PHYSICAL REVIEW B 102, 045203 (2020)

Optical harmonic generation on the exciton-polariton in ZnSe
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We study optical harmonic generation on the 1§ exciton-polariton in the semiconductor ZnSe. Intense and
spectrally narrow exciton resonances are found in optical second (SHG), third (THG), and fourth (FHG)
harmonic generation spectra. The resonances are shifted to higher energy by 3.2 meV from the exciton
energy in the linear reflectivity spectrum. Additional resonances are observed in the THG and FHG spectra
and assigned to combinations of incident and backscattered photons in the crystal. Rotational anisotropy
diagrams are measured and further information on the origin of the optical harmonic generation and the
involved exciton states is obtained by a symmetry analysis using group theory in combination with a

microscopic consideration.
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I. INTRODUCTION

Since the discovery of second harmonic generation (SHG)
in 1961 in a quartz crystal by Franken et al. [1], the physics of
the optical harmonic generation has developed into a mature
field of both basic and applied research [2,3]. As a coherent
process, SHG requires electronic states which can be excited
by two-photon excitation and release one-photon emission.
Additionally to fulfillment of the energy and wave-vector
conservation laws, the respective optical transitions need to
be allowed in electric-dipole (ED) approximation, or in higher
order, like in electric-quadrupole (EQ) and/or magnetic-
dipole (MD) approximation. This makes SHG a valuable and
informative tool for exciton spectroscopy in semiconductors,
which delivers information not available from linear optical
spectroscopy approaches [4].

SHG exciton spectroscopy has been used to study various
semiconductors, like GaAs [5,6], CdTe [6], ZnO [7], and
Cu,0 [8]. Due to the resonant enhancement by the exciton
states, the SHG signals show up as narrow lines which, at
low temperatures, often are stronger than the crystallographic
signals which appear also for off-resonance conditions. In
these studies, magnetic and electric fields were used to reduce
the symmetries of the exciton states, which gives rise to vari-
ous field-induced SHG mechanisms [7,9,10]. Third harmonic
generation (THG) has been also used for studying excitons,
but much rarer as compared to SHG [10,11].

In bulk crystals, the strong light-matter interaction leads to
the formation of exciton-polaritons with characteristic disper-
sions given by several polariton branches [12,13]. Nonlinear
optical spectroscopy based on multiphoton excitation can be
used to measure the dispersion relations of exciton-polaritons.
The pioneering study on CuCl by Frohlich ef al. [14] revealed
the upper polariton branch, measured directly by two-photon
absorption (TPA). Shortly afterward, similar measurements
were performed by SHG in CuCl [15-18], ZnO [17,19], and
CdS [19]. Techniques using multiphoton excitaton, like TPA,
two-photon excitation of photoluminescence, three-photon
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sum and difference frequency generation have typically more
often been used for exciton-polariton studies compared to
SHG (for a review, see Ref. [20]).

The semiconductor ZnSe has a large exciton binding en-
ergy of 20 meV leading to pronounced exciton-polariton
properties [21,22], which makes it an attractive model system
for nonlinear optical spectroscopy. Its exciton-polariton dis-
persion is well studied by various experimental techniques:
resonant Brillouin scattering [22-24], two-photon resonant
Raman scattering [25], and two-photon excitation of photo-
luminescence [26,27]. We showed recently that the exciton-
polariton in ZnSe can be also addressed by SHG [4] and
THG [11]. Note that TPA was also used in ZnSe to study
the fine structure of the 2P exciton [28,29] and its modi-
fication in magnetic field [30-32] and under pressure [33].
Also, the second-order nonlinear susceptibility in ZnSe was
investigated by SHG [34].

