/e the length
of the dipoles. The first two terms within the parenthesis
arise from the attractive interaction between the IX charges
of opposite signs in DQW1 and DQW2, while the last one
accounts for the repulsion between charges of the same sign.

The electronic structure of the IXs was determined using
the empirical TB method [18]. The simplicity of the TB
method enables the microscopic determination of the band
structure of DQWs with QW widths up to a few tens of
nm using moderate computational efforts. Although empirical
in the sense that it uses parameters fitted to the bulk band
structure, it can be regarded as “microscopic” when com-
pared with other approaches such as the k · p effective mass
calculations. The TB calculations used a basis consisting of
sp3s∗ orbitals [19] including spin-orbit coupling [20,21]. This
orbital basis consists of 10 orbitals per atom and includes only
nearest-neighbor interaction. It has been shown to reproduce
well the highest valence and the lowest conduction bands of
most bulk semiconductors [19].

The TB calculations were carried out for a periodic su-
percell consisting of a single DQW sandwiched between
two 8-nm wide Al0.3Ga0.7As outer barriers. The TB pa-
rameters employed for the GaAs and Al0.3Ga0.7As layers
are summarized in Table I. The effects of the external
electric field Fz were taken into account by adding the
position-dependent electrostatic energy to the on-site TB
parameters. A similar procedure was used to address IX–
IX interactions, as will be described in detail in the next
sections.

TABLE I. TB parameters (in units of eV) used in the calculation
of IX interactions. The notation used correspond to the one of
Ref. [22]. In order to account for the valence band discontinuity we
subtracted 0.16 eV from the diagonal parameters (i.e., Es, Ep, and
Es∗ ) of the Al0.3Ga0.7As layers.

Parameter GaAs[23] (eV) Al0.3Ga0.7As (eV)

Es(anion) −8.457 −8.1774
Ep (anion) 0.9275 0.93125
Es(cation) −2.7788 −2.29466
Ep (cation) 3.5547 3.55029
Vss −6.4513 −6.51511
Vxx 1.9546 1.94782
Vxy 4.77 4.6122
Vsp(anion,cation) 4.48 4.6672
Vsp(cation,anion) 7.85 7.1378
Es∗ (anion) 8.4775 8.17915
Vs∗p(anion,cation) 4.8422 4.73714
Es∗ (cation) 6.6247 6.65539
Vs∗p(cation,anion) 7 6.3988
3λa (anion) 0.39 0.39342
3λc (cation) 0.174 0.129

III. SINGLE IX INTERACTIONS

A. Exciton-exciton interactions

The thin line in Fig. 2 displays the spatial dependence
of the TB wave functions (more precisely, the squared wave

FIG. 2. (a) Squared tight-binding wave functions projected on
the anion sites (superscript a) for the lowest conduction (|�a

e |2)
and highest valence band state |�a

h |2 calculated for an applied field
Fz = 20 kV/cm (thin lines). The symbols show the corresponding
wave functions obtained using the self-consistent approach to take
into account for the presence of an IX in the adjacent DQW (see text
for details). (b) Spatial dependence of the electronic potential energy
[−eφ(z)] generated by the IX in DQW2 on the atomic sites of DQW1

[cf. Fig. 1(b)] for zero lateral separation x as determined using the
self-consistent TB approach. The thin line shows the corresponding
potential for DQW2 calculated in the point charge approximation.
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function envelopes) of the lowest conduction band state |�a
e |2

and highest valence band state |�a
h |2 calculated for a single

DQW under an applied field Fz = 20 kV/cm. The elec-
tron and hole wave functions are normalized according to∫ ∞
−∞ |�a

e(h)|2dz = 1. For clarity, we only show the projection
of the wave function on the anion sites (superscript a). The
larger amplitudes for holes than for electrons reflect the fact
that the hole wave functions for the band-edge states have
higher amplitudes on the anion sites (the opposite applies for
the cation sites). The applied electric field makes the electron
and the hole wave functions asymmetric with a center of mass
shifted with respect to the center of the QWs. Note that the
electron and hole wave functions shift in opposite directions
under the applied field, thus increasing the electric dipole
moment of the IX species.

The interaction energy between two IXs [IX1 and IX2

located in DQW1 and DQW2, respectively, cf. Fig. 1(b)], was
calculated using the following self-consistent approach. First,
the TB wave functions calculated for one DQW (assumed to
be DQW2) were used to determine the charge distribution
along the z direction in the location of the remote DQW
(DQW1). The latter was then applied to correct the on-site
electronic potentials (	φ(r‖, zi,1)) on the neighboring DQW
according to

	φ(r‖, zi,1) = e

4πεε0

∑
zj,2

[ |�h,2(z j, 2)|2 − |�e,2(z j, 2)|2√
r2
‖ + (Lz + (zj,2 − zi,1))2

]
.

