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A semiconductor quantum dot (QD) is an attractive resource to generate polarization-entangled photon pairs.
We study the excitonic spin precession (flip-flop) in a family of QDs with different excitonic fine-structure
splitting (FSS) and its impact on the entanglement of photons generated from the excitonic-biexcitonic radiative
cascade. Our results reveal that coherent processes leave the time postselected entanglement of QDs with finite
FSS unaffected while changing the eigenstates of the system. The flip-flop’s precession is observed via quantum
tomography through anomalous oscillations of the coincidences in the rectilinear basis. A theoretical model
is constructed with the inclusion of an excitonic flip-flop rate and is compared with a two-photon quantum
tomography measurement on a QD exhibiting the spin flip-flop mechanism. A generalization of the theoretical
model allows estimating the degree of entanglement as a function of the FSS and the spin precession rate. For
a finite temporal resolution, the negativity is found to be oscillating with respect to both the FSS and the spin
precession rate. This oscillatory behavior disappears for perfect temporal resolution and maximal entanglement
is retrieved despite the flip-flop process.
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I. INTRODUCTION

Quantum mechanical entanglement has proven to be a
crucial prerequisite for experimental realizations of quantum
communication protocols [1,2], quantum computing [3], or
fundamental tests of quantum mechanics [4]. In this context,
self-assembled semiconductor quantum dots (QDs) are excel-
lent candidates for the on-demand generation of polarization-
entangled photon pairs via the radiative exciton-biexciton
cascade [5]. An excitonic fine-structure splitting (FSS) below
the radiative linewidth has been considered as a prerequisite
for the realization of such sources of entangled photon pairs
[6–8]. More recently, time postselection of the excitonic wave
packet has been applied as a which-path erasure for the gener-
ation of polarization-entangled photon pairs from QDs with
significant FSS [9,10]. Since it requires no technologically
demanding suppression of the FSS, the latter technique has
proven to be very practical for the realization of complex
quantum communication schemes [11] and is still unavoidable
in the telecom wavelength range [12], even though these
realizations were made possible at the cost of photon loss
due to the postselection. Polarization entanglement is robust
to pure dephasing when decoherence affects the excitonic (X )
and the biexcitonic (XX ) phase in the same manner [13–17].
This is the case for standard electron-phonon interactions in
type III-V heterostructures and can be furthermore distilled
via spectral filtering [18]. However, spin-flip-induced cross-
dephasing processes still threaten the symmetry-imposed era-
sure of the which-path information and are believed to be the
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main obstacle to the generation of entanglement with unity
fidelity [19]. This is, in particular, true if the whole excitonic
wave packet is collected in a time-integrated quantum state
tomography setup [6–8,13,20]. If in contrast postselection is
applied, the which-path information is again lost and max-
imum entanglement is established [9,10,21]. Conservation of
entanglement even in the presence of spin precession has been
overlooked until now since any hint of a spin flip inside a
quantum dot usually discards it as a “bad candidate.” We show
here that this preselection is not justified because spin preces-
sion is not harming the entanglement, provided a resolution
precise enough is used in order to resolve the precession.

In this paper, we investigate the impact of the spin pre-
cession on postselected entanglement in a QD. We present a
method for predicting the expected entanglement quality with
the negativity as a measure for the degree of entanglement
[22–24] as a function of the measured spin precession rates
for a set of different QDs, considering a time postselection of
the excitonic wave packet. In the derivation we make use of
the Wigner-Weisskopf approximation assuming the dynamics
to be Markovian. Beyond this limit, non-Markovianity could
yield interesting effects such as the possibility to control the
degree of entanglement via coherent time-delayed feedback
[25–28]. Our method is tested on an InGaAs QD deterministi-
cally integrated into a microlens showing a non-null spin pre-
cession rate. It is then generalized by deriving the negativity as
a function of the FSS and the spin precession rate analytically
which is found to be oscillating for both parameters with a
frequency defined by the actual experimental time resolution.

