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Signatures of the Majorana spin in electrical transport through a Majorana nanowire
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In this paper, we investigate the transport properties of spinful electrons tunnel coupled to a finite-length
Majorana nanowire on one end which is further tunnel coupled to a quantum dot (QD) at the other end. Using a
full counting statistics approach, we show that Andreev reflection can happen in two separate channels that can
be associated with the two spin states of the tunneling electrons. In a low-energy model for the nanowire that
is represented by two overlapping Majorana bound states (MBSs) localized at the ends of the wire, analytical
formulas for conductance and noise reveal their crucial dependence on the spin-canting angle difference of
the two MBSs in the absence of the QD if the spinful lead couples to both MBSs. We further investigate the
influence of a finite temperature on the observation of the coupling to both MBSs. In the presence of the QD, the
interference of different tunneling paths gives rise to Fano resonances and the symmetry of those provide decisive
information about the coupling to both MBSs. We contrast the low-energy model with a tight-binding model of
the Majorana nanowire and treat the Coulomb interaction on the QD with a self-consistent mean field approach.
Using the scattering matrix approach, we thereby extend the transport results obtained in the low-energy model
including also higher excited states in the nanowire.
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I. INTRODUCTION

Since A. Kitaev showed that a one-dimensional spinless p-
wave superconductor can host Majorana bound states (MBSs)
at its boundaries [1] a tremendous amount of research ac-
tivities focused on the creation, detection, and manipulation
of MBSs [2–10]. These quasiparticles are not only inter-
esting because of their fundamental property of being their
own antiparticles [11] but also because of their non-Abelian
anyonic exchange statistics [12–14]. The latter makes them
particularly interesting for fault tolerant topological quantum
computation schemes [8,14–17].

In general, p-wave superconductivity needs to be designed
using hybrid structures. One of the first suggested experi-
mental realizations of these exotic superconductors is a semi-
conducting nanowire with Rashba spin orbit coupling and
proximity induced s-wave superconductivity where an applied
Zeeman field drives a topological phase transition [5,9,18,19].
By now many different schemes to create MBSs have been
proposed and realized, for example magnetic adatoms on
superconductor surfaces [20–29], helical edge or hinge modes
with competing superconducting and magnetic gap open-
ing mechanisms [30–35], or topological Josephson junctions
[30,36–42]. However, most experimental reports to date on
the existence of MBSs focus on the nanowire setup [43–58].

In order to establish the existence of MBSs different
transport signatures have been suggested. First of all, tun-
neling into an isolated MBS at very low temperatures leads
to a robust quantized zero bias differential conductance of
2e2/h [59,60] and recent experimental data showed that value
in tunneling experiments [53,55]. Other suggestions include
the fractional 4π -periodic Josephson effect in a topological
Josephson junction [1,3,61–77] or the change from a 2e to an

e periodicity in Coulomb blockade resonances in the case of
a floating nanowire where charging effects become relevant
[78–83]. Both effects have been observed experimentally
[44,49,58,84–86]. Even though the evidence for the existence
of MBSs is ever growing an unambiguous proof remains
elusive.

To gain additional Majorana signatures it is also possible
to couple the MBSs to a quantum dot (QD) [87–89]. In setups
containing MBSs and QDs Fano resonances (FRs) for which
a resonant path interferes with a continuous path [90] can
emerge in the differential conductance. These FRs can either
manifest themselves as a function of applied bias voltage
[91–96] when the QD is directly coupled by a lead, as a
function of flux through a loop with MBSs [97–99] or as a
function of dot level energy [100]. Also, recent experiments
showed that it is possible to couple a QD to a Majorana
nanowire [50,57].

However, these experiments showed a hybridization be-
tween dot and low-energy in-gap states of the Majorana
nanowire that was not compatible with coupling to a single
MBS but could be explained with a coupling to both MBSs
[100–102] when the Majorana wave functions reach the other
end of the wire. This hybridization can also be used to
define a quality factor or degree of locality of the two MBSs
[101–103]. Due to the interplay between Rashba spin orbit
coupling and Zeeman field, there is no homogenous spin
quantization axis along the nanowire. This nontrivial spin
structure is transferred to the Majorana spinor wave function
[102,104–107], so that the spins of the two MBSs at the same
position can point in different directions, which can influence
the transport properties [108].

Recently, it was pointed out that the signatures of MBSs
can be mimicked by trivial Andreev bound states with
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partially separated Majorana components that arise at the
interface of an N-S junction [7,109–119]. It is therefore of
utmost importance to find irrevocable signatures of MBSs.
Thus, we propose in this work that the spin-canting angles of
the Majorana components from the two ends of the nanowire
is another tool that can be used to distinguish between topo-
logical MBSs and these trivial states that are also dubbed
nontopological MBSs [9].

In this paper, we consider two different scenarios. First, we
consider a finite-length Majorana nanowire tunnel coupled to
a spinful lead. Here, we put special emphasis on the finite size
of the nanowire which allows us to probe both MBSs wave
functions via the coupling to the lead. Second, we consider
a Majorana nanowire tunnel coupled to a lead on one side
and a QD on the other side. We include the finite length of
the nanowire and thus allow for a tunnel coupling of the lead
and the dot to both MBSs. Differently from our previous work
[100], we put emphasis on the spin degree of freedom and
find that the spin-canting angle of the MBSs have profound
consequences on the transport properties and that the spin
degree of freedom in the lead and the QD cannot be omitted
for realistic system parameters.

We use full counting statistics (FCS) together with an
effective low-energy model to show that the only processes
contributing to transport via the MBSs are Andreev reflec-
tions via two different electronic channels in the lead. In
the absence of a tunnel coupling between nanowire and QD,
we show analytically that the differential conductance is a
function of the spin-canting angle difference of the two MBSs
at the junction with the lead and that one channel is blocked
if both spins point in the same direction or the coupling to
the distant MBS vanishes. Moreover, we show the emergence
of two pairs of Fano resonances as a function of dot level
energy in the case where the dot is tunnel coupled to the
nanowire. We find that the symmetry relation within each pair
of resonances unveils if the coupling between dot and wire
consists of coupling to one MBS only or to both of them.
In the former case, the Hamiltonian obeys an approximate
electron-hole symmetry with respect to a reversal of the QD
level energy which is absent in the latter case.

The paper is organized as follows. In Sec. II we introduce
the model that underlies our calculations. We calculate the
cumulant generating function, the main entity for the FCS,
using the Keldysh Green’s function formalism from which
we extract all transport properties in Sec. III. After we have
established our model and method we consider the special
case of a vanishing tunnel coupling between MBSs and QD in
Sec. III A, before discussing our results with a finite coupling
between MBSs and QD in Sec. III B. To underline our findings
we also calculate the differential conductance numerically
using a discretized Rashba wire model which allows also the
inclusion of excited states in Sec. IV. We again consider first
the system without QD in Sec. IV A and the system with QD
in Sec. IV B where we treat Coulomb interactions on the QD
with a self-consistent mean field approximation.

