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We theoretically investigate the curvature of the confinement potential in quantum point contacts (QPCs) under
a background disorder potential with Gaussian correlation functions using a noninteracting one-dimensional
tight-binding model. The curvature of the potential is evaluated from the gate voltage dependence of the
conductance, and the statistical average of the fitting curvature is calculated. The fitting curvature is insensitive
to the original QPC confinement curvature when the characteristic length of the QPC potential is larger than
the characteristic length of the disorder. In addition, the fitting curvature can be enhanced as the QPC curvature
is decreased. Accidental double barrier potential formation on the top of the QPC induces enhancement of the
fitting curvature. Finite-temperature effects under the disorder potential are also discussed. Similar results hold
in a two-dimensional QPC tight-binding model.
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I. INTRODUCTION

A quantum point contact (QPC) is a narrow and short
one-dimensional constriction formed on a two-dimensional
electron system with split gates. The width of the constriction
is controlled by the gate voltage applied to the split gates, and
the length of the QPC is determined by the split gate length.
The linear conductance, G, through a QPC is quantized as a
function of the gate voltage in units of 2e2/h [1,2], where the
quantized value is the number of transverse modes in the QPC.

The microscopic QPC potential profile is revealed in the
gate voltage dependence of G via the Landauer-Büttiker
formula [3]. A typical QPC potential is described by the
quadratic form

V (x) = V0 − 1
2 mω2

x x2, (1)

where V0 is the potential energy at the QPC center x = 0,
m is the electron effective mass, and h̄ωx is the energy
to determine the curvature of the potential. The curvature
has a characteristic length lQPC = √

h̄/mωx. The transmission
probability T (ε), through the potential (1), can be calculated
analytically [4]:

T (ε) = {1 + exp (−2π (ε − V0)/h̄ωx )}−1. (2)

When T is plotted as a function of the gate voltage V0, the
range of the slope of T from zero to unity is determined by
h̄ωx. In recent experiments [5–7], the Fabry-Pérot oscillation
has been observed in G. In these experiments, the QPC
potential is not described by Eq. (1), but has a flat-top structure
so that the potential landscape acts as a quantum resonator.

The QPC potential profile is determined not only by the
QPC confinement potential, but also by the background po-
tential fluctuations due to ionized impurities in semiconductor
heterostructures. The influence of the potential fluctuations
has been observed in transport measurements [8,9]. The na-
ture of the background potential fluctuations has been investi-
gated particularly using scanning gate microscopy [10–18],
which also reveals the Wigner and Kondo physics in QPC
systems [19]. The potential fluctuations due to ionized impu-
rities in semiconductor heterostructures have been addressed
theoretically [20,21]; for QPC systems, these fluctuations lead
the deviation from the conductance quantization [22,23]. We
should emphasize that even for a very-high-mobility device,
disorders still play a role in the transport properties in a
confined geometry [24].

An array of 256 split gates was recently fabricated and
the conductance on each gate was measured [25], which
made it possible to study the statistics of the conductance of
QPCs [26,27]. In Ref. [27], the gate voltage characteristics
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of approximately 100 QPCs with gate lengths from 400 to
1300 nm were measured to obtain the relationship between
lQPC that is deduced from h̄ωx, and the split gate length. It
is reasonable to expect that lQPC increases as the gate length
increases. However, the experiment reveals a counterintuitive
result where lQPC is almost independent of the gate length.
This is the most surprising observation in Ref. [27]. More-
over, the results even exhibit the opposite trend, where lQPC

weakly decreases as the gate length increases. This contrast
indicates that the QPC potential is modified from Eq. (1). In
Refs. [26,27], it was concluded that the source of the deviation
comes from background disorder potential fluctuations.

Here, we investigate the conductance statistics under a dis-
order potential using a one-dimensional tight-binding model
with an aim to understand the results for the QPC curvature
in Ref. [27]. In addition to the QPC confinement potential
characterized by h̄ωx, we introduce a disorder potential with
a Gaussian correlation function [28–32] to model the back-
ground potential fluctuations, instead of treating the micro-
scopic disorder fluctuations due to the Coulomb potential
of impurities. The disorder potential is characterized by the
strength and the spatial correlation length. We also focus
on the disorder potential effect; therefore, we examine a
noninteracting QPC model.

The fitting potential curvature out of the gate voltage de-
pendence is calculated for a given disorder potential landscape
using Eq. (2). After taking the sample average of the disorder
potential, the relationship between the fitting curvature and
h̄ωx is evaluated. We show that the fitting curvature is insensi-
tive to h̄ωx when lQPC is larger than the characteristic length of
the disorder. In addition, the fitting curvature can be enhanced
as h̄ωx is decreased, which is consistent with the experimental
results. We also show that these results are not unique to the
one-dimensional QPC model, but hold for a two-dimensional
QPC model as well.