Interestingly, the precession of the excitonic spin configu-
ration can be observed in the tomography measurements in the
linear basis. In our case, the spin precession results in a unitary
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FIG. 1. Typical μPL emission spectra of the studied quantum dots (a) QD1 with a FSS of δFSS = (12.7 ± 0.2) μeV and (b) QD2 with a FSS
of δFSS = (47.6 ± 0.6) μeV. Polarization-resolved measurements of the FSS are displayed in the inset of each graph. Polarization-resolved
cross-correlation measurement of (c) QD1 and (d) QD2 in the HH basis (red) and in the HV basis (blue) obtained with SPCMs with 550 ps
temporal resolution. The inset shows the same measurement using SNSPDs with a temporal resolution of 100 ps for comparison.

transformation, which is nondissipative and thus no obstacle
to the time postselected generation of unity entanglement.

II. SAMPLE AND SETUP

Our experiments are carried out on self-assembled
InGaAs/GaAs QDs grown by metal-organic chemical vapor
deposition. The QDs are integrated deterministically into mi-
crolenses with a backside AlGaAs/GaAs distributed Bragg
reflector by three-dimensional (3D) in situ electron-beam
lithography [29]. The microlens sample is placed in a helium
flow cryostat and operated at a temperature of 5 K. Micropho-
toluminescence (μPL) measurements are performed with a
standard cross-correlation spectroscopy setup, where detec-
tors are silicon avalanche photodiode-based single-photon
counting modules (SPCMs) with a temporal resolution of
550 ps [full width at half maximum (FWHM)]. A quan-
tum tomography is realized via superconducting nanowire
single-photon detectors (SNSPDs) with a temporal resolution
of 100 ps (FWHM). The studied QDs are excited with a
continuous-wave 780-nm laser diode.

III. SPIN PRECESSION RATE ESTIMATION

Figure 1 shows μPL spectra of two different QDs, labeled
QD1 [Fig. 1(a)] and QD2 [Fig. 1(b)], with a FSS of δFSS =
(12.7 ± 0.2) μeV and δFSS = (47.6 ± 0.6) μeV, respectively,
as displayed in the insets. The spectra were obtained under
nonresonant (780 nm) continuous-wave excitation. For both
QDs, the two characteristic emission lines result from the