II. MODEL

We calculate the electronic transport properties of a nor-
mal spinful lead and a nanowire-superconductor-QD hybrid

FIG. 1. Schematic representation of the setup under considera-
tion. The normal spinful lead contains two electron (up, down) and
two hole (up, down) channels. We assume a pointlike tunneling from
the lead (tL) and dot (tD) to the corresponding ends of the nanowire.
Blue (red) are the calculated Majorana wave functions of the left
(right) ends of the grounded spin orbit coupled Majorana nanowire
(SOCNW).

structure. A schematic representation of the setup under con-
sideration is shown in Fig. 1. The nanowire in proximity to a
grounded s-wave superconductor is described using a nonin-
teracting effective mass approximation and the Bogoliubov-de
Gennes formalism. The Hamiltonian is

HNW = 1

2

∫ L

0
�†(x)HNW

BdG�(x)dx, (1)

where L is the length of the nanowire and HNW
BdG

is presented in the Nambu basis with �(x) =
[ψ↑(x), ψ↓(x), ψ†

↓(x),−ψ
†
↑(x)]

T
, and

HNW
BdG =

[(
− h̄2

2m∗ ∂2
x − μ

)
− iα∂xσy

]
τz

+ VZσz + 	τx. (2)

Here, m∗ is the effective electron mass, μ is the chemical
potential, α is the Rashba parameter, VZ is the Zeeman energy,
and 	 is the proximity induced s-wave pairing. The Pauli
matrices σi and τi act in the spin and particle-hole space,
respectively. The topological nontrivial phase with emerging
MBSs is present for VZ >

√
	2 + μ2 [18,19]. The low-energy

sector of the nanowire in the topologically nontrivial regimes
is governed by the two MBSs forming at the ends of the
nanowire.

The normal lead is spin degenerate (metallic regime),
an assumption which has been used also in similar se-
tups [88,94,116,120,121]. We further linearize the spectrum
around the Fermi energy, which is a valid assumption for a
metallic lead since the bias voltage and temperature of interest
are small compared to the Fermi energy. Its Hamiltonian is
therefore given by

HL = −ih̄vF

∑
σ

∫
dxc†

σ (x)∂xcσ (x), (3)

where c†
σ (x) creates an electron with spin σ at position x and

vF is the Fermi velocity in the lead.
The QD is modeled using a single electronic level with

energy εD which can be empty, occupied by one electron
(spin up or spin down) or doubly occupied (spin singlet).
Due to the Coulomb interaction between the electrons the
double occupancy results in an additional energy cost U . εD

is experimentally unable by a gate voltage. In addition, we
include the same Zeeman field as in the nanowire, because in
current experiments [50,57] the fabricated QD is made out of
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the same material as the nanowire. The QD Hamiltonian is

HD =
∑
σ,σ ′

d†
σ [εDσ0 + VZσz]σσ ′dσ ′ + Un↑n↓. (4)

We note that possible effects of the spin orbit coupling are
neglected which is appropriate for small QDs [122,123]. We
use a mean field approximation for the Coulomb interaction
[102] which results in

Un↑n↓ ≈ U (n↑ 〈n↓〉 + 〈n↑〉 n↓ − 〈n↑〉 〈n↓〉). (5)

It is important to note that quadratic fluctuations in the dot
occupation number are neglected in this approximation. In
addition, we note that the mean field approximation would
not be able to capture Kondo physics [124]. However, Kondo
correlations are suppressed by the applied Zeeman field (i.e.,
if 	Z is larger than the Kondo temperature).

The coupling between the nanowire and the lead and the
QD is described with the tunneling Hamiltonian

HT =
∑

σ

tLc†
σ (0)ψσ (0) + tDd†

σψσ (L) + H.c., (6)

where we assume a pointlike tunneling between the nanowire
ends and lead and dot, respectively. For the case of an ex-
tended barrier between nanowire and QD, see Ref. [123]. The
Hamiltonian of the complete system is therefore given by

H = HNW + HL + HD + HT . (7)

In our calculation we do not aim at a quantitative agreement
with recent experiments, but we use realistic microscopic
parameters to underline the relevance of our findings for
current and future experimental efforts. If not explicitly stated
otherwise we will use the parameters m∗ = 0.015me where me

is the electron rest mass, α = 20 meV nm, and 	 = 0.5 meV
(cf., Ref. [125]).

III. LOW-ENERGY MODEL AND FULL COUNTING
STATISTICS

To calculate the transport properties of our proposed sys-
tem we resort to FCS. Because we are interested in the sig-
natures from the MBSs we consider an effective low-energy
Hamiltonian for the nanowire. For simplicity we set h̄ = e =
1. We will restore the units for the main transport results.
The low-energy sector of the Hilbert space of the nanowire
is composed of the two MBSs and the effective Hamiltonian
is

HE f f = iεγ1γ2, (8)

where γi is the Hermitian creation operator for the ith
MBS and ε is the hybridization energy of these two MBSs.
The Majorana operators satisfy the anticommutator relation
{γi, γ j} = 2δi j . This Hamiltonian is diagonalized by the non-
local fermion η = (γ1 + iγ2)/2 which can be either empty or
occupied. Also, the annihilation operator can be expressed
in this approximation using the MBSs operators ψσ (x) =
�1σ (x)γ1 + �2σ (x)γ2, where �iσ (x) is the electronic part of
the spinor wave function of the ith MBS. In this model, the
MBS wave function has no spin-y component, so that we can

use the parametrization(
�i↑(x)

�i↓(x)

)
= κi(x)

(
cos

(
�i (x)

2

)
sin

(
�i (x)

2

)
)

, (9)

where �i(x) is the spin-canting angle of the ith MBS at
position x and κi(x) is the spatial profile of the wave function.

With this parametrization and the decomposition of the
field operators ψσ (x) into the Majorana operators γ1,2 we can
rewrite the tunneling amplitudes in Eq. (6) as

tL�i↑(0) = ti cos

(
�i(0)

2

)
≡ tLi↑,

tL�i↓(0) = ti sin

(
�i(0)

2

)
≡ tLi↓,

tD�i↑(L) = tDi cos

(
�i(L)

2

)
≡ tDi↑,

tD�i↓(L) = tDi sin

(
�i(L)

2

)
≡ tDi↓. (10)

The angles �i(x) are the spin-canting angles of the two MBSs
at position x in the wire. Because we base our effective
Hamiltonian upon Eq. (1), we find for the spin-canting an-
gles �1(0) = �2(L) = �1 and �2(0) = −�1(L) = �2. The
spin-canting angles are functions of all microscopic param-
eters of the nanowire and we refer an interested reader to
Refs. [102,108] for a more in depth analysis of the spin-
canting angles. Moreover, we can transform the creation
(annihilation) operators of the QD into a Majorana operator
basis

d†
↑ =1

2
(γ3 + iγ4)

d†
↓ =1

2
(γ5 + iγ6). (11)

We then can rewrite H in the low-energy sector as

H = H ′
M + H ′

T + HL, (12)

with

H ′
M = i

2

∑
μν

Aμνγμγν,

H ′
T =

∑
iσ

tLiσ c†
σ (0)γi + H.c., (13)

where the matrix A contains the tunneling between the dot
and the MBSs as well as the Majorana hybridization energy
and the single particle energies of the two spin states of the
QD which are shifted by the Coulomb interaction in the mean
field approximation.