The paper is organized as follows. Section II describes the
tight-binding model of the QPC and the correlated disorder
potential. In Sec. III, we comment on the finite-temperature
smearing effect and in Sec. IV we define the yield condition,
which is similar to that in Ref. [27]. Section V describes the
main results of this study. The two subsequent sections discuss
two simplified models to understand the results in Sec. V:
Section VI is for an accidental bump model at the QPC center,
and Sec. VII is for an accidental double barrier model. In
Sec. VIII, we discuss the finite-temperature fitting scheme. In
Sec. IX, the two-dimensional QPC tight-binding model with
the correlated disorder potential is examined to compare the
results with the one-dimensional tight-binding model.

II. MODEL

A. Tight-binding model

We model the QPC system with a one-dimensional tight-
binding Hamiltonian,

H =
∑
j,σ

ε( j)c†
j,σ c j,σ − t

∑
j,σ

c†
j,σ c j+1,σ . (3)

Here, c†
j,σ creates an electron with spin σ at the jth site (−N �

j � N). The QPC potential energy is represented by the on-

site energy ε(i), and t is the hopping energy between nearest
neighbors. The one-dimensional chain is attached to the semi-
infinite leads in the local equilibrium with a Fermi distribution
fl (ω) (l = L/R) given by

fL/R(ω) = 1/{1 + exp(β(ω − μL/R))} (4)

with the Fermi energy μL/R and the temperature T with β =
1/kBT .

We set ε( j) in the form [33,34]

ε( j) = V0 exp

(
− (h̄ωx j)2

4V0t

1

1 − ( j/N )2

)
. (5)

This is approximated by

ε( j) = V0 − (h̄ωx )2

4t
j2 (6)

near the QPC center ( j = 0), which reduces to

ε(x) = V0 − mω2
x

2
x2, (7)

where t = h̄2/(2ma2) and x = a j with the lattice constant
a. The potential shape from Eq. (5) connects the inverted
parabola at the QPC center to the leads with ε( j) = 0. In the
following, h̄ωx is denoted by �x.

B. Correlated disorder potential

Now we take into account the disorder potential due to the
impurity or fluctuations in the background potential over the
original QPC potential. For this purpose, a disorder potential
with spatial correlations is introduced to contrast with lQPC.
We specifically consider the potential with the Gaussian cor-
relations having a characteristic length ξ [30–32]:

V (x) =
∑

i

Vrnd(i) exp(−(x − x(i))2/(2ξ 2))/
√√

πξ. (8)

The impurities are displaced at the points x(i). The random
potential Vrnd is an Anderson on-site disorder potential with a
strength 	:

〈Vrnd(i)Vrnd( j)〉 ≡ 	2δi j, (9)

where 〈· · · 〉 is the disorder ensemble average. It is assumed
that the impurities are located all over the sample and the
summation over i is taken for all of the lattice points. Thus,

〈V (x)V (x′)〉 = 	2

√
πξ

∫
dy exp(−(x − y)2/(2ξ 2))

× exp(−(x′ − y)2/(2ξ 2))

= 	2 exp(−(x − x′)2/(4ξ 2)). (10)

Figure 1 illustrates the potential V (x) characterized by ξ and
	. This disorder potential Vd( j) ≡ V (a j) is added to the QPC
potential ε( j) in Eq. (5):

ε( j) → ε( j) + Vd( j). (11)
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FIG. 1. The correlated disorder potential is added to the QPC
potential ε( j). Two parameters, ξ and 	, characterize the disorder
potential: ξ controls the spatial correlation of the disorder, while 	

controls the strength of the disorder. As ξ is increased, the spatial
change of the disorder becomes smoother, eventually turning into a
simple potential shift in the limit of ξ → ∞.

C. Landauer formula

The current I through the QPC is given by the Landauer
formula:

I = e

π h̄

∫
dω T (ω)( fL(ω) − fR(ω)), (12)

with the transmission probability T (ω) through a one-
dimensional (1D) chain. We set μL/R = EF ± eV/2 with the
Fermi energy EF and the bias voltage V . The linear conduc-
tance G = ∂V I is then

G = − e2

π h̄

∫
dωT (ω)∂ω f (ω), (13)

with the equilibrium Fermi-Dirac function f (ω) with μ = EF.

D. Tight-binding parameters

In the experiment in Ref. [27], the carrier density is n =
2.0 × 1011 cm−2, and the Fermi wavelength λF = √

2π/n =
56 nm. The temperature T is fixed at T = 1.4 K. The split gate
length is varied between 400 and 1300 nm.

The following numerical parameters were selected to re-
produce this experimental setup. The lattice constant a is set to
a = λF/8 [35], and then a = 7.0 nm. We set N = 100, which
corresponds to a 1400-nm split gate length. The hopping
energy t = h̄2/2meffa2 is 11.6 meV, where we use the effective
mass meff = 0.067m0 in GaAs with the electron mass m0 in
a vacuum. The Fermi energy EF = 0.5865784t , which is the
energy of the cosine band at k = kF; EF = 6.8 meV. We set
t as the unit of energy. When T = 1.4 K, kBT/t = 0.01. This
temperature is used for all of the numerical calculations below.
The QPC curvature, �x = 2 meV, corresponds to �x/t =
0.17. The characteristic length lQPC = √

2a
√

t/�x = 9.9 nm
×√

t/�x.