radiative recombination of the exciton (X ) and the biexciton
(XX ) states. Excitonic spin precession rates can be estimated
by measuring the XX and X photon correlations in the hor-
izontal and the vertical basis where the basis states are set
as aligned along the QD main axes. Figures 1(c) and 1(d)
show the normalized coincidences measured between the XX
and X photons with the XX photon triggering the correlation
measurement. Photon bunching is not only found as expected
in the horizontal-horizontal (HH) basis (in red) but also in
the horizontal-vertical (HV ) basis (in blue). This observation
reveals the possibility for the excitonic population to transit
from one excitonic component to the other, preventing the
QD from emitting two copolarized photons which would be
impossible without spin flips. The insets of Figs. 1(c) and
1(d) display the same polarization-resolved correlation mea-
surement done with the superior resolution of the SNSPDs
(100 ps) for QD1 and QD2, respectively. In the case of QD1,
the spin precession related oscillations become visible for
the HV correlations and a shoulder adds to the bunching
observed for the HH correlations. These features are caused
by a precession of the excitonic spins about the horizontal
axis. In addition to the mixing of the excitonic components, a
possible origin of the observed effect could be a Larmor-like
precession about an effective magnetic field created by the
surrounding nuclear spins [30]. The latter can be provided
by the anisotropic nuclear spin distribution surrounding the
QD [31]. It has been shown that the strength of the resulting
effective magnetic field necessary for such a precession is
reachable in QDs [32]. The exchange interaction between
the electron and hole excitonic spins can also lead to their
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relaxation through a mixing of the two excitonic components
and could lead to the observed spin precession effect [33,34].
Such oscillations are not observed for QD2 in the inset of
Fig. 1(d). The full tomography has been analyzed for QD2
in Ref. [10] and yielded in a near-unity entanglement after
deconvolution of the experimental resolution, without any
measurable effect of the decoherence on the entanglement
fidelity. By comparing both bunchings, one can evaluate the
excitonic spin precession rates. In the following, the spin
precession rate will be studied by considering the “correlation
value” gHV defined as the ratio between the two bunchings
observed for the cross correlations in the HH basis and in
the HV basis after subtraction of the Poisson level: gHV =
AHV /AHH with AHV (AHH ) the time-integrated HV (HH)
coincidences for positive delays [see Figs. 1(c) and 1(d)]. The
correlation value gHV is zero when no spin precession occur
and reaches 1 when the spin precession rate is much larger
than the excitonic decay rate. Figure 2 shows the different
gHV values evaluated for several QDs with different FSS. The
two extreme situations in our family of QDs are represented
by the two QDs marked as QD1 (highest correlation value)
and QD2 (lowest correlation value). The geometry, or more
precisely the anisotropy of the quantum dot shape, is the
main factor determining the excitonic spin precession rate.
In typical zinc-blende-based nanostructures any asymmetrical
confinement leads to a mixing of the bright excitons [35].
This mixing is neither phonon assisted nor spin-orbit cou-
pling based and does not involve the dark excitons. It stems
most probably from the long-range part of the electron-hole
exchange interaction [36]. The insets of Figs. 1(c) and 1(d)
show the corresponding HH and HV correlation functions for
these two QDs. The curves result from the theoretical model
(described below) for different spin precession rates. They
show that for a given spin precession rate the correlation value
gHV is decreasing with the FSS and allows an estimation of the
occurring spin precession rate. The closest curve (represented
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FIG. 2. Measured correlation values gHV for several QDs as
a function of their FSS. The two QDs discussed in the text are
indicated as QD1 (δFSS = 12.7 ± 0.2 μeV) and QD2 (δFSS = 47.6 ±
0.6 μeV). The colored curves are extracted from the theoretical
model for different spin precession rates.

in orange) to QD1 corresponds to a spin precession rate of
f = 9.5 ns−1, which is consistent with the fit parameter used
for the fitting of the quantum tomography.

IV. QUANTUM TOMOGRAPHY AND NEGATIVITY

To be able to understand the impact of the spin precession
rate on the postselected entanglement, we develop a theo-
retical approach: We model the system in the Schrödinger
picture and take into account a spin precession rate f and
a FSS δFSS within a biexciton-cascade process. We show
that the case with spin precession and FSS is equal to
the case without spin precession but with FSS. Therefore,
in the case of a time-resolved quantum state tomography
setup, the spin precession rate has no detrimental effect if the
temporal resolution is high in relation to the spin precession
rate and FSS. The loss of which-path information is preserved
under this particular unitary evolution and we can still find
a high degree of entanglement. In order to show this, we map
the biexciton-cascade process with a finite spin precession rate
and FSS to the case of a diagonalized Hamiltonian in which
the spin precession appears as a generalized FSS. This is done
via the diagonalization of the Hamiltonian.

The Hamiltonian in the interaction picture reads

H/h̄ = δFSS

2
(σVV − σHH ) + f (σV H + σHV )

+ g0

∫
dω(a†

ω,BHσHBei(ω−ωBX )t

+ a†
ω,BV σV Bei(ω−ωBX )t + H.c.)

+ g0

∫
dω(a†

ω,XHσGH ei(ω−ωXG )t

+ a†
ω,XV σGV ei(ω−ωXG )t + H.c.), (1)

where we spectrally distinguish the biexciton (B) from the
exciton photons (X ) with horizontal (H) or vertical (V ) po-
larization in frequency mode ω which are annihilated (cre-
ated) via a(†)