The cumulant generating function (CGF) can be expressed
in the Levitov-Lesovik form [126–128] (a derivation can be
found in Appendix A)

ln χ (λ) = T
2

∫
dω

2π
ln

[
det

(
[Dλ]−1(ω)

)
det

(
[Dλ=0]−1(ω)

)
]
, (14)

where T is a long measuring time and the inverse full Ma-
jorana Green’s function [Dλ]−1(ω) = [D(0)(ω)]−1 − �λ(ω)
is a 12 × 12 matrix (2 for the MBSs, 4 for the electron
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and hole degrees of freedom on the dot, and a factor 2
because of the Keldysh formalism). Here, D(0)(ω) is the
unperturbed Majorana Green’s function, the Fourier transform
of [D(0)(t, t ′)]αβ = −i 〈TCγα (t )γβ (t ′)〉 with TC being the time-
ordering operator on the Keldysh contour, and �λ(ω) is the
Fourier transform of the self energy containing the counting
field

�λ
αβ (t, t ′) =

∑
σ

[
− tLασ t∗

Lβσ e−i λ(t )−λ(t ′ )
2 Gσ (t, t ′)

+ tLβσ t∗
Lασ ei λ(t )−λ(t ′ )

2 Gσ (t ′, t )
]
, (15)

where Gσ (t ′, t )=Gσ (x′ =0, x=0, t ′, t ) = −i〈TCcσ (x′ =0, t ′)
c†
σ (x = 0, t )〉 is the unperturbed lead boundary Green’s func-

tion for spin σ and tLασ = 0 for α > 2. The detailed calcula-
tions of these Green’s functions can be found in Appendix A.
For general temperatures, we find the CGF

ln χ (λ) = T
2

∑
i=±

∫
dω

2π
ln[1 + pi(e

−2iλ − 1)n(ω)n(−ω)

+ pi(e
2iλ − 1)(n(ω) − 1)(n(−ω) − 1)], (16)

where n(ω) = 1
1+eβ(ω−V ) is the Fermi function in the lead with

β = 1/kBT the inverse thermal energy and V the bias voltage
between the lead and the grounded superconductor. It shows
that Andreev reflection is the only transport process which
contributes to the current. The probability for an Andreev
reflection in a given channel at energy ω is given by pi(ω).

At zero temperature, the CGF corresponds to a generalized
binomial distribution [see Eq. (19)]. The main difference from
previous works considering the FCS of a lead coupled to a
MBS system [100,128] is that in the spinful case there are
two channels in which Andreev reflections are possible. These
two channels originate from the two spin channels for the
electrons.

The average current and the symmetrized zero-frequency
noise can easily be calculated from the CGF by taking the
first or second derivative with respect to the counting field,
respectively,

I = i

T
d

dλ
ln (χ (λ))|λ=0 (17)

P = −1

T
d2

dλ2
ln (χ (λ))|λ=0. (18)

A. Transport properties without quantum dot

In this section, we want to consider the case where the
couplings to the QD are set to zero (tD = 0). Then we are left
with a spinful lead which includes a coupling to both MBSs
due to the spreading of the Majorana spinor wave function
along the nanowire. To the best of our knowledge, there are so
far no publications using this conceptionally simple setup for
an analytical analysis of the transport signatures in the spinful
lead. However, the special cases of antiparallel spins [112] or
parallel spins [129] of the two MBSs in an effective model
calculation have already been considered. Our findings are
consistent with the results of these previous works.

At zero temperature, the CGF of this setup reads

ln (χ (λ)) = T
2

∫ V

−V

dω

2π

∑
j=±

ln(1 + p j (ω)(e−2iλ − 1)), (19)

where

p±(ω) = 2
2�1�2(4�1�2 + 4ε2 + ω2) sin2

(
δ�
2

) + ω2(�1 − �2)2

16
(
�1�2 + ε2

)2 + 2
(
2(�2

1 + �2
2 ) − 4ε2

)
ω2 + ω4

± 2

√
(�1 − �2)4ω4 + 16�1�2ω2((�1 + �2)2ε2 + (�1 − �2)2ω2) sin2( δ�

2 ) + 4�2
1�

2
2 ((�1 − �2)2 − 4ε2)ω2 sin2(δ�)

16(�1�2 + ε2)2 + 2(2(�2
1 + �2

2 ) − 4ε2)ω2 + ω4
,

(20)

with �i = 2πν(0)|ti|2 and δ� = �1 − �2, where ν(0) = 1/2πvF is the density of states per spin at the Fermi level in the lead.
The differential conductance is then given by

dI

dV
= 2e2

h
(p+(eV ) + p−(eV )) = 8e2

h

(eV )2(�1 − �2)2 + 2�1�2 sin2
(

δ�
2

)
(4ε2 + (eV )2 + 4�1�2)

(4ε2 − (eV )2)2 + 8�1�2(4ε2 + 2�1�2) + 4(eV )2(�2
1 + �2

2 )
. (21)

At V = 0 the differential conductance simplifies considerably
and can be written as

dI

dV
|V =0 = 4e2

h

�1�2

ε2 + �1�2
sin2

(
δ�

2

)
, (22)

which describes a Lorentzian as a function of the Majorana
splitting energy ε with width

√
�1�2 and height 4e2

h sin2 ( δ�
2 ).

It is important to note that Eq. (22) was derived with the
assumption that either �2 �= 0 or ε �= 0.

As expected, in the case of �2 = 0 and/or δ� = 0, p−
vanishes, because only one spin channel in the lead then
couples to the MBSs for all V . In both cases the differ-
ential conductance is maximally 2e2

h . However, for �2 �= 0
and δ� = 0 this value for the differential conductance is not
even reached at the resonances. Another interesting parameter
regime is δ� = π . In this case each spin channel in the lead
couples to a different MBS. The differential conductance can
then reach values over 2e2

h and is even quantized with 4e2

h for
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FIG. 2. Differential conductance in the low-energy model in the setup without QD with finite coupling to both MBS. (a) Differential
conductance as a function of bias energy with zero Majorana splitting energy (blue) and finite splitting energy ε = 5�1 (yellow). For ε = 0,
the differential conductance has the shape of a sum of two Lorentzians with two different widths and deviates strongly from the expected value
at the resonance in the case of a coupling to one MBS. Whereas in the case of large splitting energy ε � �2, such deviations at the resonance
are very small. (b) Zero bias differential conductance vs Majorana splitting energy. The differential conductance at zero bias is not quantized
for ε = 0 and does not vanish for finite splitting energies. The other parameters are �2 = 0.01�1 and δ� = π − 1.

vanishing Majorana overlap at zero bias, because then the two
Andreev reflection probabilities each become a Lorentzian
with width �i, respectively.