III. EFFECT OF TEMPERATURE ON THE CURVATURE

Before going to the disorder QPC model, we first comment
on the finite-temperature effect. For this purpose, we first
discuss a clean QPC, Vd = 0.

In Ref. [27], the experiment is performed at T = 1.4 K,
while the experimental data are fitted by the Landauer formula
at zero temperature. This is because the authors found that the
use of either T = 0 or T = 1.4 K does not affect the trends

FIG. 2. Fitting curvature �F
x /t as a function of the QPC curvature

�x/t , for T = 1.4 × 10−3 K (blue) and T = 1.4 K (red).

[36]. The conductance G in Eq. (13) at zero temperature with
Eq. (2) is then

G(V0) = e2

h

2(
1 + exp

(
2π (V0 − EF

0 )/�F
x

)) . (14)

Here EF
0 and �F

x are the fitting parameters from Eq. (2)
(the superscript “F” denotes a fitting parameter). Next, we
introduce an extra fitting parameter, GF

0 , instead of the factor
of 2 (spin degeneracy) in Eq. (14), and then use the fitting
function

G(V0) = e2

h

GF
0(

1 + exp
(
2π (V0 − EF

0 )/�F
x

)) , (15)

with the fitting parameters GF
0 , EF

0 , and �F
x . The necessity of

GF
0 is explained below in Sec. IV. To perform the fitting, the

scipy.optimize.curve_fit [37] PYTHON routine was used for the
nonlinear least-squares optimization method. When T = 0,
�F

x = �x for the parabolic potential [4], as it should be.
For a given �x, G is calculated as a function of V0, and

the fitting is applied to obtain �F
x . Figure 2 shows �F

x plotted
as a function of �x for T = 1.4 × 10−3 K and 1.4 K. At
T = 1.4 × 10−3 K (blue curve), �F

x = �x as expected. At
T = 1.4 K (red curve), �F

x increases with �x; �F
x qualitatively

captures the trend of �x in G.
However, a quantitative deviation is observed: �F

x > �x.
This is explained as follows. When T = 1.4 K, kBT/t = 0.01.
Thus, kBT is comparable to �x in Fig. 2. At a finite tem-
perature, G is determined by these two energy scales; T (ω)
changes over the range of �x, while the differentiation of
the Fermi-Dirac function changes over the range of kBT .
The thermal energy then smears the change in T (ω), and if
G is fitted by Eq. (15), �F

x > �x. The thermal smearing is
dominant when �x is decreased, i.e., a longer QPC.

In Ref. [27], zero-temperature fitting was performed be-
cause the finite-temperature fitting gives a similar trend. This
indicates that the QPC is not simply described by a simple
quadratic potential model. Therefore, we now introduce dis-
order potentials. We discuss the finite-temperature fitting later
in Sec. VIII to clarify the role of the disorder potentials.
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FIG. 3. Sample fitting: the yield condition is satisfied for (a) and
not for (b). The blue points show G numerically calculated with a
sample Vd at T = 1.4 K. The green lines are the fitting curves. The
value of GF

0 is indicated in each subgraph.

IV. YIELD CONDITION AND SAMPLE AVERAGE

Now we introduce the disorder potential, Vd. Under the
disorder potential, the conductance quantization is not perfect.
In the experiments in Refs. [25,27], a yield criterion for the de-
vice is introduced: whether the first two or three conductance
plateaus occur within ±0.1G0 or not. If this yield criterion
is not satisfied, then the conductance data are rejected from
the statistical average. Since this “quantum yield” is a core
idea in the experiments, we incorporate this concept into our
numerical calculations. Under the yield criterion, the fitting
procedure is not simply applying Eq. (14) to deduce EF

0 and
�F

x . The fitting function actually requires an extra parameter to
judge the criterion. This is the reason why we have introduced
an extra parameter GF

0 in Eq. (15).

With GF
0 , we now introduce a similar yield criterion, as

follows. For a given disorder potential Vd( j), G is calculated
as a function of V0 at T = 1.4 K. The fitting function for the
conductance, Eq. (15), is then applied to deduce GF

0 , EF
0 , and

�F
x . If GF

0 satisfies the following condition,

1.9 < GF
0 < 2.1, (16)

then the disorder sample is accepted; otherwise it is rejected.
Note that GF

0 can exceed 2, despite the numerical data of G
within 2e2/h, as a single channel QPC model. This is because
the fitting formula (15) is applied without further restrictions
such as GF

0 � 2.0. Such disorder samples are kept as long as
condition (16) is satisfied. The statistical average is taken over
the accepted samples to obtain the average curvature 〈�F

x 〉 and
its variance. Examples of the fitting are shown in Fig. 3, where
blue points indicate the numerical data for a given disorder
potential and green lines indicate the fitting curves. Here, the
case in Fig. 3(a) satisfies the yield condition and the case in
Fig. 3(b) is rejected. Note that we discuss whether the validity
of the numerical results is maintained when condition (16) is
changed in Sec. V B.