(3)

Here, the subscripts 1 and 2 denote, respectively, the co-
ordinates across the IX structures in DQW1 and DQW2. The
energy eigenvalues and the wave functions for DQW1 were
then calculated under the corrected potential. This procedure
was then repeated until self-consistency was reached, as de-
fined by changes in 	φ in successive iteration steps of less
than 10−5 eV. In general, the procedure converges after a few
iteration steps.

The symbols in Fig. 2 show the self-consistent electron
and hole wave functions for two coupled DQWs under the
interaction potential given by Eq. (3). The shape of the wave
functions is very similar to the ones for IXs in an uncoupled
DQW (thin line), except for the slightly larger shifts with
respect to the center of the QWs (the shifts are smaller than
the size of the symbols for |�a

e(h)|2). The latter translates
into a slightly enhanced IX electric dipole moment. The
thick solid line in the lower panel of the figure displays
the spatial dependence of the self-consistent potential φe(x =
0, zi,1). The dashed line shows, for comparison, the dipole
potential calculated in the PCA. In both cases, the electronic
potential increases towards positive z due the presence of the
second dipole centered at z = 
z [cf. Fig. 1(b)]. The slightly
larger values for the self-consistent potential arise from the
extended character of the wave functions as well as from the
distortions of the wave functions induced by the remote IX
dipole.

The potential interaction energies Uc(x, Lz = 0) and
Ut (x, Lz ) for an IX molecule as well as for two IXs in the
same DQW, respectively, can be determined as the difference
between the self-consistent TB transition energies and the one

FIG. 3. Interaction energy between two IXs in the same (Uc) and
in different DQWs (Ut ) as a function of their lateral separation (in
units of Lz = 34 nm). The calculations for Ut were carried out for
electric fields Fz of 10 and 20 kV/cm. The thin line displays Ut

as determined in the point charge approximation of Ref. [16]. The
horizontal dashed line marks the interlayer binding energy of the
single IX molecular state confined in this potential, 	EIX (calculated
for Fz = 10 kV/cm). The corresponding wave function amplitude
|�IX|2.

for an isolated IX. The dependence of these energies on lateral
separation r‖ is plotted in Fig. 3. As expected, the intra-DQW
interaction is always repulsive and stronger in magnitude than
the inter-DQW one. The thin line represents for comparison
the dipolar energy determined in the PCA (cf. Ref. [16]) for
an electric field Fz = 10 kV/cm. As expected, the minimum
energy configuration corresponds to two stacked IXs (i.e.,
with lateral separation r⊥ = 0).

The self-consistent interaction energy Ut is approximately
20% larger than the corresponding one (	Ut,PCA) from
the PCA. This inter-DQW polarization behavior can be
understood with the help of Fig. 2. In the PCA, the interaction
energy Ut,PCA is simply given by the difference between the
electrostatic potentials | − eφt,PCA| (thin line) at the center
of the two QWs. The self-consistent electron and hole TB
wave functions, in contrast, extend over the width of the
QWs and also penetrate the barriers. The deformation of
the wave functions together with the strong z dependence of
−e	φ(x, z) (≈r−3) shift the energies of the electron and hole
eigenstates towards opposite directions, thus increasing the
IX interlayer binding energy.

The deformation of the wave functions makes the IX dipole
moment dependent on the applied field. The impact of the
field polarizability becomes evident when one compares the
field-induced changes 	E (f)

IX of the resonance energy of an
IX-IX molecule with the one of an isolated IX, as illustrated,
respectively, by the solid and dashed lines in Fig. 4.

Finally, the binding potential between remote IXs
determined using the TB calculations presented here (as
well as in the following sections) only takes into account
the effects of the remote dipolar coupling on the electronic
potential at the location of the QWs. It neglects, therefore, the
impact of the remote dipolar coupling on the overlap between
the electron and hole wave functions, which determine the
binding energy of IXs in a DQW [24]. This approximation
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FIG. 4. Electric-field-induced changes 	E (f)
IX of the resonance

energy of a single IX (dashed line) and of an IX-IX molecule (solid
line).

is justified by (i) the small IX binding energy in the present
samples (less than 3 meV, as estimated from the calculations
in Ref. [24]) and (ii) the negligible modifications of the
electron and hole wave functions changes induced by the
remote dipolar coupling (cf. Fig. 2).

B. Molecular binding energy

The attractive inter-DQW potential Ut of Fig. 3 can bind
two IXs to form an IX molecule. In order to obtain the
molecular binding energy, one also needs to take into account
the kinetic energy arising from motion of the bound IX dipoles
in the DQW plane. We followed, for that purpose, a procedure
introduced in Ref. [16], which consists in numerically solving
the Schrödinger equation for the relative motion of an IX-IX
pair under the radial potential Ut (r) [25]. The calculations
were carried out assuming a reduced effective mass for the
IX molecule equal to the combined mass of the electron
(me) and heavy-hole (mhh) in GaAs, i.e., 1

2 (me + mhh) with
me = 0.067 and mhh = 0.22. In agreement with Ref. [16], we
found that the inter-DQW potential supports a single bound
state with zero angular momentum and energy 	EIX and wave
function |�IX|2(r) displayed in Fig. 3. It is interesting to note
that the strong kinetic corrections due to the small reduced
mass and short extension of the attractive potential yields
an interlayer binding energy 	EIX = 0.28 meV much smaller
than the potential depth Ut (r‖ = 0) = −1.7 meV determined
for Fz = 10 kV/cm.