In this paper, we report a detailed study of optical har-
monic generation (SHG, THG, and fourth harmonic gen-
eration (FHG)] on the exciton-polariton in ZnSe. We use
the recently developed technique based on spectrally broad
femtosecond laser pulses and signal analysis with a high-
resolution spectrometer [8]. Narrow resonances are observed
in the optical harmonic generation spectra that are shifted by
about 3.2 meV to higher energy from the exciton resonance in
the reflectivity spectrum. Rotational anisotropies of the optical
harmonic generation signals are measured by rotating the
linear polarizations of ingoing and outgoing photons. Their
symmetries are modeled and explained in the frame of a
group-theory analysis and a microscopic consideration.

The paper is organized as follows. In Sec. II, a phe-
nomenological consideration of second, third, and fourth
optical harmonic generation is given. In Sec. III, details of
the experimental setup are given. The experimental results
are presented in Sec. IV, and the rotational anisotropies are
analyzed and discussed in Sec. V by group theory, where
also the resonances in the spectra are assigned to polariton
states.

©2020 American Physical Society
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II. PHENOMENOLOGICAL DESCRIPTION OF OPTICAL
HARMONIC GENERATION

In semiconductors with a noncentrosymmetric crystal lat-
tice, such as cubic ZnSe (crystallographic point group 43m),
the SHG process is allowed in ED approximation. The non-
linear polarization at twice the fundamental frequency, 2w, of
the exciting light for the crystallographic contribution to SHG,
P2 reads as

P = eoxinEVES, )

where i, j,/ are the Cartesian indices, €; is the vacuum
permittivity, x;;; is the nonlinear optical susceptibility, E%,)
are the components of the electric field E“ of the laser beam at
the fundamental frequency w. Equation (1) takes into account
only the resonant and nonresonant ED contributions of the
electronic states in the semiconductor at the frequencies w and
2w. A more general approach takes into account the specifics
of the material hosting exciton-polaritons. This becomes im-
portant when the SHG at frequency 2w is in resonance with
the energy of the exciton state .. To account for these con-
tributions, the effective nonlinear polarization at double fre-
quency 2w, appearing under the excitation by the electric field
of the electromagnetic wave E“(r, t) = E“ exp[i(k“r — wt)],
can be written in the form

Pezf(ti‘),,‘(gexc) = 6OXijl((-c/‘exc’ kexc)E;ova 2)

where the nonlinear susceptibility x;ji(Eexc, Kexe) takes into
account the effects of spatial dispersion in the MD and EQ
approximations. kex. = 21k is the exciton wave vector, n is
the refractive index of light at the fundamental frequency o,
and k® is the wave vector of the incoming light. The nonlinear
polarization from Eqgs. (1) and (2) leads to the SHG signal with
intensity 12 oc [P?*|%.

In the case of a resonant contribution, which includes
optical transitions between the ground state of the unexcited
crystal |G) and the exciton state |Exc), the SHG process
must be allowed both for two-photon excitation and for one-
photon emission. The fulfillment of this condition depends
on the symmetry of the crystal and on the geometry of the
experiment. The involvement of excitons makes this picture
even more complicated and interesting due to the different
symmetries of the envelope wave functions of the S, P, and
D exciton states, which complement the symmetry given
by the point group of the crystal lattice. It is worthwhile
to note here that also in case where the SHG is forbidden
in ED approximation, accounting for MD and/or EQ tran-
sitions can make it allowed (see, e.g., Refs. [8,9,35]). In
addition, the application of uniaxial mechanical stress, electric
or magnetic fields, can lower the symmetry and can lead to
optical harmonic generation on mixed exciton states that are
forbidden otherwise.

A similar phenomenological approach can be applied to
the THG and FHG processes. In the THG case, the effective
nonlinear polarization can be written as

ngltl‘),i(gexc) = E()Xijlk(ge)wv kexc)E;‘DEleI?) 3)

Nw
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FIG. 1. Sample orientation relative to the optical axis and linear
polarization angles in the optical harmonic generation experiments.
Ingoing light with frequency w and electric field component E“ has
the wave vector k” and polarization angle 1. Generated harmonic
light with frequency Now (N = 2, 3, 4) and electric field component
EM® has the wave vector kM and can be detected at polarization
angle ¢.

and THG signal intensity is I*® o |P3¢|?. Accordingly, for the
FHG case

P:f?i(gexc) = €OXijlkm(ge)(Cv kexc )Ej)Ef)E?EZ (4)

and FHG signal intensity is I*® oc [P*|2.