V. CURVATURE UNDER DISORDER POTENTIALS

Next we discuss the curvature of QPCs under the disorder
potentials with various values of ξ and 	. In the experiment in
Ref. [27], the statistics of �F

x are measured with different QPC
split gate lengths. Here we change �x, which equivalently
changes the QPC length, as shown in Fig. 4(a). One hundred

(a)

(b)

(c)

(j)

(i)
(d)

(e)

(f) (g) (h)

FIG. 4. QPC curvature under disorder potentials. (a) QPC potential profile: clean QPC potential with �x/t = 0.02 (black solid line) and
�x/t = 0.1 (black dotted line). (b–e) Correlated disorder potentials with (b) ξ/a = 2, (c) ξ/a = 3, (d) ξ/a = 4, and (e) ξ/a = 6. 	/t = 0.04.
(f) 〈�F

x 〉 versus �x for various values of ξ with 	/t = 0.04. The error bars represent the variance of 〈�F
x 〉. (g) 〈lF

QPC〉 versus lQPC for the same
values of ξ and 	 in (f). (h) 〈�F

x 〉 versus �x for various values of 	 with ξ/a = 2.0. (i) 〈lF
QPC〉 versus lQPC for the parameters in (h). In (f–i),

the solid lines represent the results for the clean QPC. (j) The horizontal axis is normalized by lQPC/2ξ in (g) and (i). The case for ξ/a = 5 and
	/t = 0.04 is added. Error bars are not shown.
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disorder samples are then prepared for a given parameter set of
�x, ξ , and 	 to calculate G as a function of V0. Figures 4(b)–
4(d) show samples of Vd( j) with four different values of ξ and
	/t = 0.04.

A. Numerical results

In Fig. 4(f), 〈�F
x 〉 is plotted as a function of �x with various

values of ξ . The error bar for each point indicates the variance
of 〈�F

x 〉. The result for the clean QPC is also plotted as a
reference. When ξ/a = 6, 〈�F

x 〉 is almost identical to that for
the clean QPC. In this case, the disorder potential turns into
a potential energy shift and there is little influence on 〈�F

x 〉.
When ξ is shorter, the deviation from the clean QPC result
becomes clearer. For example, when ξ/a = 3, 〈�F

x 〉 is clearly
larger than the clean QPC result for �x/t < 0.05, while 〈�F

x 〉
is still similar to that of the clean QPC for �x/t > 0.05.
When ξ/a = 2, the deviation is observed up to �x/t ∼ 0.08.
Moreover, 〈�F

x 〉 is clearly enhanced as �x is decreased. This
result is in contrast with the clean QPC case.

Figure 4(g) shows 〈lF
QPC〉 =

√
h̄2/m〈�F

x 〉 as a func-

tion of lQPC. The deviation of 〈lF
QPC〉 is evaluated us-

ing
√

1/(x + 	x) 
 √
1/x − 1

2 (1/x)3/2	x. The fitting length
〈lF

QPC〉 changes slowly as a function of lQPC. This is also ob-
served for the clean QPC because of the temperature smearing
effect, as discussed in Sec. III. The disorder potential induces
a new feature. When ξ is decreased, 〈lF

QPC〉 is suppressed
as lQPC is increased. This is in contrast to the clean QPC
case. In Fig. 4(b) of Ref. [27], the effective QPC length is
approximately 22 nm, and it is almost independent when
compared to the change in the gate length. In some cases,
the effective length decreases as the QPC length is increased.
The results of Fig. 4(g) when ξ is small are consistent with
these experimental results, except that the length is larger than
the experiment.

Figure 4(h) shows 〈�F
x 〉 as a function of �x for various

values of 	 with ξ/a = 2.0, and Fig. 4(i) shows 〈lF
QPC〉 as a

function of lQPC. These figures show that a weaker disorder
potential is similar to the clean QPC potential, as expected.

Finally, we comment on the comparison between lQPC

and ξ . Equation (10) shows the disorder correlation length
is 2ξ , which competes with lQPC. Figure 4(j) shows 〈lF

QPC〉
as a function of lQPC/2ξ . The extra result with ξ/a = 5.0
and 	/t = 0.04 is added. When lQPC/2ξ � 1, 〈lF

QPC〉 behaves
like the clean QPC. In this regime, the disorder potential
simply shifts the QPC potential energy. When lQPC/2ξ � 1,
the deviation from the clean QPC becomes clearer. In this
regime, the disorder potential creates a subpotential landscape
on top of the QPC potential, and, as a result, the disorder
potential can effectively influence G.

B. Robustness of the results

The numerical results obtained so far have been obtained
assuming two conditions: the yield condition, Eq. (16), and
the range of gate voltage used for the fitting. Here, we discuss
whether the validity of the results is maintained when these
conditions are changed.

(a)

(b)

FIG. 5. Yield condition dependence: (a) yield range δ versus the
yield when �x/t = 0.02 (red) and 0.01 (blue) with ξ/a = 2 and
	/t = 0.04. (b) 〈�F

x 〉 versus δ.