The shape of the inter-DQW potential Ut (r) may be af-
fected by lateral (i.e., along the DQW plane) distortions of the
electron and hole wave functions induced by IX-IX interac-
tions, which cannot be addressed using the 1D TB approach
employed here. We have estimated the impact of these distor-
tions in the PCA approximation by assuming that the electron
and the hole charges can be displaced by small amounts −	r
and 	r, respectively, in order to minimize the electrostatic
interaction energy between two IXs (note that such a distor-
tion does not change the electrostatic energy associated with
the vertical field Fz). We found that Ut (	r, r0) can indeed be
minimized by a nonvanishing 	r. The energy reduction (on

FIG. 5. Interaction energy Ut between an indirect trion e-IX
consisting of an IX in one DQW and an electron in the adjacent
DQWs as a function of the lateral separation r‖ calculated for Fz = 10
kV/cm. The dashed line displays Ut determined in the point charge
approximation of Ref. [16]. The horizontal dashed line marks the
energy of the single confined state in this potential, 	Ee−IX. The
corresponding wave function amplitude |�e−IX|2 is also displayed.

the order of a few tens of μeV) and magnitude of the shifts
(|	r| < 0.5 nm), however, are too small to introduce sizable
corrections to Ut (r) or to the interlayer binding energy.

C. Indirect exciton-carrier interactions

IXs in one DQW can also couple to an electron or a
hole in the other DQW to form a spatially indirect trion.
We have extended the TB approach to estimate the inter-
layer binding energy of these species. The procedure is
essentially the same as the one used in the previous sec-
tion, except that we neglect the hole charge distribution in
one of the DQWs [e.g., �h,2 in Eq. (3)]. The results for
the interaction of an IX in DQW1 with an electron in the
lower QW of DQW2 (cf. Fig. 1) are summarized in Fig. 5.
When compared to the inter-DQW attractive potential Ut (r)
between two IXs of Fig. 3, the electron-IX interaction is
approximately 50% stronger has also a longer lateral de-
cay length. This potential supports a bound state with an
interlayer binding energy 	Ee−IX = 0.53 meV almost twice
as large as the one for an IX molecule. Similar results apply
to hole trions. The interaction of trions with the electric field
is also increased by approximately 33%.

IV. MANY-PARTICLE EFFECTS

The inter-DQW binding energy for the remote interactions
between two IXs determined in the previous section are larger
compared to the values obtained in the PCA but still much
smaller than the one measured in Ref. [15]. This discrepancy
has motivated us to analyze dipolar interaction effects involv-
ing many particles.

A. Indirect exciton lattices

The previous results for the inter-DQW dipolar interaction
apply for low IX densities, i.e., when the average separation
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FIG. 6. (a) Interaction between a single IX in DQW2 with a closed-packed IX lattice in DQW1. (b) Dipolar potential on the single IX in
DQW2 induced by the lattice in DQW1 with a lattice constants Lx = 2Lz and density nIX = 2/(

√
3L2

x ). (c) Shaded region: Range of the local
dipolar interaction potential [Vlat , cf. Eq. (4)] experienced by the single IX in (a) as a function of lattice density. The superimposed dots are
the lowest energy IX quantum state in this potential, which correspond to the IX interlayer binding energy (	EIX). The vertical dashed arrow
marks the density for which Lx = √

3Lz. The thick dotted and solid lines display the prediction of the continuous dipolaron model in the limit
of fully correlated [corr., cf. Eq. (17)] and uncorrelated [uncorr., cf. Eq. (18)] IX gases, respectively.

Lx between IXs within a DQW far exceeds the distance Lz

between the DQWs. For larger densities, multiparticle interac-
tion effects modify the inter-DQW interaction potential with
respect to the simple form given by Eq. (1). In order to make
the many-body problem tractable, we first neglect kinetic
effects and assume that the high-density IXs are arranged
in a regular lattice. We note that since dipolar interactions
fall rather quickly with increasing distance, mostly contri-
butions of nearest and next-nearest neighbors are important.
This means that ordered lattice models also approximate
a correlated liquid with only short-range order [26,27]. A
stable lattice configuration requires an isometric lattice (e.g.,
a square, triangular or hexagonal lattice). We have opted for
a triangular lattice, since it provides the maximum number
of nearest neighbors [28]. Specifically, we have considered
the configuration illustrated in Fig. 6(a), where a single IX
in DQW2 interacts with a triangular lattice of IXs generated
by the lattice vectors va = (1, 0)Lx and vb = (