Generation of optical harmonics requires the fulfillment
of energy and momentum conservation. The sum of energies
of N ingoing photons has to be equal to the energy of the
single outgoing photon, and the equivalent relations hold for
the light k vectors. Here, N = 2, 3, 4 is the harmonic order
corresponding to SHG, THG, and FHG, respectively:

Nhiwy = ho"®, 5)

NKy = kN, (6)

In crystals where the phase-matching condition nV¢ = n®
is satisfied, the laser and harmonic beams have the same phase
velocity, which leads to an amplification of the generated
signal intensity. The anomalous dispersion in the range of the
exciton-polariton states makes it possible to satisfy the phase-
matching condition in crystals [11], while this condition is not

satisfied for the nonresonant optical harmonic generation.

III. EXPERIMENT

We use a recently developed technique for exciton spec-
troscopy based on optical harmonic generation with 200-fs
laser pulses and high spectral resolution. The technique is
described in detail in Ref. [8]. In Fig. 1, the sample orientation
relative to the optical axis as well as the linear polarization
angles of the fundamental and harmonics light are specified.

The studied ZnSe bulk sample was grown by the Bridgman
method. The sample was cut such that we can orient its crystal
axes in the following way relative to the chosen coordinate
axes: [111] || z (thickness: 2586 um), [112] || y (4475 pum),
and [110] || x (2458 um) (see Fig. 1). For optical measure-
ments, the sample is kept in a bath cryostat at a temperature
of T = 5 K in contact with cold helium gas.

045203-2



OPTICAL HARMONIC GENERATION ON THE ...

PHYSICAL REVIEW B 102, 045203 (2020)

The pump laser in our setup emits pulses of 150-fs duration
at a repetition rate of 30 kHz. It pumps optical parametric
amplifiers (OPA) of which one emits pulses of 3.3-ps duration
and a full width at half-maximum (FWHM) of about 1 meV.
The other OPA emits pulses of 200-fs duration and FWHM
of about 10 meV. The OPA photon energy can be tuned in
the range of relevance for the optical harmonic generation of
about E,/N, where E, = 2.82 eV is the band-gap energy of
ZnSe at cryogenic temperature. The energy per pulse is set to
0.1-1.0 uJ for both OPAs depending on the harmonic order
to be measured.

The laser beam hits the ZnSe sample surface being parallel
to the [111] crystal direction under normal incidence. It is
focused into a spot with size of about 100 um. The signals
are detected by the combination of a spectrometer and a
silicon charge-coupled device (CCD) camera. The 1-m Spex
1704 spectrometer has a 10 x 10 cm? sized grating with
1200 grooves/mm. The spectral resolution of the system in
the energy range of the ZnSe band gap is 30 ueV. Further
information on the detection system can be found in [9].

With a Glan-Thompson polarizer and a half-wave plate,
the linear polarization of the incoming and outgoing light
can be varied continuously and independently. One can thus
detect the signals for any chosen polarization of E® or EN®
and, therefore, measure the rotational anisotropy diagrams
of the optical harmonics. In this paper, we measure these
anisotropies for either parallel (E© || EN®) or crossed (E® L
EN®) linear polarizations of the laser and signal light.

In order to have information on the properties of the
exciton-polaritons in the studied sample, we use linear opti-
cal spectroscopy. For measuring the reflectivity spectrum, a
white-light lamp is used to illuminate the sample.

Optical harmonic generation spectra are measured by ex-
citing the sample with laser pulses emitted by the fs OPA.
With these spectrally broad fs pulses the whole spectral
range around the 1S exciton can be excited by setting the
central output photon energy of the OPA to &£ 5/N with
corresponding N for SHG, THG, or FHG. Here, &5 is the
energy of the exciton-polariton signal in the optical harmonic
generation spectra. The spectral resolution achieved in the ex-
periments with fs pulses depends on the detection system, as
described above.