In general, depending on the parameters the differential
conductance is between 0 and 4e2

h as seen in Fig. 2. This
reflects the fact, as seen in the CGF, that Andreev reflection
is possible in two channels (due to spin). The differential con-
ductance at zero bias deviates from the quantized differential
conductance which is one of the key signatures of tunneling
into a single MBS because of the (small) coupling to the
second MBS. For nearly opposite spin-canting angles and
small splittings the differential conductance is approximately
the sum of two Lorentzians which can be also seen in Fig. 2(a).
The width of two Lorentzians can be vastly different. A
detailed mathematical framework that analyses the emergence
of the two different tunneling rates that determine the width of
Lorentzians can be found in Ref. [116].

We calculate the differential noise at zero temperature to
be

dP

dV
= 4e3

h
(p+(1 − p+) + p−(1 − p−)). (23)

By measuring the differential conductance and noise both An-
dreev reflection probabilities can be extracted experimentally,
employing the expression

p± = 4h

e2

dI

dV
∓ (±)

√
4h

e2

dI

dV
−

(
4h

e2

dI

dV

)2

− 8h

e3

dP

dV
.

The ambiguity (“(∓)”) in this expression comes from the fact
that due to the spin rotation invariance in the lead p+ and p−
cannot be distinguished experimentally. We also analyze the
Fano factor

F = P

eI
, (24)

which is shown in Fig. 3. In general, the Fano factor is
between 0 and 2. In the case of a large splitting energy ε > �i

there is no qualitative difference of the Fano factor between

the case of coupling to only one MBS and the case of an
additional small coupling to the second MBS [Fig. 3(a)]. In
the case of zero energy MBSs, however, the behavior of the
Fano factor is fundamentally different at low applied voltages
for the case of coupling to only one MBS as compared to
coupling to both MBSs as seen in Fig. 3(b).

In general, we cannot find an analytical expression for the
Fano factor. However, at zero bias voltage, zero temperature
and finite MBS splitting energy manage to find

F |V =0 = 2
�1�2 cos2

(
δ�
2

) + ε2

�1�2 + ε2
= 2 − h

2e2

dI

dV
|V =0. (25)

In the case of coupling to only one MBS or to only one spin
direction (δ� = 0) the Fano factor at zero bias is quantized
to 2. This Fano factor of 2 corresponds to Cooper pairs being
transferred between the lead and the superconductor. At finite
temperatures, the Fano factor diverges at zero bias due to the
thermal noise.

Finite temperatures have also an interesting influence on
the differential conductance as shown in Fig. 4. In the case
of zero MBS splitting and for thermal energies below all
tunneling rates the differential conductance plateaus at the
corresponding zero temperature value, whereas at higher tem-
peratures (kBT > �1) the differential conductance becomes
rather independent of the canting angle difference. In an
intermediate temperature regime (�2 < kBT < �1) for zero
energy MBSs the Lorentzian attributed to the coupling to the
second MBS shrinks, while the other Lorentzian is more or
less unaffected by a finite temperature as seen in Fig. 4(c).

B. Transport properties including the quantum dot

First signatures of the nonlocal couplings discussed in
the previous section have been seen in experiments using
a QD coupled to a lead and a Majorana nanowire [50,57].
From a theoretical viewpoint the Majorana nanowire-QD
setup including nonlocal couplings has been investigated
spectroscopically [101,102]. Here, we are interested in the
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FIG. 3. Fano factor in the low-energy model as a function of applied bias voltage energy in the setup without QD. If not stated otherwise
�2 = 0.01�1. (a), (b) Fano factor for various spin canting angle differences δ� and tunneling rates to the second MBS at zero temperature.
In (a) the Majorana splitting energy is finite ε = �1 and in (b) it is assumed to be zero. (c) Fano factor with ε = 0 and δ� = π for various
temperatures.

transport signatures. In addition, we propose a setup where
the QD is coupled not directly to the lead (see Fig. 1). This
is different from recent theory papers and experiments but has
the advantage that the dependence on the QD level energy in
the conductance probes nonlocal features of the MBSs system.
In this section we focus on the low-energy transport regime of
the lead-MBSs-QD system.

The mean field approximation for the QD calls for a self-
consistent treatment of the problem which we present later
in Sec. IV B. Here, we use an analytical approximation for
illustration purposes. We use the approximation

〈n↑〉 = ϑ (−U − VZ − εD)

〈n↓〉 = ϑ (VZ − εD), (26)

where ϑ (x) is the Heaviside function. This approximation cor-
responds to the ground state expectation value of an isolated
QD. In order to have a smooth differential conductance we
use the fact that the Heaviside function can be written as
ϑ (x) = limn→0 (1/2 + arctan(x/n)/π ). Instead of performing
this limit we use n = 10−4 for the following calculations.

Moreover, we use the parametrization

t1 = t cos(φ) t2 = t sin(φ)

tD1 = tDot sin(φ) tD2 = tDot cos(φ) (27)

and define the tunneling width � = 2πν(0)|t |2. In this
parametrization the single parameter φ controls the strength

of nonlocal couplings where for φ = 0 only couplings to the
nearest MBS exist, while for φ = π/4 the coupling to both
MBSs is identical. We choose this parametrization, because
in this way the relative strength between nonlocal and local
couplings is the same on both sides of the nanowire which we
would expect because of its spatial symmetry.

The CGF at zero temperature has the same form as in
Eq. (19) which means that only Andreev reflection in two
different spin channels contribute to the electronic transport.
The probability amplitudes for these Andreev processes have
the property p±(V ) = p±(−V ) which reflects the particle-
hole symmetry of the superconductor hosting the MBSs.
Because the spin-quantization axis of the QD is given by the
orientation of the Zeeman field, spin rotation invariance is lost
and therefore both spin-canting angles enter the differential
conductance independently in contrast to the scenario without
QD where only their difference matters.

In general, the differential conductance has local max-
ima (resonances) and local minima (antiresonances). For a
given set of parameters the differential conductance will
have six maxima as a function of V . They correspond to
the eigenenergies of the system without the coupling to
the lead.