First, we discuss the robustness against the yield condition.
Instead of the yield condition, Eq. (16),

(2 − δ) < GF
0 < (2 + δ) (17)

can be chosen, with a certain number δ, as the yield condition.
Figure 5 shows the δ dependence of the yield, i.e., the ratio
between the number of accepted samples over 100 samples,
and 〈�F

x 〉 for �x/t = 0.01 and 0.02 and ξ/a = 2. The yield
is dependent on δ, as shown in Fig. 5(a). However, 〈�F

x 〉 is
weakly dependent on δ, and remains within the error bars.
Thus, we consider that the case of δ = 0.1 represents a typical
example of numerical calculations.

Next, we examine the robustness against the range of gate
voltage. Only the first channel in the QPC transport is taken
into account; when G reaches the 2e2/h plateau, G remains
constant even if the gate voltage is changed. When the fitting
is applied for a longer plateau, the yield condition is likely to
be satisfied, and the yield is then increased. This means that
the fitting values may be dependent on the gate voltage cutoff.
In experiments, the gate voltage cutoff is not arbitrary, but is
determined by the second channel of the QPC.

In the experiment in Ref. [27], the range of plateau 	E12

varies from approximately 2 to 3 meV, depending on the QPC
length. To compare with this result, the range of the gate volt-
age is examined: Vmin/t < V0/t < 0.65 with several values of
Vmin. So far, Vmin/t = 0.4 is selected, which corresponds to
Vmin = EF − δE12 with δE12 = 2.17 meV. Two other cases are
examined: Vmin/t = 0.45, which is equal to δE12 = 1.5 meV,
and Vmin/t = 0.37 with δE12 = 2.5 meV. The yield condition,
Eq. (16), is used. Figure 6(a) shows the yield as a function of
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(a)

(b)

FIG. 6. Yield and curvature under the voltage range Vmin/t <

V0/t < 0.65 with Vmin/t = 0.45, 0.40, and 0.37. The disorder poten-
tial parameter is (ξ/a, 	/t ) = (2, 0.04). (a) Yield as a function of
�x and (b) 〈�F

x 〉 as a function of �x .

�x. For a smaller value of �x, the yield deviates from unity.
The yield values are dependent on Vmin. However, as shown
in Fig. 6(b), 〈�F

x 〉 is not dependent on Vmin. Therefore, the
results with 〈�F

x 〉 are robust against the choice of Vmin within
the experimental setup.

VI. ACCIDENTAL BUMP MODEL

In this section, we discuss a possible mechanism for the
enhancement of 〈�F

x 〉 by the disorder potential. The disorder
potential can accidentally create bumps near the QPC center.
If the curvature of a bump potential is larger than �x, then the
fitting curvature �F

x can be larger than �x. We examine this
enhancement mechanism of 〈�F

x 〉.
For this purpose, we consider a simple situation: one bump

at the QPC center with a curvature �d. In addition to the QPC
potential ε( j), the extra potential εd( j) is added in the form
of Eq. (5): εd( j) = ε0( j; �x = �d,V0 = d ) with the bump
height d . Figures 7(a) and 7(b) show the potential landscapes
for �x > �d and �x < �d, respectively. Figure 7(c) shows
�F

x as a function of �d. As �d is increased, �F
x is enhanced

by the bump. Note that when �d is further increased, �F
x

decreases because keeping the potential height constant and
increasing �d result in a narrow (sharp) barrier. When the
barrier is very narrow, tunneling is enhanced and the effect
of the bump gradually fades out.

Now we discuss the connection between �d and the cor-
related disorder potential, where the correlation function is
given by

〈V (x)V (0)〉 = 	2 exp

(
− x2

4ξ 2

)
, (18)

(a)

(c)

(b)

FIG. 7. Accidental bump model: (a, b) The dotted lines represent
ε( j) with �x/t = 0.02. The solid lines represent ε( j) + εd ( j) with
d/t = 0.04, and (a) �d/t = 0.02 or (b) �d/t = 0.1. (c) Fitting
curvature �F

x as a function of �d for �x/t = 0.02, 0.04, and 0.06.
Color triangles on the top of the figure indicate the values of �d for
ξ/a = 2 (red), 3 (blue), 4 (green) and 6 (purple) with 	/t = 0.04 in
Fig. 4(f).

with 〈V (0)2〉 = 	2. When x ∼ 0, the right-hand side of
Eq. (18) is expanded as

〈V (x)V (0)〉 ∼ 	2

(
1 − x2

4ξ 2

)
. (19)

Then V (x) can be approximated near x = 0 by the parabolic
form:

V (x) − V (0) = ±	
x2

4ξ 2
. (20)

Let us consider the inverted parabolic potential with
V (x) − V (0) = −	 x2

4ξ 2 . The effective curvature ωd of the

bump potential is defined by V (x) = V (0) − m(ωdx)2/2, and
we let �d = h̄ωd, which results in

�d = t

√
	

t

(
ξ

a

)−1

, (21)

where we have used t = h̄2/(2ma2). The inverted parabolic
potential is smoothly terminated, as in Eq. (5). In Fig. 7(c),
the color triangles indicate �d for the various values of ξ in
Fig. 4(f). The enhancement of 〈�F

x 〉 as ξ decreases in Fig. 4(f)
is correlated with the enhancement of �F

x by the increase of
�d. The accidental bump model can thus partly explain the
enhancement of 〈�F

x 〉. However, �F
x decreases with �x as

indicated by the black arrow in Fig. 7(c). This trend is opposite
that in Fig. 4(f). Thus, the accidental bump model fails to
explain an important feature of the disorder potential model.
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FIG. 8. Double barrier potential: the dotted line represents ε( j),
and the solid line represents ε( j) + VDB( j). Inset: Sample average of
lsep as a function of ξ for the correlated disorder potential (8).