A two-photon photoluminescence excitation (2P-PLE)
spectrum is recorded by detecting the photoluminescence
(PL) intensity in the energy range of 1 meV with central
energy 2.6896 eV, whereas the laser photon energy is tuned
in the spectral range of the &g exciton state by scanning the
photon energy of the ps OPA. In this scanning regime, the
spectral resolution depends on the OPA linewidth.

IV. EXPERIMENTAL RESULTS

In Fig. 2, three spectra in the energy range of the 1S
exciton in ZnSe are shown. The reflectivity spectrum (blue)
is plotted in Fig. 2(a). The fit (red) was made within the
exciton-polariton model with taking into account the spatial
dispersion in the “dead” layer approximation [12,36,37]. The
evaluated “dead” layer thickness is 4.7 nm which is compara-
ble with the exciton radius of about 3.5 nm. The fit allows to
obtain the values of the exciton parameters: Er = 2.802 68 eV,
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FIG. 2. Comparison of (a) white-light reflectivity spectrum,
(b) 2P-PLE spectrum by ps-pulse excitation of 0.2 wJ per pulse, and
(c) SHG spectrum of the 1S exciton resonance with the fundamental
laser photon energy set to fiw = 1.402 eV (FWHM: 10 meV) and
0.1 wJ per pulse. In (a) the experimental spectrum (blue) is fitted
(red) by the exciton-polariton approach described in the text. The
inset in (b) shows the 2P-PLE intensity in dependence of the excita-
tion polarization at energy 2/iw = 2.8068 eV. The inset in (c) shows
the rotational anisotropy of the SHG intensity at resonance 1S* for
parallel E® || E2* (filled black dots) and crossed E* L E** (open red
dots) polarization configuration.

E; =2.80389 eV, hwyr = 1.21 meV, and A’ = 1.2 meV.
These values are in accordance with literature data [21,22,27].
We used ¢ = 5.5 as the background dielectric constant and
M =~ 0.8my as exciton translational mass. Furthermore, the 25
exciton state is resolved at £, = 2.816 48 eV. The energies Et
and Ey are indicated in Figs. 2(b) and 2(c) by the dashed lines.

The 2P-PLE spectrum in Fig. 2(b) is detected at an energy
of 2.68956 eV, while scanning the ps OPA. The spectrum
reveals two peaks at Ep and at a higher energy of 2.8068 eV.
Approaching the ZnSe band gap, another strong peak is seen
at &p = 2.8188 eV, which can be assigned to the 2P exciton
state allowed for two-photon excitation [28,32]. In the inset of
Fig. 2(b), the signal intensity in dependence of the polarization
angle of the incoming photons E® is presented for 2hiw =
2.8068 eV, which shows a completely isotropic shape.

The SHG spectrum is shown in Fig. 2(c). The intense and
narrow peak, labeled as 15*, at &5, = 2.807 07 eV dominates

045203-3



MUND, YAKOVLEYV, SEMINA, AND BAYER

PHYSICAL REVIEW B 102, 045203 (2020)

Reflection Polariton-Dispersion SHG
281 5 T T T T T T T T t T T T T T
(@) (b) (c)

2.810 T -
B 2.805 E
R S
E’) ..........
2 Er
L 2.800

2.795

LPB
2790 1 1 1 1 1

2 3 4 5 O.d 0.204 06 081.0
k (10" m™) SHG intensity (a. u.)

0.0 0.2 04 0.6 0.8 1.00 1
Reflectivity (a. u.)