ω,B/XH/V . The photon operators satisfy the bosonic

commutation relation [aω,im, a†
ω′, jn] = δ(ω − ω′)δi jδmn, i, j ∈

{B, X }, m, n ∈ {H,V }. Transitions between the electronic
states are described by the flip operators σi j = |i〉〈 j|, i, j ∈
{B, XH , XV , G} with |B〉 denoting the biexciton, |XH 〉 the
horizontally polarized exciton, |XV 〉 the vertically polarized
exciton, and |G〉 the ground state. For reasons of readability
we replace the label of the excitonic states in the subscript
by the respective direction of polarization XH → H , XV → V .
The exciton energy h̄ωXG is centered between the en-
ergy of the horizontally polarized exciton state h̄ωH

XG =
h̄(ωXG − δFSS/2) and the one of the vertically polarized ex-
citon state h̄ωV

XG = h̄(ωXG + δFSS/2). The biexciton-exciton
transition energy is h̄ωBX = h̄(ωXG − ωbind), where h̄ωbind

describes the binding energy of the biexciton. The electron-
photon interaction strength g0 is related to the radiative decay
constant � via g0 = √

�/π .
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We first diagonalize the spin-flip part of the Hamiltonian
via introducing other excitonic basis states

|X−〉 =α|XH 〉 − β|XV 〉, (2)

|X+〉 =β|XH 〉 + α|XV 〉, (3)

with α2 = [1 + δFSS/(2	)]/2, β2 = [1 − δFSS/(2	)]/2, and
the renormalized frequency 	2 = f 2 + (δFSS/2)2. This trans-
formation leads to a Hamiltonian which is diagonal in the
spin-flip dynamics,

H/h̄ = 	(σ++ − σ−−)

+ g0

∫
dω[σ−B(αa†

ω,BH − βa†
ω,BV )ei(ω−ωBX )t

+ σ+B(βa†
ω,BH + αa†

ω,BV )ei(ω−ωBX )t + H.c.]

+ g0

∫
dω[σG−(αa†

ω,XH − βa†
ω,XV )ei(ω−ωXG )t

+ σG+(βa†
ω,XH + αa†

ω,XV )ei(ω−ωXG )t + H.c.]. (4)

We furthermore introduce other photonic operators,

a†
ω,B/X+ = βa†

ω,B/XH + αa†
ω,B/XV , (5)

a†
ω,B/X− = αa†

ω,B/XH − βa†
ω,B/XV . (6)

Due to the definitions of α and β, these operators are
bosonic operators and thus satisfy the commutation rela-
tion [aω,im, a†

ω′, jn] = δ(ω − ω′)δi jδmn, i, j ∈ {B, X }, m, n ∈
{+,−}. This can easily be shown by using α2 + β2 = 1 and
the commutation relations of the photon operators in the H/V
basis.

Plugging in these photonic operators, the Hamiltonian
reads

H/h̄ = 	(σ++ − σ−−)

+ g0

∫
dω(σ−Ba†

ω,B−ei(ω−ωBX )t

+ σ+Ba†
ω,B+ei(ω−ωBX )t + H.c.)

+ g0

∫
dω(σG−a†

ω,X−ei(ω−ωXG )t

+ σG+a†
ω,X+ei(ω−ωXG )t + H.c.). (7)

Next, we calculate the combined state of the QD and the
photonic reservoir. Assuming the system to initially be in
the biexciton state, |
(0)〉 = |B, vac〉, the normalized wave
function reads

|
(t )〉 = e−2�t |B, vac〉 − i
√

2�e−�t
∫ t

0
dt ′e−�t ′

× [e−i	(t−t ′ )|X+,+(t ′)〉 + ei	(t−t ′ )|X−,−(t ′)〉]

− 2�

∫ t

0
dt ′

∫ t ′

0
dt ′′e−�(t ′+t ′′ )[e−i	(t ′−t ′′ )| + (t ′′),

+ (t ′)〉 + ei	(t ′−t ′′ )| − (t ′′),−(t ′)〉]. (8)

Here, |B, vac〉 describes the system in the biexciton state
and no photons in the reservoir, and |X±,±(t )〉 refers to
the system being in the ± exciton state after the emission

of a ± biexciton photon where we have defined the biex-
citonic photon state as | ± (t )〉B = (2π )−1/2