√
3/2, 1/2)Lx ,

where Lx is the lattice constant. The particle density nIX in the
triangular lattice is related to the lattice constant Lz according
to nIX = 2/(

√
3L2

x ).
The dipolar potential Vlat experienced by the single IX can

be obtained by assuming that the electrons and holes forming
the dipoles in the lattice to be elementary point charges
located at the center of the respective QWs in the stacked
DQW structure. For an IX at position r = (r‖, r⊥), where
r‖ and r⊥ are the in-plane and out-of-plane displacement
components, respectively, the potential is calculated by
summing the Udd(r) contributions [cf. Eq. (2)] summed over
the lattice sites. The potential Vlat (r) experienced by the single
IX in DQW2 then becomes

Vlat (r‖, r⊥) =
r‖<rmax∑

i,j

U (c)
dd [r⊥ − |iva + jvb + r‖|]. (4)

Due to the extended nature of the potential, the summation
needs to be carried out over a large number of lattice around
the central IX in order to ensure convergence. In order to
reduce the computational efforts, the coupling to lattice IXs
at lateral distances r‖ > rmax ≈ 20 Lx was taken into account
by replacing the summation in Eq. (4) by an integration over
a continuous density of dipoles.

Figure 6(b) displays the potential experienced by the single
IX as it moves underneath a lattice with lattice constant Lx =
2Lz. For Lx � Lz, the potential Vlat around each site resembles
the one for the dipolar potential Udd with the minima of the
potential aligned with the lattice sites. The shaded region
in Fig. 6(c) marks the energy range spanned by the lattice
potential Vlat (r). In the opposite limit Lx << Lz, Vlat (r) →
0, thus reproducing the well-known result that the electric
field generated by an infinite sheet of dipoles vanishes at
large distances. The minima of Vlat (r) are always higher than
the potential Ut (0) for a single IX-IX pair [cf. Fig. 3]; this
model thus predicts a reduction of the IX interlayer binding
energy with increasing lattice density. The last behavior arises
from the dominating contribution of repulsive intra-DQW
interactions with increasing densities.

The quantum corrections required for the determination of
the interlayer binding energy of the single IX to the lattice
were determined by numerically solving the 2D Schrödinger
equation for a IX in the periodic lattice potential. The dots in
Fig. 6(c) display the density dependence of the lowest energy
level 	EIX. In the limit of small densities, the interlayer
binding energies |	EIX| are larger than the ones for an IX
molecule (cf. Fig. 3). The latter is due to the fact that the lattice
is assumed to be static, so that the kinetic energy of the particle
becomes equal to the IX mass (rather than to reduced mass of
two IX, as in the case of an IX molecule). Note again that the
absolute values for the interlayer binding energies are smaller
than the depth of the interaction potential.
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B. Exact-diagonalization study of IXs

In this section we analyze many-particle effects employing
a numerical exact-diagonalization method. This method is
quite powerful in capturing long-range correlations, although
it suffers from small system size effects. In order to be able
to consider significantly larger systems, in this section we
limit the discussion to 1D systems. Namely, we consider two
double quantum wire structures with parameters similar to the
full two DQWs case.

Since exact diagonalization requires finite Hilbert space,
we assume that IXs occupy sites of an artificial IX lattice. It
should be noted that the notion of a lattice in this section is
different from the one considered in the other sections of the
paper, where the single IXs are fixed at the lattice sites. Here,
in contrast, the IXs can hop between different lattice sites and
multiple occupation of each site is allowed. Introduction of
the artificial lattice and of a cutoff length scale (introduced
below) accounts for short wavelength processes, which are
considered only at the phenomenological level in the current
treatment. The kinetic energy of the IXs is included as terms
of nearest neighbor hopping. We construct the supercell of the
size LT

x = nLx, where Lx in this section denotes the lattice
constant of the artificial lattice. In order to mimic infinite
lattice and isolate bulk physics from edge effects, we apply
periodic boundary conditions to the supercell. This modifies
the form of the interaction potential given by Eq. (1) of the
main text, because now the IX interacts both with the IXs in
the supercell, as well as with the images of the IXs in other
supercells. The modified interaction has the form

U PBC (x) =
+∞∑

s=−∞
μ2 (1 − 3 cos2 θs)

r3
s

, (5)

where

μ = p/
√

4πεε0. (6)

For the intralayer interaction θs = π/2 and r2
s = a2 + x2

s
whereas for interlayer interaction cos θs = Lz/rs and r2

s =
x2

s + L2
z . Here xs = x + sLT

x . The cutoff length scale a is
introduced to remove the divergence of the intralayer inter-
action when two IXs occupy the same site. Introduction of the
cutoff phenomenologically accounts for the fact that dipolar
interaction will be modified when the separation between IXs
becomes comparable to the IX effective dipole length. While
the modified interaction has a complex form in real space, the
Fourier transform is less cumbersome

U PBC
intra (k) = 2μ2 |k|

a
K1(|k|a), (7)

U PBC
inter (k) = 2μ2

( |k|
Lz

K1(|k|Lz ) − k2K2(|k|Lz )

)
, (8)

where Ki(x) is the modified Bessel function of the second
kind.