As seen in Fig. 5, the differential conductance shows
anticrossings because of the hybridization of the QD states
and the MBSs. In general, at points in parameter space where
the occupation number changes the differential conductance

FIG. 4. Differential conductance in the low-energy model in the setup without QD with finite coupling to both MBS (�2 = 0.01�1) at
finite temperature. (a) Differential conductance at zero applied bias voltage energy (eV = 0) for three different spin canting angle differences
δ� for zero Majorana splitting energy (ε = 0). At very small temperatures (kBT � �2) the differential conductance shows plateaus. (b),
(c) Differential conductance as a function of applied bias voltage energy at different finite temperatures with spin canting angle difference
δ� = π . The Majorana splitting energy is finite (ε = �1) in (b) and zero in (c).
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FIG. 5. (a)–(f) Differential conductance in the low-energy model as a function of applied bias voltage energy eV and dot level energy εD

with tDot = 10�, U = 100�, and VZ = 40�. (a)–(c) show the differential conductance at finite splitting energy ε = 5�. In (a) and (b) the spin
canting angles are �1 = �2 = 0.8. Here both anticrossings are visible. In (a) φ = 0.3. This resulting nonlocality manifests in the asymmetry of
dI/dV peaks around the points where the occupancy of the dot changes. In (b) φ = 0 and the differential conductance shows a bowtie shape.
In (c) we consider φ = 0.3 and �1 = �2 = 0. Here only the anticrossings around εD = U − VZ can be seen. (d)–(f) show the differential
conductance at ε = 0 and φ = 0.3 for various spin canting angle configurations [(d) �1 = �2 = 0.8, (e) �1 = 0, �2 = 1.4, (f) �1 = �2 = 0].
All plots show a diamondlike lineshape. The dashed lines indicate line cuts shown in (g) and (h) as a function of dot level energy. (g)
corresponds to the upper row of plots with eV = 25� and (h) corresponds to the lower row of plots with eV = 22�. In (g) and (h) the kets
denote the spin ground state of the QD that changes when passing a Fano resonance.

shows a discontinuity which we can attribute to the approxi-
mations we made using Eq. (26). Away from the anticrossings
the resonances can be attributed to either the dot states or the
MBSs. The resonances corresponding to the dot states have a
reduced width at higher bias voltage because our model does
not connect the dot with the lead directly. So all transport
processes which contribute to the current need to include the
low-energy MBSs.

The general form of the resonances resembles bowtielike
(upper row of Fig. 5) or diamondlike (middle row of Fig. 5)
patterns and can be used to analyze the Majorana nonlocality
as discussed in Refs. [101,102].

At fixed bias voltage between lead and superconductor
Fano resonances can be found as a function of dot level energy
εD which is shown in Figs. 5(g) and 5(h). These Fano reso-
nances come in pairs (for electron- and holelike excitations on
the QD). In the case of coupling to only one MBS these two
Fano resonances are approximately symmetric with respect to
each other, because a single MBS couples to electron and hole
degrees of freedom in the same way. Mathematically, this can
be explained if we examine the low-energy Hamiltonian. For
a large Zeeman field and large Coulomb interaction VZ ,U > ε

and for dot level energies εD where the occupation of the dot
can change (i.e., if a spin level is close to zero energy) the
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low-energy physics is described by

HLE = iεγ1γ2 + εD2↑(↓)d
†
↑(↓)d↑(↓)

+ iγ2[tD2↑(↓)d
†
↑(↓) + t∗

D,↑(↓)d↑(↓)], (28)

where we projected out the higher energy dot state, accord-
ingly and εD,σ = εD + σVZ + U 〈nσ 〉. This Hamiltonian is
invariant under the transformation

εD,↑(↓) → −εD,↑(↓) d↑(↓) → d†
↑(↓), (29)

up to a phase that can be gauged away. This reflects the
particle-hole symmetry of an isolated MBS and is only present
if the dot couples to a single MBS.

These Fano resonances arise, because there are basically
two different transport paths in which Cooper pairs are trans-
ferred from the lead to the superconductor [100]. In the first
path the electrons from the lead enter the superconductor,
virtually occupying the dot, and then enter the condensate,
whereas the second path is just the Andreev reflection where
the two electrons from the lead directly enter the Cooper pair
condensate. Here, the first path is resonant with respect to the
dot level energy εD while the second path is nonresonant. This
results in an interference pattern known as Fano resonances.

In a bias window in which the anticrossings between the
dot states and the MBSs exist no Fano resonances can be
found. Due to the hybridization the states can no longer be
identified as dot states or MBSs and thus the identification of
two different paths is no longer possible. The resonances can
also be linked to the spin states of the QD. Because of this the
Fano resonances can be symmetric even in the case of finite
nonlocality (φ �= 0) if only one of the MBSs can couple to the
spin state of the QD. In general, the resonances can be found
approximately at

εD,res ≈
{−U − VZ ± V for ↑ states on the dot,

VZ ± V for ↓ states on the dot. (30)

For V = 0, these resonances correspond to changes of the oc-
cupation number in the ground state of the isolated dot. In the
case of both MBSs spins pointing in the same direction along
the quantization axis of the spins on the dot one spin state is
decoupled from the nanowire and we recover the results for
a spinless model which we already discussed in a previous
work [100]. Except for the discontinuity in the dI/dV due to
our approximations [Eq. (26)], the only difference in this case
is that the occupation number change in the ground state of
the isolated dot is shifted in energy by the Zeeman field and
the charging energy.

IV. SCATTERING MATRIX CALCULATIONS FOR THE
FULL NANOWIRE MODEL

In this section we extend the effective low-energy model
calculations by using the full model introduced in Eq. (7). We
discretize the Hamiltonian on a chain in order to obtain a tight-
binding Hamiltonian. To calculate the transport properties
we use the python package Kwant [130] which utilizes the
scattering formalism. In this formalism the main entity is the
scattering matrix

S =
(

See Seh

She Shh

)
, (31)

where the blocks Si j connect the incoming modes of kind
i with outgoing modes of kind j in the lead with e and
h describing the electron and hole modes, respectively. The
differential conductance at zero temperature is

dI

dV
= e2

h
(Ne − Tee + Teh), (32)

where Ne is the number of propagating electron modes in
the lead [131]. The transmission amplitudes Ti j , even though
Tee is actually describing the reflection of an electron, can be
calculated from the scattering matrix

Ti j = Tr (S†
i jSi j ). (33)

A. Setup without the dot

First, we consider the Majorana nanowire without the dot
attached and focus on short wires, in order to demonstrate the
effects of a sufficiently large coupling to the second MBS.
In Fig. 6, we present the differential conductance for a wire
of length L = 1.1 μm. In the topologically nontrivial regime
(VZ >

√
	2 + μ2) the Majorana splitting energy oscillates as

a function of applied Zeeman field. Whenever the splitting
energy is vanishing there is a peak in the zero bias differential
conductance [cf., Fig. 6(a)]. However, due to the short length
of the wire the differential conductance is no longer quantized
with 2e2/h. The height of the peak exceeds or undercuts 2e2/h
which can be attributed to the spin-canting angle differences
as shown in the effective model calculations [see Eq. (22)].

The differential conductance as a function of bias voltage
at fixed applied Zeeman field is shown in Fig. 6(b). At a
magnetic field which corresponds to a near zero Majorana
splitting energy the differential conductance is again a sum
of two Lorentzians with two different widths, however the
smaller width is so small that the temperature of current state
of the art experiments is too high to resolve them properly
which has already been pointed out [110]. At finite Majorana
splitting the differential conductance does not deviate much
from 2e2/h at the resonances which can be attributed to the
fact that the Majorana nonlocality is maximal at zero splitting
[103].