∫
dω exp[i(ω −

ωBX )t]a†
ω,±|vac〉. The state | ± (t ′),±(t )〉 describes a ±

biexciton photon and a ± exciton photon. The exci-
tonic photon state is defined analogously as | ± (t )〉X =
(2π )−1/2

∫
dω exp[i(ω − ωXG)t]a†

ω,±|vac〉.
Looking at the above result we see that spin precessions do

not change the physics of the biexciton cascade qualitatively
as the solution is obtained by the same Hamiltonian to the case
without spin precession but with finite FSS. In an integrated
quantum state tomography, spin flips are detrimental to maxi-
mal entanglement just as an FSS is. For a time-resolved quan-
tum state tomography, however, with a resolution high enough
in relation to the spin precession rate and FSS, entanglement
is preserved since which-path information is erased.

Using the state derived above, the time-resolved quantum
state tomography can be calculated. In the following, we
assume that the cascade process is finished. In this limit, the
two-photon wave function reads in the basis of horizontally
and vertically polarized photons

|
(∞)〉 = −2�

∫ ∞

0
dt ′

∫ t ′

0
dt ′′e−�(t ′+t ′′ )

× (α2ei	(t ′−t ′′ ) + β2e−i	(t ′−t ′′ ) )|H (t ′′), H (t ′)〉

− 2�αβ

∫ ∞

0
dt ′

∫ t ′

0
dt ′′e−�(t ′+t ′′ )

× (e−i	(t ′−t ′′ ) − ei	(t ′−t ′′ ) )|H (t ′′),V (t ′)〉

− 2�αβ

∫ ∞

0
dt ′

∫ t ′

0
dt ′′e−�(t ′+t ′′ )

× (e−i	(t ′−t ′′ ) − ei	(t ′−t ′′ ) )|V (t ′′), H (t ′)〉

− 2�

∫ ∞

0
dt ′

∫ t ′

0
dt ′′e−�(t ′+t ′′ )

× (α2e−i	(t ′−t ′′ ) + β2ei	(t ′−t ′′ ) )|V (t ′′),V (t ′)〉.
(9)

We can rewrite the wave function as

|
(∞)〉 =
∫ ∞

0
dt ′

∫ t ′

0
dt ′′[PD(t ′′, t ′)|H (t ′′), H (t ′)〉

+ P∗
D(t ′′, t ′)|V (t ′′),V (t ′)〉]

+
∫ ∞

0
dt ′

∫ t ′

0
dt ′′[PND(t ′′, t ′)|H (t ′′),V (t ′)〉

− P∗
ND(t ′′, t ′)|V (t ′′), H (t ′)〉], (10)

with

PD(t ′′, t ′) = −2�e−�(t ′+t ′′ )

×
{

cos[	(t ′ − t ′′)] + i
δFSS

2	
sin[	(t ′ − t ′′)]

}
,

(11)

PND(t ′′, t ′) = i2�
f

	
e−�(t ′+t ′′ ) sin[	(t ′ − t ′′)]. (12)
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The detection of a biexciton (B) or exciton (X ) photon with
polarization H/V at time tD can be described via the operators

D(+)
B H/V (tD) = 1√

2π

∫
dωe−i(ω−ωBX )tD aω,B H/V , (13)

D(+)
X H/V (tD) = 1√

2π

∫
dωe−i(ω−ωXG )tD aω,X H/V . (14)

Using the relation

D(+)
XH (tX )D(+)

BH (tB)
∣∣H (t ′′)H (t ′)

〉 = δ(tX − t ′′)δ(tB − t ′)|vac〉
(15)

and analogous relations for the other polarization directions,
we can describe the detection of the exciton photon at tX
and the detection of the biexciton photon at tB in the basis
{|HH〉, |HV 〉, |V H〉, |VV 〉} as

|
(tX , tB)〉 = [PD(tX , tB), PND(tX , tB),

− P∗
ND(tX , tB), P∗

D(tX , tB)]T . (16)