VII. ACCIDENTAL DOUBLE BARRIER MODEL

The single-bump model is thus insufficient; therefore, we
next examine a slightly more complicated bump structure,
a double barrier potential model with double-bump barriers
in addition to a dip structure at the QPC center. Here, the
potential VDB is given by

VDB(x) =

⎧⎪⎨
⎪⎩

+	 − mω2
d (x − lsep)2/2 (x ∼ lsep)

−	 + mω2
d x2/2 (x ∼ 0)

+	 − mω2
d (x + lsep)2/2 (x ∼ −lsep).

(22)

The potential is characterized by three parameters: the curva-
ture �d, the potential depth 	, and a half of the peak-to-peak
distance lsep of the bumps. The first two parameters are the
same as those in the accidental bump model. Each parabolic
term in Eq. (22) is smoothly terminated, as in Eq. (5) [38].
The potential profile is shown in Fig. 8. The potential induces
a quantum-dot-like confinement potential at the QPC center,
and a quasibound state on the top of the QPC will likely
appear. For the disorder potential, Eq. (8), lsep is numerically
evaluated. For this purpose, the disorder potential is generated
over 10 000 sites for a given value of ξ , and the peak-to-peak
separation of the potential is evaluated within the sites. The
half of the average, lsep, is plotted as a function of ξ in the
inset of Fig. 8, where lsep is proportional to ξ .

Numerical calculations with the double barrier potential
are performed to understand the results with the disorder
potential. For this purpose, the calculation is performed with
the parameter set (lsep, �d) of the double barrier potential
equivalent to the disorder potential with ξ . The correspon-
dence between the parameters of both models is summarized

(a)

(b)

FIG. 9. Accidental double barrier model: (a) �F
x versus �x . The

value of ξ shown in the legend indicates that the calculation is
performed using the parameter set (lsep, �d), which is equivalent to
the value of ξ for the disorder model in Table I. 	/t = 0.04. (b) lF

QPC

versus lQPC for the same values of ξ and 	 in (a).

in Table I. Figure 9(a) shows �F
x versus �x of the double

barrier model. An enhancement of �F
x appears when �x

decreases. The enhancement is clearer for the parameter set
with smaller values of ξ . These results are consistent with
those in Fig. 4(f). Figure 9(b) shows lF

QPC versus lQPC, which
also shows the suppression of lF

QPC as lQPC increases, as in
Fig. 4(g). In this way, the accidental double barrier model can
explain the results for the correlated disorder model.

The origin of the enhancement is evident in the G-V0 char-
acteristics. Figure 10(a) shows the matrix of plots of G-V0 with
�x and the parameter set (lsep,�d) equivalent to the value of ξ

for the disorder model in Table I; the value of �F
x is indicated

in each subpanel. The enhancement of �F
x in Fig. 9(a) comes

from the shoulder or hump structures in G. Larger values of
�F

x come from the substructures. Figure 10(b) shows several
examples of G-V0 curves for the correlated disorder model
with large values of �F

x for ξ/a = 2 and �x/t = 0.02. The

TABLE I. Relationship between ξ of the disorder potential and parameter set (lsep, �d) of the accidental double barrier potential.

Disorder potential Accidental double barrier potential

ξ/a lsep/a �d/t

2 5.20 0.10
3 7.84 0.067
4 10.2 0.050
6 14.9 0.033
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FIG. 10. (a) Matrix of plots of G versus V0/t for the accidental double barrier model with the parameter set (lsep, �d) equivalent to the value
of ξ for the disorder model in Table I. The values of ξ and �x for each subpanel are indicated at the outer edge of the matrix. (b) Examples
of G versus V0/t for the correlated disorder model: �x/t = 0.02, ξ/a = 2.0, and 	/t = 0.04. In (a) and (b), G is plotted in units of e2/h, the
blue points show the numerical result and the green lines are the fitting curves, and the value of �F

x is designated in each subpanel.

substructures in the G-V0 curves are similar to those in the
accidental double barrier model.

In summary, when the original QPC potential is flat, disor-
der causes double or multiple peak potentials, which result in
resonant-type hump structures in G. Such structures increase
�F

x calculated by fitting.

VIII. FINITE-TEMPERATURE FITTING

We now consider the finite-temperature effect. So far
we have used the zero-temperature fitting scheme for
finite-temperature conductance. This is because the exper-
iment claims that both zero-temperature fitting and finite-
temperature fitting have similar trends. In this section, we
examine this point.