The low-energy transport in both cases can be very well
described with the effective model calculations. This is shown
by the fits (dashed lines) to the numerical data using Eq. (21)
with δ�, �1, and �2 as free parameters. What cannot be
described with the effective model is the transport due to the
higher energy states shown in the inset in Fig. 6(b).

In recent experiments [53] first hints of the nonlocal
couplings could be seen, because the zero bias differential
conductance peak exceeded 2e2/h at low temperatures and
large tunnel couplings. However, the full regime was not yet
explored, because in these experiments the ratio of kBT/� was
still too large to fully resolve a possible coupling to the more
distant MBS.

B. Setup with the dot

Because the nonlocal couplings have not yet been con-
clusively seen in experiments without a QD, we now focus
on the setup containing the dot. In order to compare our
numerical results with the analytical analysis we consider the
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FIG. 6. (a) Zero bias differential conductance at zero temperature (blue) and energy E of the lowest energy excitation in the nanowire
(yellow) as a function of the applied Zeeman field for the setup without QD. The peaks in the differential conductance correspond to zero
energy states in the nanowire. (b) Differential conductance vs applied bias voltage energy at fixed Zeeman field VZ = 0.7236 meV (blue) and
VZ = 1.2 meV (yellow). The Zeeman field values correspond to a small Majorana splitting (blue) and large splitting energy (yellow). The
dashed lines are fits to the numerical data using Eq. (21) with δ�, �1, and �2 as free parameters. The inset shows the differential conductance
for a larger bias voltage energy window which includes higher energy states in the superconducting gap. The other microscopic parameters are
μ = 0, m∗ = 0.015me, where me is the electron rest mass, α = 20 meV nm, L = 1.1 μm, and 	 = 0.5 meV.

weak coupling regime between dot and nanowire, i.e., the
hopping between the dot and the nanowire is assumed to be
only 10% of the hopping inside the nanowire. Here, we use a
self-consistent mean-field treatment of the QD in Eq. (5). The
details of the algorithm that we used can be found in Appendix
B. As seen in Fig. 7(f) the occupation of the dot corresponds

nearly to that of the isolated dot. The limitations of the self-
consistent mean field theory is visible as a small discontinuity
of the occupation number at the transition from a doubly to a
singly occupied QD. Nevertheless, the self-consistent solution
leads to much smoother transitions than the approximation

FIG. 7. (a) Spectrum of a finite-length nanowire-QD setup without an attached lead as a function of applied Zeeman field with εD =
−10 meV. The vertical dashed lines indicate the Zeeman fields which were used in the calculations of the differential conductance in (b)–(e).
(b)–(e) Differential conductance as a function of applied bias voltage between lead and Majorana nanowire and dot level energy for various
Zeeman fields VZ = 2.4 meV [(b), (c)] and VZ = 2.15 meV [(d), (e)]. (f) Occupation number of the QD as a function of dot level energy
for VZ = 1.5 meV. The other microscopic parameters are μ = 0, m∗ = 0.015me, where me is the electron rest mass, α = 20 meV nm, 	 =
0.5 meV, L = 1. μm, and U = 3 meV.
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made in Eq. (26) which only captures the transitions for the
ground state of the isolated dot.

To compare the numerical analysis to our effective model
calculations, we focus on the topologically nontrivial regime.
As seen in Fig. 7(a) this regime is dominated by the oscillating
energy of the near zero energy Majorana states [102,132,133].
However, not only the MBSs emerge inside the gap but also
other low-energy bound states can be found. The dot states
hybridize with the MBSs as well as with the other states in
the wire. Figures 7(b) and 7(c) show the differential conduc-
tance as a function of applied bias and dot level energy. The
resonances reveal that there is a large splitting energy for the
MBSs. However, the line shapes at low energy are symmetric
around the dot level energies where the occupation number
of the dot changes. This indicates, according to our effective
model, that there is only an insignificant or even vanishing
coupling to the second MBS.

The hybridization of the dot spin up state with the MBSs is
much smaller than that of the dot’s spin down state. This can
be explained with the spin-canting angle of the MBSs. The
different hybridizations can therefore also be used to analyze
the spin-canting angle [57].

In Figs. 7(d) and 7(e) the Zeeman field is tuned in such
a way that the Majorana splitting energy is close to zero. In
the low-energy transport regime (|eV | < 0.3 meV) the reso-
nances are asymmetric around the point where the occupation
number changes which indicates the existence of a large
nonlocal coupling. This is consistent with our findings in the
previous section for the setup without the QD.

The higher energy states also hybridize with the QD states.
This hybridization is also asymmetric for electron- and hole-
like excitations on the dot. It comes from the fact that all
excitations can be decomposed into two MBS components,
and, in general, these components are not spatially separated
and thus the dot couples to both Majorana components of each
higher energy state.

The advantage of this setup compared to the setup without
QD is that we can efficiently tune the spectrum of the system
which can be probed by electron transport. This leads to qual-
itative features (symmetric vs asymmetric hybridization) that
allows us to discriminate between the case of coupling to only
one or both MBSs. In contrast, the differential conductance
peak in the setup without QD only changes its height but not
its position when we include nonlocal couplings and its height
change might be hard to detect experimentally due to thermal
broadening of the conductance resonances.

V. CONCLUSION

In conclusion, we calculated and analyzed the cumulant
generating function (CGF) for a spinful normal conducting
lead-Majorana nanowire-QD setup. The CGF shows that the
only process contributing to the low-energy transport through
the junction is Andreev reflection in two channels correspond-
ing to the two spin channels of the lead. We used this CGF
to calculate the transport properties of the system—average
current and symmetrized zero frequency noise.

We described the low-energy sector of the Majorana
nanowire in the topological nontrivial regime with the two
MBSs emerging at the ends of the nanowire. To account

for the finite length of the nanowire we not only included
a coupling from the lead or the dot to the closest MBS,
respectively, but also to the more distant one and included a
finite energy splitting for the two MBSs. We also took into
account the spin dependent tunneling amplitudes to account
for the spin canting of the two MBSs at the corresponding
interfaces which allows for analytical transport results that
depend on characteristic and tunable properties of the MBSs.

For the system without the QD we found that the coupling
to the second MBS has a larger impact when the Majorana
splitting energy is small. At zero bias and zero temperature the
differential conductance becomes a Lorentzian as a function
of the Majorana splitting energy where the width is governed
by the product of both tunneling rates to the lead and its
height is given by the sine of the spin-canting angle difference
of the two MBS wave functions at the interface. Moreover,
the temperature dependence of the differential conductance
shows that the influence of the second MBS is only revealed
at low temperatures smaller than the tunneling width of the
coupling to the more distant MBS. Furthermore, we showed
that the Fano factor loses its quantization at zero bias and zero
temperature due to the coupling to the more distant MBS.