The corresponding measurement matrix can be constructed
via

ρim, jn(tX , tB) = 〈i m|
(tX , tB)〉〈
(tX , tB)| j n〉, (17)

with i, m, j, n ∈ {H,V }. Note that if we normalize the above
state and matrix, the conditional probability to measure the
photon pair in certain directions of polarization given that
we measure them at time tX and tB can be calculated from
their elements. Convoluting the elements of the measurement
matrix with the system response function we can fit the exper-
imentally determined tomography. Figure 3(a) shows the 16
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FIG. 3. (a) Sixteen polarization-resolved measurements repre-
senting the full tomography of QD1. The red curves result from the
fitting model taking the spin precession processes in the QD into
account and convoluted to the setup resolution. This fitting is used
to calibrate the model and to extrapolate it for the other QDs studied
here. (b) Extrapolated negativity as a function of the delay for a
perfect temporal resolution (blue) and a 100 ps resolution (red).

polarization cross-correlation measurements of QD1 neces-
sary for the full tomography [37]. The black lines represent the
experimental data, and the red lines are obtained from the ana-
lytical model using the experimental parameters � = 2.4 ns−1

and δFSS = 12.7 μeV with an estimate of f = 9.5 ns−1 for the
spin precession rate. Note that pure dephasing processes are
not considered as they do not affect the entanglement [13–17],
while correlations in the R/L and D/A basis are accounting
for the quantum correlations. Oscillations in these bases are
evidence of excitonic phase precession due to the presence
of finite FSS. Correlations in the H/V basis are classical,
and these oscillations are due to the presence of spin-flip
precession. Since the two processes are being evidenced in
two different bases, we can study them separately. Overall,
we obtain a very good agreement between experiment and
theory. However, for some elements of the two-photon density
matrix (e.g., RV and V R), the bunching values measured in
the HV and V H correlations are underestimated by the fits.
This discrepancy could be explained by some unintentional
fluctuations of the excitation power which is influencing the
bunching amplitude of the correlations in these bases. A
wrong preparation of the R basis during the measurement
could be another experimental source of error. The biexciton
preparation in the model is made in a deterministic way
which is different from the experimental conditions, where
the nonresonant continuous excitation of the biexciton is
probabilistic. These quantitative discrepancies mainly in the
RV and V R element do not change the qualitative result of
our study, which remains very general that coherent spin-flip
precession is not detrimental to the degree of polarization
entanglement. However, the discrepancies prove that a more
detailed theoretical model is necessary to take into account
incoherent processes which are responsible for the initial
bunching, e.g., in the RV and V R elements.

Figure 3(b) shows the numerically obtained negativity N
as a function of the delay. The negativity is a measure of the
degree of entanglement of the two photons. It is defined as
the absolute value of the negative eigenvalue of the partially
transposed two-photon density matrix [24]. A value of N > 0
signifies an entangled two-photon state with maximal entan-
glement at N = 1/2. If perfect time resolution is assumed,
the negativity is maximal (i.e., N = 1/2), independent of the
delay since the two-photon wave function remains maximally
entangled [cf. Eq. (8)]. Spin precession processes and FSS do
not change the symmetry of the problem if no time average
is applied. As a result, the negativity, as a basis-independent
measure for the degree of polarization entanglement, is not
changed whether the system is expressed in the {H,V } or in
the {+,−} basis. However, for finite time resolution the spin
precession and the FSS dynamics result in a reduced nega-
tivity. If the photon-detection events are not postselected but
integrated and therefore averaged, spin precession dynamics
have a detrimental influence. In the case of temporal post-
selection for nonzero FSS, oscillations corresponding to the
precession of the excitonic phase are observed in the circular
(RR) and in the diagonal basis (DD), as is also the case in
the absence of spin precession. Moreover, due to the spin
precession process, oscillations can also be observed in the
rectilinear basis (V H , HV , VV , and HH). Such oscillations
are a direct consequence of the excitonic spin precessions and

045304-5



SAMIR BOUNOUAR et al. PHYSICAL REVIEW B 102, 045304 (2020)