The numerical data are now fitted by the finite-temperature
Landauer formula, Eq. (13), at T = 1.4 K, with the fitting
parameters GF

0 , EF
0 , and �F

x , as in Eq. (15) [39]. Figure 11
shows a comparison between the zero-temperature fitting and
finite-temperature fitting for the cases of ξ/a = 2 and ξ/a =
6, as well as for the clean QPC model. The notation of “0/T”
refers to the zero- or finite-temperature fitting; the notations
for the average curvature 〈�F(0/T)

x 〉 and that for the fitting QPC

length 〈lF(0/T)
QPC 〉 =

√
h̄2/(m〈�F(0/T)

x 〉) are also used below [40].

For the clean QPC model, �F(T)
x = �x, as shown by the

grey line in Fig. 11(a), which is an expected result. For
the disorder QPC model, when ξ/a = 2, both 〈�F(0)

x 〉 and
〈�F(T)

x 〉 show similar curves as functions of �x, even when
�x is small. On the other hand, for ξ/a = 6, 〈�F(T)

x 〉 deviates

from 〈�F(0)
x 〉 when �x is small. The contrast between the

two fitting schemes is more evident in Fig. 11(b). For the
clean QPC model, lF(T)

QPC = lQPC and the deviation from lF(0)
QPC

is clearer when lQPC is increased. On the other hand, for
ξ/a = 2, both lF(T)

QPC and lF(0)
QPC show similar trends, even when

lQPC is increased. This is distinct from the clean QPC limit.
For ξ/a = 6, intermediate results are obtained. When lQPC is
small, 〈lF(0/T)

QPC 〉 follows a similar curve for lF(0/T)
QPC of the clean

QPC limit. When lQPC is increased, 〈lF(T)
QPC〉 deviates clearly

from lF(T)
QPC of the clean QPC limit, while 〈lF(0)

QPC〉 stays close

to lF(0)
QPC of the clean QPC limit. The experiment in Ref. [27]

claims that both fittings follow a similar trend, which indicates
that the disorder potential scattering is very effective, as in the
results of ξ/a = 2. Otherwise, the difference between the two
fittings can be noticed.

IX. TWO-DIMENSIONAL QPC MODEL

In the experiments, QPCs are fabricated on two-
dimensional (2D) electron systems. Then, the 1D tight-
binding model that has been discussed might not be relevant
to compare with the experimental results. In this section, we
show that the main results of the fitting curvature by the 1D
model are consistent with those by 2D QPC systems.

We model the QPC system with a 2D tight-binding
model with the integer lattice coordinates (i, j) that has
the real-space coordinates (x, y) = (a(i − N ), a( j − W/2)),
where 0 � i < 2N with N = 100 as in the 1D model, and
0 � j < W , where W gives the width of the QPC. The QPC

045305-8



QUANTUM POINT CONTACT POTENTIAL CURVATURE … PHYSICAL REVIEW B 102, 045305 (2020)

(a)

(b)

FIG. 11. Finite-temperature fitting compared to the zero-
temperature fitting: (a) fitting curvature 〈�F(0/T)

x 〉 versus �x and (b)
〈lF(0/T)

QPC 〉 versus lQPC. The notation of (0/T) refers to the zero- or
finite-temperature fitting.

confinement potential VQPC(x, y) is given by

VQPC(x, y) = V1D(x) + V2D(x, y), (23)

where V1D(x) is the 1D QPC potential (1) near the QPC center
that is smoothly terminated, as in Eq. (5), and we choose the
2D confinement potential V2D as follows [35]:

V2D =
∑
±

mω2
y

2
{y − y±(x)}2(y2 − y±(x)2) (24)

with

y± = ±Wa

4

(
1 − cos

πx

Na

)
, (25)

where (x) is a step function: (x) = 1 for x > 0, 0 for
x < 0. h̄ωy is denoted by �y. We set the Fermi energy EF

the same as in the 1D model. We choose �y/t = 0.20, which
corresponds to 2.3 meV, consistent with the experimental
value [27]. The numerical calculations are performed using
the KWANT code [41]. Figure 12(a) depicts VQPC(x, y) with
W = 80.

The Gaussian correlated disorder potential is also extended
in two dimensions with the form

V (x, y) =
∑
i, j

Vrnd(i, j)√
πξ

exp(−(x − x(i))2/2ξ 2)

× exp(−(y − y( j))2/(2ξ 2)), (26)

where the impurities are displaced at the points x(i) and y( j).
The random potential Vrnd is an Anderson on-site disorder
potential: 〈Vrnd(i, j)Vrnd(i′, j′)〉 ≡ 	2δii′δ j j′ . Figure 12(b) de-
picts V (x, y) with ξ/a = 2 and 	/t = 0.04.