Once the Hamiltonian is formed we construct the full
Hilbert space for a small number of particles and diagonalize
the resulting Hamiltonian matrix. The diagonalization can be
carried out both in real and momentum space. In real space
the interaction expressed by Eq. (5) is diagonal, whereas
in momentum space the kinetic term will be diagonal. We

(a) (b)

FIG. 7. (a) Dependence of the energy per IXs on number of IXs
in the second layer when N1 = 4 for different values of the hopping
amplitude. (b) interlayer pair correlation function g12(x) for different
values of hopping amplitude. Dashed lines in both figures correspond
to the case when there is no interlayer interaction (NI stands for no
interlayer interaction).

mostly work in momentum space, where the kinetic term
takes the standard form H0(k) = t cos (kLx ), where t is the
hopping amplitude. After diagonalization, the evaluated wave
functions can be used to calculate physical properties of the
ground state, such as pair correlation functions and static
structure factors. Using the translational invariance of the
system the pair-correlation function can be stated in the form:

gl ′l (x) = 1

N ′
l Nl

∑
k1,k2,k3,k4

δk1+k2,k3+k4 ei(k1−k2+k3−k4 ) x
2

× b†
l ′k1

b†
lk2

blk3 bl ′k4 , (9)

where the index l and l ′ denote the dipole layer (1 or 2), Nl

is the total number of IXs in layer l and b†
l ′k , bl ′k denote,

respectively, the creation and annihilation operators for the
state k in layer l . Similarly, for the structure factors we have

Sll ′ (q) = 1

N
ρl (q)ρl ′ (−q) − NlNl ′

N
δq0, (10)

where q is the wave vector, N = N1 + N2 is the total number
of IXs and ρl (q) = ∑

k b†
lkblk−q is the Fourier transform of the

density operator.
The calculated energies will be presented in units of μ2/L2

x
and the lengths will be normalized to Lx. The used parameters
are Lz = 0.5, a = 0.2, LT

x = 10, which correspond to ones of
the experiment in Ref. [15]. In one layer we fix the number of
IXs to N1 = 4 and vary the number of IXs in the other layer
N2 from 1 to 8. It should be noted, that due to the 1D character
and small sizes of the systems considered here, we will not be
able to achieve quantitative agreement with the experiments.
Our goal here is rather to gain a qualitative understanding of
the physical characteristics of the system. In particular, we
would like to understand the nonmonotonous dependence of
the interlayer binding energy on the single layer IX density
observed in Ref. [15].

Figure 7(a) shows the dependence of the energy per IXs on
the number of particles in the second layer N2 for different
values of the hopping amplitude. As can be seen from the
figure, the energy per IXs in the calculations with interlayer
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interaction has a minimum when N2 = N1 = 4. This mini-
mum is not present when the interlayer interaction is switched
off. Addition of hopping deepens and smoothens out the
minimum and, for large hopping amplitudes, can even shift
the minimum towards smaller values of N2. Similarly, the
minimum can be pushed to larger values of N2 by increasing
a. This demonstrates the competition between three energy
scales: The intralayer interaction, the interlayer interaction,
and the hopping energy.

The energy minimum for N1 = N2 in Fig. 7 reproduces
very well the one observed in the experimental results (cf.
Fig. 5 of Ref. [15]), which appears when the IX densities
are approximately equal for both IX bilayers. The appearance
of the minimum energy in the experiments of Ref. [15] at
N1 � N2 therefore suggests the following hierarchy of energy
scales: The short-range intralayer interaction is the largest
energy scale when compared to interlayer interaction, whereas
the hopping contribution is negligible as compared to the
other two energy scales. The IXs tend, therefore, to arrange
themselves equidistantly in both bilayers by sitting on top of
each other. This is reminiscent of crystalline phases observed
for dipolar bosons in other contexts [29–31]. The minimum
energy is thus achieved when IX density is the same in both
bilayers. The fact that the energies in Fig. 7(a) for cases with
and without interlayer interaction do not approach each other
for large N2 is a characteristic property 1D systems. Contrary
to the 2D case, where the integrated interlayer interaction
between an IX and an infinite homogeneous distribution of
IX vanishes, the interaction between an IX and an infinite line
of dipoles is not zero. One has, therefore, a finite interlayer
contribution in 1D systems, which does not grow with N2.

We next consider the interlayer pair correlation function
g12(x) [cf. Fig. 7(b)], which yields information about the
distribution of IXs in the layer system. This figure clearly
shows that when the interlayer interaction is turned on the pair
correlation function at x = 0 becomes larger than one, which
demonstrates that the probability of occupation of the same
position in both layers is preferred. Increasing hopping ampli-
tude reduces the peak value at x = 0 essentially suppressing
same site occupation in two layers, which again demonstrates
the competition between the two energy scales.