We treated the Coulomb interaction on the dot within a
mean field approximation. The coupling to the QD leads to
additional resonances and as a function of dot level energy
at fixed bias voltage up to four Fano resonances emerge.
These Fano resonances come in pairs situated around the
points where the occupancy of the dot changes. These Fano
resonances within each pair are mirror symmetric in the case
of coupling to only one MBS. When a coupling to both
MBSs is present in our calculation this symmetry is broken
independently of the splitting energy of the MBSs. As a
function of dot level energy and bias voltage the resonances
of the differential conductance show a bowtie or diamondlike
structure for zero or finite splitting energy, respectively.

To support our analytical low-energy findings, we dis-
cretized the full Hamiltonian and analyzed the differential
conductance obtained by a numerical scattering matrix calcu-
lation. Our results confirm earlier predictions based on spec-
tral properties that the nonlocal couplings to the two MBSs
is largest when the splitting energy is smallest [102,103] and
that the spin-canting angle difference changes as a function of
applied magnetic field [102,104,106–108].

Our results provide vital information on how experimen-
tally one could tell pairs of true MBSs appearing at the wire’s
ends apart from nontopological MBSs (for a recent review on
this topic, see Ref. [9]). In particular, our concrete analytical
transport results with characteristic parameter dependences,
e.g., on the canting-angle difference of the two MBSs, should
give ample opportunities to compare experimental results to
our model calculations by tuning experimental knobs like
magnetic field or gate voltages. In addition, the Fano reso-
nances predicted in our proposed setup (with the QD attached
to the far end of the wire) can only appear due to nonlocal
processes over distant MBSs sitting at the ends of the wire.
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APPENDIX A: FULL COUNTING STATISTICS FOR
NETWORKS OF MBSS INCLUDING SPIN

1. Calculation of the CGF

Here, we outline the derivation of the cumulant generating
function (CGF) for a system of coupled MBSs including the
spin degree of freedom of the charge carriers along the lines
of Ref. [128]. The moment generating function is defined as

χ (λ) = 〈eiλQ〉 , (A1)

where the counting field λ is coupled to the transferred charge
Q = ∫ T

0 dtI (t ). We introduce the auxiliary Hamiltonian

H ′ = H − 1

2
λ(t )I, (A2)

with

λ(t ) =
⎧⎨
⎩

λ t ∈ [0, T ] & t ∈ C−
−λ t ∈ [T , 0] & t ∈ C+
0 else

, (A3)

where C∓ is the forward (backward) part of the Keldysh
contour and T is the time during which the measurement is
performed. With this auxiliary Hamiltonian we can rewrite

χ (λ) =
〈
TC exp

(
−i

∫
C

dtH ′(t )

)〉

=
〈
TC

(
1 − i

∫
C

dt[H − (λ(t )/2)I] + (. . . )

)〉

=
〈
1 + iλ

∫ T

0
dtI + (. . . )

〉
= 〈eiλQ〉 . (A4)

Also, the current operator is the total derivative of the number
operator in the lead with respect to time

I = − d

dt
N = − d

dt

∫
dx

∑
σ

c†
σ (x)cσ (x)

= i

[
H,

∫
dx

∑
σ

c†
σ (x)cσ (x)

]

= i

[
HT ,

∫
dx

∑
σ

c†
σ (x)ψσ (x)

]

=
∑
n,σ

γn
(
tLσnc†

σ (0) − t∗
Lσncσ (0)

)
. (A5)

Next we consider the time-dependent unitary transformation
Uλ = ei λ(t )

2 N and apply it to H

H → Hλ = UλHU †
λ − iUλU̇λ

†
. (A6)

This leads to

H ′
λ = Hλ − 1

2λ(t )I = UλHU †
λ . (A7)

For the calculation of UλHT U †
λ we first point out that Uλ

commutes with all Majorana operators, so all we need to

consider is

Uλcσ (x)U †
λ = eiλ(t )N/2cσ (x)e−iλ(t )N/2

= cσ (x) + iλ(t )

2
[N, cσ (x)] + (. . . )

= cσ (x) − iλ(t )

2
cσ (x) + (. . . ). (A8)

Therefore, we find

H ′
λ = HL + H ′

M

+
∑
n,σ

tLnσ eiλ(t )/2c†
σ (0)γn + t∗

Lnσ e−iλ(t )/2γncσ (0)

= HL + H ′
M + Hλ

T , (A9)

where H ′
M is defined in Eq. (13) and tLnσ is defined for n =

1, 2 in Eq. (11) and tLnσ = 0 for n > 2. So we find

χ (λ) =
〈
TC exp

(
−i

∫
C

dsHL + HM + Hλ
T

)〉
. (A10)

We can formulate this moment generating function in the
continuum notation as a functional integral. It is important to
have in mind that Majorana fermions are described by real
field operators and therefore we introduce real Grassmann
variables γ̂ in order to calculate the functional integral, while
we need two mutually independent complex Grassmann vari-
ables ĉ and ĉ for the electrons in the lead. The functional
integral to calculate the moment generating function is then
given as

χ (λ) =
∫

D[γ̂ , ĉ, ĉ]eiSλ[γ̂ ,ĉ,ĉ], (A11)

where Sλ[γ̂ , ĉ, ĉ] = SM[γ̂ ] + Sλ
T [γ̂ , ĉ, ĉ] + SL[ĉ, ĉ] is the

Keldysh action, containing the action for the Majorana
fermions, the action of the lead, and the action describing
the tunneling from the lead to the system of Majorana bound
states.

These parts are given as

SM[γ̂ ] =
∑
αβ

∫
C

∫
C

dsds′γ̂α (s)[D(0)(s, s′)]−1
αβ γ̂β (s′)

Sλ
T [γ̂ , ĉ, ĉ] =

∑
ασ

∫
C

ds
[
tLασ e

iλ(s)
2 ĉσ (0, s)γ̂α (s)

+ t∗
Lασ e− iλ(s)

2 γ̂α (s)cσ (0, s)
]

SL[ĉ, ĉ] =
∑

σ

∫
C

∫
C

dsds′ĉσ (0, s)[Gσ (s, s′)]−1ĉσ (0, s′),

(A12)

where D0(s, s′) is the unperturbed Green’s function for
the Majorana bound states and Gσ (s, s′) = Gσ (x′ = 0, x =
0, s′, s) = −i 〈TC ĉσ (0, s′)ĉσ (0, s)〉 is the boundary Green’s
function for the lead with spin σ . The position integral for
x �= 0 for the lead has already been performed and is neglected
because the path integral is normalized in such a way that
χ (0) = 1. Now the moment generating function only contains
Gaussian integrals. We can integrate over the lead degrees of

045303-11



SCHURAY, RAMMLER, AND RECHER PHYSICAL REVIEW B 102, 045303 (2020)

freedom to find

χ (λ)=
∫
D[γ̂ ] exp

⎛
⎝i

∑
αβ

∫
C

dsds′γ̂α (s)[Dλ(s, s′)]−1
αβ γ̂β (s′)

⎞
⎠,

(A13)
where [Dλ(s, s′)]−1 = [D(0)(s, s′)]−1 − �λ(s, s′), with the
counting field dependent self energy