In order to compare with the 1D model, it is necessary
to define the curvature in the 2D model that corresponds
to �x of the 1D model. In the 2D structure, this curvature
varies depending on the QPC geometry. Here, we focus on the
change of the 2D QPC curvature as a result of the change in
W . For this purpose, the contribution from the 1D curvature
in VQPC is minimized: �x/t = 5.0 × 10−3. In the inset of
Fig. 12(c), G is plotted as a function of V0 for the clean QPC
potential at zero temperature, showing multiple conductance
plateaus. To compare with the 1D model calculations, we
focus on the curvature in the range 0 � G � 2e2/h, which
corresponds to �x of the 1D model, and is denoted by �x;2D.
In Fig. 12, �x;2D is plotted as a function of W . When W
is increased, the potential difference between the QPC cen-
ter and the leads is increased, leading to the enhancement
of �x;2D.

Now we introduce the disorder potential. The numerical
calculations are performed at T = 1.4 K as in the 1D model.
The fitting function (15) is applied for the G-V0 curve in the
range 0 � G � 2e2/h. In Fig. 12(d), the blue points show the
numerical result of G as a function of V0 for a given disorder
potential and the orange line indicates the fitting curve. For
100 disorder samples, the yield criteria (16) is applied and the
statistical average is taken over the accepted samples as in the
1D model.

In Figs. 12(e) and 12(f), the main results of this section
are shown: 〈�F

x 〉 versus �x,2D, and 〈lF
QPC〉 versus lQPC that

is determined by �x,2D instead of �x for the 1D model,
respectively. The solid lines are the results of the clean QPC
at 1.4 K. We choose the same values of ξ/a and 	/t as in the
1D model. Those figures are compared with Figs. 4(f) and 4(g)
for the 1D model. Both models yield similar results, although,
in more detail, the 2D model has a smaller deviation from the
clean QPC limit than the 1D model. This consistency between
the results of the 1D and 2D models can be understood by
Fig. 12(d). The enhancement of 〈�F

x 〉 comes from the shoulder
structures in G as in Fig. 10(b) of the 1D model. In summary,
the 1D model does capture the essence of the 2D QPC model.
Thus, the 1D model can be used to understand the 2D QPC
experiment results.

X. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we investigate the QPC potential curvature
under disorder potentials via the gate voltage dependence
of the conductance using a noninteracting one-dimensional
tight-binding model. We consider the disorder potential with
Gaussian correlations characterized by the disorder strength
and the spatial correlation length. The fitting potential curva-
ture from the conductance curve is substantially deviated from
the original curvature of the QPC confinement potential when
the characteristic length of the QPC is larger than the disorder
correlation length. The fitting curvature can even be enhanced
as the QPC curvature decreases. Similar results hold in a two-
dimensional QPC tight-binding model. The disorder potential
produces multiple peaks on the top of the QPC. A double
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(a) (b) (c)

(d)

(e)
(f)

FIG. 12. QPC curvature under disorder potentials in two dimensions: (a) 2D QPC confinement potential with the QPC width W = 80.
(b) Correlated disorder potential with ξ/a = 2 and 	/t = 0.04. (c) The QPC curvature �x;2D of the G-V0 curve in the range 0 � G � 2e2/h
versus W . Inset: G versus V0 with W = 80 at zero temperature. (d) G versus V0 with the disorder potential at T = 1.4 K with W = 80, ξ/a = 2,
and 	/t = 0.04. The blue points represent the numerical result and the orange line represents the fitting curve. The value of �F

x /t is indicated
in the figure. (e) 〈�F

x 〉 versus �x;2D for various values of ξ with 	/t = 0.04. The error bars represent the variance of 〈�F
x 〉. The values of �x;2D

are those for W = 10, 20, 40, 80, and 140 in (c). (f) 〈lF
QPC〉 versus lQPC that is determined by �x;2D for the same values of ξ and 	 in (e). The

solid lines represent the results for the clean QPC in (e) and (f).

barrier model is examined to demonstrate the enhancement of
the fitting curvature. The results obtained are consistent with
those in a recent experimental report [27]. We also discussed
finite-temperature effects under the disorder potentials. The
background disorder potential fluctuations are an important
element of electron transport through a QPC in the transient
regime between the conductance plateaus.

We should comment on the electron-electron interaction
effect, which is essential in the 0.7 anomaly [42]. The details
of the QPC potential can play an important role in the 0.7
anomaly. In fact, in recent experiments [5,6], the coexistence
of the Fabry-Pérot oscillation and the 0.7 anomaly have been
observed. In this work, we focus on the disorder effect of
QPC electron transport. The interplay with the electron cor-
relations is a very important issue, particularly for the 0.7
anomaly. In Ref. [27], the 0.7 anomaly and QPC geometry
are discussed in detail, where the anomaly is dependent on
the curvature. The geometrical dependence of the anomaly

has also been discussed in recent works [5,43–45]. Screening
due to the Coulomb interaction modifies the effective QPC
potential profile, and the effective QPC length deviates from
the original QPC length. In addition, the Coulomb interaction
can introduce an appropriate length scale. This extra length
scale will compete with the disorder length scale discussed in
this work. This interplay influences electron transport through
the QPC. These issues are left for future work.
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