Another way to understand the position of the minimum
in Fig. 7(a) is to consider the structure factor for the system.
Figure 8 shows both the intralayer and interlayer structure
factor for two values for the number of IXs in the second layer
N2 = 4 and N2 = 6. For the case N2 = 4, both intralayer and
interlayer structure factors show a peak when q = 4, which
signalizes the presence of short range order in the system. The
fact that the peaks in the two plots appear for the same q’s
shows that intra- and interlayer interactions are completely
balancing each other and the system is its lowest energy
state. When N2 = 6, while the first layer structure factors S11

still retain the peak at q = 4, the peak for the second layer
S22 and interlayer S12 structure factors shifts from the q = 4
position. Therefore, in this case there is an imbalance between
the two energy scales and intralayer interaction determines
the distribution of IXs in both layers. A similar suppression
of the peaks in the structural factor as well as in the pair-
correlation functions is observed when the hopping amplitude
is increased (not shown).

(a) (b)

FIG. 8. (a) Intralayer structure factor for two cases of number of
IXs in the second layer. Solid (dashed) lines correspond to S11(q)
(S22(q)). S11(q) and S22(q) are the same when N1 = N2. (b) interlayer
structure factor for two cases of number of IXs in the second layer.
The hoping amplitude is set to t = 2.0 in both figures.

In conclusion, the results of this section reproduce the
experimentally observed nonmonotonous dependence of the
IX energies on the one layer IX density shown in Ref. [15].
They also show that the minimal energy per particle in stacked
1D bilayers is achieved for equal densities in both bilayers
with the IXs in one bilayer aligned with those in the other one
to maximize the attractive component of the dipolar coupling.

C. IX dipolaron

The previous sections have addressed models for interlayer
excitonic interactions based on the arrangement of the parti-
cles on fixed lattice sites. The interaction between the single
IX in DQW2 and the lattice may also deform the IX lattice,
thus leading to formation of an IX dipolaron with increased
interaction energy. This section discusses dipolaron models
for the dipolar interaction between IXs.

1. IX Lattice Dipolaron

We first consider a lattice dipolaron arising from the dis-
tortion of the IX lattice in DQW1 shown in Fig. 6(a). Due
to the large values of the repulsive intra-DQW interaction
in comparison with the attractive inter-DQW interaction, it
is not obvious whether dipolaron formation is energetically
favorable. In fact, an IX molecule cannot bind an additional
IX because the intra-DQW repulsive forces on the extra
IX always exceed the attractive inter-DQW attraction [cf.
Fig. 1(c) and Ref. [16]]. In a locally deformed lattice, in
contrast, the increased repulsion experienced by an IX when
it approaches one of its neighbors is partially compensated by
the reduction in repulsion as it moves away from the neighbors
on the opposite side. This compensation mechanism enables
the attractive inter-DQW to reduce the electrostatic energy
and stabilize the dipolaron.

The dipolaron formation energy was calculated for the
triangular lattice shown in the inset of Fig. 9 by assuming that
the neighbors of the central IX (i.e., the one aligned with the
single IX in DQW2) can displace radially by an amount εr‖Lx,
where εr‖ is given by the Ansatz form:

ε(r‖) = εre−[
r‖−Lx

rε
], r‖ > 0. (11)
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FIG. 9. Dependence of the energy changes 	Vlat of a single IX in
DQW2 on the deformation εr of the closed-packed triangular lattice
of IX in DQW1 displayed in the inset. The calculations were carried
out for Lz = 36 nm and lattice constants Lx corresponding to IX
densities nIX = 2/(

√
3L2

x ) listed in the figure.

Here, ε(r‖) yields the relative radial displacement of the
IXs at a distance r‖ from the center of the dipolaron, εrr‖ is
the lateral decay length of the deformation, and εr the relative
displacement of the first neighbors of the central IX located at
r = Lx. According to the definition in Eq. (11), εr corresponds
to the relative displacement of the nearest neighbors.

Figure 9 shows the effect of the deformation on the
potential experienced by the single IX (quantified in terms
of the energy difference 	Vlat = Vlat (0, 0, εr ) − Vlat (0, 0, εr =
0) introduced by the deformation εr) as a function of the
lattice density. The minima of 	Vlat (εr ) occur for rε << Lx,
thus indicating that the deformation is restricted to the first
neighbors. For this reason, the subsequent calculations were
carried out assuming that the deformation is restricted to the
first ring of IXs around the single IX in DQW2. The plots show
that the total energy reduces for small negative deformations
(on the other of a few %), which arise from the attraction of
the neighbors by the single IX.