0 20 40 60 80 100
0

20

40

60

80

100

FS
S 

(
eV

)

Spin precession rate (ns-1)
0 20 40 60 80 100

0

20

40

60

80

100

Spin precession rate (ns-1)

0.0

0.1

0.2

0.3

0.4

0.5
Negativity(a) (b)

FIG. 4. Negativity as a function of the spin precession rate and the FSS for a resolution of (a) 50 ps and of (b) 100 ps.

are not observed in the case of spin precession rate zero. From
these data and the theory, one can at the same time test and
calibrate the model and evaluate the quality of the emitted
entanglement by this QD (QD1) in terms of the negativity
[22–24]. In the following, we extrapolate the model to the
general evaluation of the entanglement as a function of the
FSS and the spin precession rate for any QD.

To evaluate the degree of entanglement of the two photons
theoretically, we look at the normalized density matrix ρN =
ρ/tr(ρ) and calculate its negativity. If we assume a perfect
resolution of the detection process, we obtain a negativity of

N [ρN (tX , tB)] = 1
2 (18)

for all times tX , tB. Hence, we see that maximal entanglement
is preserved despite the spin precession. If we take into ac-
count that in realistic experiments we can only determine the
time difference between the detection events with a resolution
of �T , we have to evaluate the negativity of the averaged
density matrix,

ρAV (t,�T ) = 1

�T

∫ t+�T

t
dtρN (t, 0), (19)

where we set the time of detection of the biexciton photon to
zero. The evaluation of the negativity yields

N [ρAV (t,�T )] = 1
2 |sinc(	�T )|. (20)

Figure 4 shows the negativity as a function of the spin
precession rate and the FSS for a given temporal resolution.
This graph gives an overview of the negativity which can
be expected depending on the FSS and spin precession rates
characteristic for QDs for two different resolutions [Fig. 4(a)
for a 50 ps resolution and Fig. 4(b) for a 100 ps resolution].
The overall entanglement quality is degraded as the FSS and
the spin precession rate are increased. This degradation is
modulated by oscillations with respect to the FSS and the spin
precession rate. As can be deduced from the equation above,
the temporal resolution of the detectors defines the frequency
of these oscillations.

Perfect temporal resolution, that is, �T = 0, leads to
a negativity being equal to 1/2, which means that perfect

entanglement can be measured, provided that no additional
dephasing processes need to be taken into account.

Therefore, in the case of a perfect time postselection, this
mechanism is not detrimental for the generation of entangle-
ment from QDs.

V. CONCLUSION

We investigated the entanglement in QDs showing spin
precession processes. The precession of the excitonic spins
has been experimentally evidenced through the observation
of anomalous oscillations in the rectilinear basis correlations.
The associated quantum tomography measurement allows for
studying the impact of spin precession processes on the entan-
glement. Noncoherent spin flips, phonon mediated, for exam-
ple, such as single-electron spin flip towards the dark exciton,
can break the quantum dot symmetry and can be detrimental
to entanglement [13]. However, such processes are slow com-
pared to the excitonic lifetime and our study shows that they
do not occur during the radiative cascade’s recombination.
In fact, no additional decoherence is needed in the model in
order to explain the data. This observation is confirmed by
another work investigating the effect of spin dynamics on
entanglement (no spin precession is observed here, though)
[38]. We determined and studied the entanglement quality
which can be ideally expected from a QD suffering from spin
precession for a given temporal resolution. The theoretical
model shows that the spin precession rate acts the same
way as a nonzero FSS and that a perfect temporal resolution
would allow for ideal entanglement independent of the spin
precession rate. Temporal postselection is therefore effective
at providing perfect entanglement even in the presence of co-
herent processes modifying the eigenstates of the system since
the latter are a coherent superposition of the excitonic states.
Noncoherent processes affecting the excitonic and biexcitonic
phases differently are the last remaining phenomena which
cannot be effectively suppressed by postselection. A coherent
population of the biexciton and its coherent control through
two-photon excitation or pulse-echo techniques [39] are in
this case relevant to complement it.
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