�λ
αβ (s, s′) =

∑
σ

[
− tLασ t∗

Lβσ e−i λ(s)−λ(s′ )
2 Gσ (s, s′)

+ tLβσ t∗
Lασ ei λ(s)−λ(s′ )

2 Gσ (s′, s)
]
. (A14)

We can now use the Gaussian integral for real valued Grass-
mann fields [134] to find

χ (λ) =
√

det([Dλ]−1)√
det([Dλ=0]−1)

, (A15)

where we enforced the normalization by division with√
det ([Dλ=0]−1). The determinant has to be calculated with

respect to time, Majorana, and Keldysh indices. During the
long measuring time T the counting fields are constant and a
Fourier transform diagonalizes the Keldysh Green’s function
in energy space, so that the determinant with respect to the
energy space is just a product and therefore the cumulant
generating function, the logarithm of χ , is given by

ln χ (λ) = 1

2

∑
ω

ln

[
det([Dλ]−1(ω))

det([Dλ=0]−1(ω))

]
. (A16)

Now the determinant has to be taken with respect to Keldysh
and Majorana indices. The summation can be transformed
into an integration, because the frequencies will be quantized
due to the long measuring time which results in the Levitov-
Lesovik formula [126–128]

ln χ (λ) = T
2

∫
dω

2π
ln

[
det ([Dλ]−1(ω))

det ([Dλ=0]−1(ω))

]
. (A17)

2. Majorana Green’s Function

In this section we want to describe the calculation of the
Majorana Green’s function in detail. We start with the Heisen-
berg equation of motion (EOM) for the Majorana operators
with the unperturbed Hamiltonian H ′

M [see Eq. (13)]

d

dt
γα = i[H ′

M, γα] = 2
∑

β

Aαβγβ, (A18)

where we used the skew symmetric property Aαβ = −Aβα .
The solutions to this EOM are

γα (t ) =
∑

β

Bαβ (t )γβ (0), (A19)

with B(t ) = exp(2At ). The time dependent unperturbed Ma-
jorana Green’s function then is

D(0)
αβ (t ) = −i 〈TCγα (t )γβ (0)〉

= −iBαβ (t )(�C (t ) − �C (−t )) − i
∑
ν �=β

Bαν (t )eνβ

(A20)

= −iBαβ (t )

(
sign(t ) −1

1 −sign(t )

)

− i
∑
ν �=β

Bαν (t )eνβ

(
1 1
1 1

)
, (A21)

where �C (t ) is the Heaviside function on the Keldysh contour
and we defined eνβ = 〈γνγβ〉. Here, the Keldysh indices are
organized as [(−−,−+), (+−,++)]T . In order to calculate
the Fourier transform of D(0)

αβ (t ) we need to consider the
Fourier transforms of B(t ) and B(t )sign(t ). First, we note
that we can diagonalize the Hermitian matrix −iA = UDAU †

where DA = diag(λk ) with the eigenvalues λk where for every
positive λk there is a λk = −λk which in our case leads to six
λk and find∫

dteiωtB(t ) = U
∫

dteiωt eiDAtU †

= Udiag 2πδ(ω − λk )U †. (A22)

In order to calculate the second Fourier integral we find it
convenient to use the following change of basis 2A = QSQT

with

S =

⎛
⎜⎜⎜⎜⎜⎝

0 λ1 0 0 0 0
−λ1 0 0 0 0 0

0 0 0 λ2 0 0
0 0 −λ2 0 0 0
0 0 0 0 0 λ3

0 0 0 0 −λ3 0

⎞
⎟⎟⎟⎟⎟⎠, (A23)

which is possible because A is skew symmetric. Using this we
find

− i
∫

dteiωt sign(t )B(t ) = Q
∫

dteiωt eSt QT

= −iQ
∫

dtsign(t )eiωt diag

(
cos λkt sin λkt

− sin λkt cos λkt

)
QT

= Qdiag

(
2ω

ω2−λ2
k

−2iλk

ω2−λ2
k

2iλk

ω2−λ2
k

2ω

ω2−λ2
k

)
QT . (A24)

For ω �= λk the off diagonal blocks and all terms containing
eνβ in Eq. (A21) vanish so that D(0)

αβ (ω) is block diagonal. For
ω = λk the Dirac distribution in Eq. (A22) as well as the terms
in Eq. (A24) diverge so that the inverse of the corresponding
λk block of the Green’s function vanishes. It would vanish
even if we would neglect the terms coming from Eq. (A22).
So we only need to consider the block diagonal part of D(0)

αβ (ω)
for its inverse and find

[D(0)]−1 =
(

[D(0)−−]−1 0
0 −[D(0)−−]−1

)
, (A25)

with

[D(0)−−]−1 = Qdiag

(
ω
2

iλk
2

− iλk
2

ω
2

)
QT

= iA + ω

2
I. (A26)

Following Ref. [135] the lead boundary Green’s function
Gσ (t ′, t ) = Gσ (x′ = 0, x = 0, t ′, t ) = −i〈TCcσ (x′ = 0, t ′)c†

σ

045303-12
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FIG. 8. Program flow chart for the self-consistent calculation of the QD occupation number. The program contains two loops. In the first
loop the QD occupation number 〈n〉 is calculated self-consistently for a fixed number of sites of the lead M, while the second loop increases
the number of sites for the lead until convergence (with small convergence parameter ν).

(x = 0, t )〉 for spin σ can be written in the Keldysh-rotated
basis in matrix form as

iGσ (t ′, t ) = πν(0)

(
δ(t − t ′) 2Fσ (t − t ′)

0 −δ(t − t ′)

)
, (A27)

where ν(0) is the density of states per spin at the Fermi level
in the lead and the Fourier transform of the distribution matrix
is Fσ (ω) = 1 − 2nσ (ω) with the Fermi distribution function
nσ (ω) = (1 + eω/kBT )−1. After a back rotation and Fourier
transform we find

Gσ (ω) = i2πν(0)

(
nσ (ω) − 1

2 nσ (ω)
nσ (ω) − 1 nσ (ω) − 1

2

)
. (A28)

APPENDIX B: SELF-CONSISTENT ALGORITHM

To incorporate the lead in the self-consistent calculation
for the QD occupation number we consider it to have a finite

length with M sites. We also start with a given input vector
for the spin up and spin down occupation numbers nin on the
dot and calculate the expectation value in the ground state
of Eq. (12) for the number operator on the dot nout. If the
difference between input and output |nin − nout| is larger than
a predefined value ν (in our case ν = 0.001) we use nin =
0.5(nin + nout) as the new input value and start the calculation
again. Once the difference between input and output is smaller
than ν, we add a site to the finite size lead. Then we use nin =
nout and calculate the expectation value in the ground state
for the number operator on the dot again. If the output after
adding a site does not change more than ν we consider the
system to have converged and use the output as the occupation
number for the calculation of the differential conductance. If
it is larger than ν we start the program again with the lead
being one site larger than before. The program flow chart for
this method is shown in Fig. 8.
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