Figure 10 displays the equilibrium values for εr and 	Vlat

obtained by minimizing the lattice energy for different lattice
densities. The minimum in 	Vlat for large lattice distances
occurs for a ratio Lx/Lz ≈ 1/3. This result is consistent with
the increase of the inter-DQW attractive potential with respect
to the repulsive one (cf. Fig. 3) in this parameter range. As a
result, the total energy reduces if the first neighbors approach
the central IX (i.e., for negative values of εr). The change
in sign of of εr for decreasing densities is related to the
fact interaction energy Ut (cf. Fig. 3) also changes sign and
becomes positive when Lx > Lz/

√
3.

The potential acting on the single IX in DQW2 calculated
at the minimum of Fig. 10 are displayed in Fig. 11. The lattice
deformation (of a few %) required for dipolaron formation
is quite small. Also, the energy gain only reaches a few tens
of μeV and is thus smaller than the typical spectral width
of IX lines (on the order of a meV). The dipolaron binding
energy may be increased by increasing the IX dipole length
or decreasing the spacing between the DQWs. The changes,
however, are not expected to be drastic. As an example, we

FIG. 10. Equilibrium values for the deformation (εr) and corre-
sponding change in potential (	Vlat) as a function of lattice density
nIX. The orange circles in the inset show the deformation of the orig-
inally triangular IX lattice (gray circles) due to dipolaron formation
around the central site bound to an IX in the adjacent DQW layer.

estimated that a reduction of the DQW spacer from 10 nm to
8 nm enhances the dipolaron binding energy by approx. 30%.

2. Continuous dipolaron

The interaction between a single IX in DQW2 and the
excitonic liquid in DQW1 in the inset of Fig. 6 can be also
described in terms of a continuous, Fröhlich-type dipolaron,
as given by the following Hamiltonian [32]:

Ĥ = p̂2

2M
+

∑
k

h̄ω(k)b̂†
kb̂k +

∑
k

U (k)(e−ikr̂b̂†
k + eikr̂b̂k ),

(12)

with
∑

k = (2π )−2
∫

d2k. The first term of Eq. (12) describes
the single excitonic “impurity” in DQW2 with momentum
p̂ and mass M; the second term gives the kinetic energy of
the bosonic excitations (e.g., phonons) in the DQW1 exciton
liquid, as parametrized by the dispersion relation ω(k); and

FIG. 11. Potential landscape across an IX dipolaron. The solid
line displays the IX potential calculated along the x direction of the
IX lattice dipolaron displayed in the inset of Fig. 10. The calculations
were carried out for the structure in the upper inset of Fig. 9 with
Lx = 27.7 nm, which corresponds to the minimum for 	Vlat in
Fig. 10.
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the last term represents the impurity-boson interactions. The
momentum-space interaction parameter, U (k), can be repre-
sented as

U (k) = f (k)V (k). (13)

Here,

V (k) =
∫

d2rUdd (r)e−ikr = −μ2πk e−kL (14)

is the Fourier transform of the two-body interaction potential
Udd (r) given by Eq. (1) and μ is defined in Eq. (6). The
function f (k) = [nIXε(k)/(h̄ω(k))]1/2 depends on the density
nIX, single-particle energy ε(k) = h̄k2/(2m) as well as on
the correlation state of the IX gas expressed in terms of its
dispersion relation h̄ω(k). m = me + mhh is the exciton mass.

If the excitonic impurity in DQW2 is static, it corresponds
to an “infinite-mass dipolaron”, M = ∞ (we set the exci-
tonic impurity at r = 0, for convenience). In this case, the
Hamiltonian in Eq. (12) can be exactly diagonalized using a
coherent-state transformation

Ŝ = exp

[
−

∑
k

U (k)

h̄ω(k)
(b̂†

k − b̂k )

]
, (15)

which gives the following ground-state energy shift:

	EIX = −
∑

k

U (k)2

h̄ω(k)
. (16)

The corresponding ground eigenstate is given by |ψ〉 =
Ŝ|0〉, where |0〉 is the boson vacuum. Equation (16) gives a
deformation energy of DQW1 due to the interaction with a
single exciton in DQW2. In the case of a Hamiltonian with a
linear coupling, such as Eq. (12), the deformation energy is
always negative, thus yielding a stable dipolaron phase.

The ground state energy in Eq. (16) depends on the correla-
tion state of the IX fluid. Let us consider two limiting cases de-
pending on the fluid density in DQW1: That of a low-density
noninteracting exciton gas and of a high-density interacting
exciton liquid. For a noninteracting exciton gas, the dispersion
relation is that of free particles, h̄ω(k) ≡ ε(k) = h̄2k2/(2m),
thus resulting in a deformation energy given by

	EIX = −nIXμ4 πm

h̄2L2
z

. (17)

For an interacting exciton gas or liquid, the dispersion
relation can be stated as ω(k) ∼ c(nIX)k, where c(nIX) is the
speed of sound in the IX fluid, which depends on the density
nIX. One then obtains

	EIX = −nIXμ4 3π

8L4
z mc2(nIX)

. (18)

In the regime of Bogoliubov excitations, c(nIX) ∼ √
nIX,

so that 	EIX becomes density-independent. The numerical
computations of Ref. [33] revealed that the exciton liquid is
strongly-interacting yielding c(nIX) ∼ n0.7

IX (see Fig. 3(b) of
Ref. [33]). One then obtains an energy shift 	EIX ∼ −n−0.4

IX
with magnitude decreasing with increasing density.

The solid and dotted lines in Fig. 6 compare the deforma-
tion energies predicted by Eqs. (17) and (18), respectively,
with the lattice dipolaron model discussed in Sec. IV C 1.

FIG. 12. Dipolaron density profile 	nIX determined from
Eq. (19) for a fluid density nIX = 1010 cm−2 and Lz = 34 nm.

One can see that the results for a correlated exciton liquid,
Eq. (18), are in good agreement with the lattice model at large
densities nIX. The latter is consistent with the fact that the
lattice model presupposes correlations in displacements of the
IX within the lattice. The uncorrelated model (solid line in
Fig. 6) gives, in contrast, much larger energy redshifts |	IX|
with increasing densities. The interlayer binding energies pre-
dicted by the model for densities in the range 5 × 1010 − 1011

are indeed comparable to the experimentally measured ones
[15]. This agreement is, however, surprising since the high
interlayer binding energies partially arise from the fact that
the dipolaron model assumes a free-particle IX dispersion
and, thus, neglects repulsive intra-DQW interactions, which
are expected to become important with increasing densities.

In real space, the density deformation of DQW1 is given by
	nIX(ρ) = 〈ψ |b̂†

rb̂r|ψ〉, where b̂†
r = ∫

d2k/(2π )2b̂†
keikρ and

ρ = r‖. In the case of a correlated exciton fluid in DQW1,
the density deformation 	nIX(ρ) at small values of ρ can be
approximated by a Gaussian curve given by

	nIX(ρ) = nIX
μ4

2h̄mc3(nIX)

9π

16L5
z

e− ρ2

2σ2 , (19)

where σ = 2Lz/
√

35. Note that the spatial extension of the
dipolaron cloud only depends on the inter-DQW spacing Lz

while the amplitude of the fluctuations reduce with increasing
density nIX. For the experimental conditions of Ref. [15]
with Lz = 34 nm, the full width at half maximum of the
deformation is 27 nm, as illustrated in Fig. 12. The fluid
density almost doubles at the lateral position of the single
IX. By integrating 	nIX over the DQW plane one obtains a
total density excess corresponding to approx. 0.1 particles for
nIX = 1010 cm−2.

V. CONCLUSIONS

We have theoretically investigated dipolar polarization ef-
fects in the interaction between IXs in stacked DQW struc-
tures. The dipolar inter-DQW coupling in these structures
turns from repulsive for large lateral distances between the
IXs to attractive for short separations. The attraction enables
the bonding of the IXs into an IX-molecule with a binding
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energy of a few hundreds of μeV [16], as calculated in the
PCA for the IX dipoles. We show that the dipolar inter-DQW
interaction deforms the wave function of the electron and hole
constituents of the excitons with two main consequences: An
increase in the IX interlayer binding energy (by approximately
20%) as well as a dependence on the dipole moment on
the amplitude of the applied field, thus yielding a finite IX
polarizability.

We have also analyzed multiparticle effects in the inter-
DQW dipolar interaction by considering the coupling between
a single IX in one of the DQWs to a (static) close-packed
lattice of IXs in the other DQW. For this configuration, the
interlayer binding energy of the single IX reduces with in-
creasing lattice density. This behavior is due to the dominating
role of the intra-DQW dipolar repulsion, which prevents more
than one IX entering the attractive region of the inter-DQW
coupling. We also found that the inter-DQW attraction can
create a distortion of the lattice, thus forming an IX dipolaron
and increasing the IX interlayer binding energy. The lattice
model was found to be in good agreement with the theory for
a continuous, Fröhlich-like dipolaron in the correlated regime.
This is not surprising due to the correlated nature of the
dipolar interactions of the lattice models. In the low IX den-
sity, uncorrelated regime, the Fröhlich-like dipolaron model
also accounts for the regime, where the measured interlayer
binding energy increases with density. The simple approxima-

tion presented here neglects, however, intra-DQW interactions
and can, thus, only be regarded as a rough approximation
for the density regime in the transition from uncorrelated to
correlated behavior. In fact, the interplay between the dipolar
and the short-range exchange interactions at high particle
densities has been recently shown to lead to the formation of
mixed dark and bright condensed Bose phases with interesting
physics of interacting quantum liquids [27,34–37]. We expect
nevertheless that the results presented here will stimulate
further experimental and theoretical studies of dipolar inter-
DQW interactions in IX systems consisting of DQW stacks.
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