FIG. 3. Assignment of the features in the (a) reflectivity and
(c) SHG spectrum to the exciton-polariton dispersion (b) [27]. The
solid lines in (b) refer to the UPB and LPB. The longitudinal exciton
is marked by the dashed line and the transversal exciton by the dotted
line. Note that in (c) the SHG intensity in the energy range below the
dashed-dotted line is magnified by a factor of 20.

the spectrum. It is also observed in the 2P-PLE spectrum in
Fig. 2(b). In SHG, the FWHM of this line I'15, = 180 peV is
not limited by the resolution of our detection system, but by
inherent properties of the exciton. The rotational anisotropy of
the 1S* line is depicted in the inset. The full black and open
red dots correspond to the parallel E” || E>® and crossed E® L
E*® configuration, respectively. In both configurations, a very
pronounced modulation of the anisotropy can be seen, which
is characteristic for the SHG signals, in contrast to the 2P-PLE
that has an isotropic signal dependence on polarization of
ingoing photons. The modulation originates from the crystal
symmetry and is specific for the chosen crystal orientation
(details will be discussed below).

We compare the reflectivity and the SHG spectrum with the
exciton-polariton dispersion of the 1S exciton in ZnSe, taken
from Ref. [27] (see Fig. 3) to assign the observed features to
particular states. In Fig. 3(b), the solid lines show the exciton-
polariton dispersion consisting of the upper polariton branch
(UPB) and the lower polariton branch (LPB) [13]. The dashed
line marks the longitudinal exciton energy, whereas the dotted
line indicates the transversal exciton energy. The intense 15*
resonance in the SHG spectrum is located in the UPB 3.2 meV
above Ey. Furthermore, the SHG spectrum reveals two dips
at £, =2.80389 eV and Et = 2.80268 eV, indicating the
longitudinal and transversal exciton, respectively. On the one
hand, the longitudinal state can be excited by two photons, as
was observed in the 2P-PLE spectrum, but does not emit light
at the same energy leading to a dip in the SHG spectrum. On
the other hand, the broad SHG signal below Er is related to
nonresonant SHG on the LPB.

In Fig. 4, we show SHG rotational anisotropies measured at
the energy of 2.805 eV, which is between the 1.5* energy and
Ey, and at 2.800 eV corresponding to the broad SHG signal at
energies below Er. Both anisotropies are very similar to each
other and show a sixfold pattern with lobes of equal intensity.

2ho = 2.805 eV (b)

(a) 2hw = 2.800 eV

120 240
E® ” E2m
E® | EZU) 180

FIG. 4. SHG rotational anisotropies at the energies (a) 2.800 eV
and (b) 2.805 eV. Full black and open red dots give data for parallel
E? || E>* and crossed E® 1 E?® configuration, respectively.

In Fig. 5, the THG and FHG spectra are presented along
with the SHG spectrum. With increasing harmonic order,
the 15* resonance is shifting to lower energy (see Table I).
Furthermore, as shown in the inset, the additional small peaks
ri and r, appear on the low-energy side of the 15* resonance.
The r; resonance is not related to the longitudinal exciton
state which is symmetry forbidden for one-photon emission.
Further, r; is located at slightly higher energy, which indicates
its origin on the UPB.

The rotational anisotropies of the 15* and r; resonances for
THG and FHG are shown in Fig. 6. In THG, the anisotropy
shape is almost isotropic with only a slight modulation for
the parallel configuration. The intensity in the crossed config-
uration is much weaker and reveals a fourfold pattern with
different lobe intensities. In FHG, the parallel anisotropy
shows a sixfold pattern, resembling the one in SHG (compare
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~10F B
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5 4HG| 1
_e' 0.8
©
N— T I I' T
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BOAL L et
5 0 1
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®© 0.2+ OE N t » g
T 2.795 2.800 2.805 2.810%¢

0.01 e ‘M

2.795 2.800 2.805

Harmonics energy (eV)

FIG. 5. SHG (black), THG (red), and FHG (green) spectra of
the 15* exciton resonance. Pulse energies are 0.1 uJ for SHG and
THG and 1 ©J for FHG. In the inset, the spectra are magnified by a
factor of 5 to highlight the peaks r; and r,. Note the scaling factors of
1.2 x 103 for the THG and 5 x 10° for the FHG spectra to match the
18* resonance SHG intensity. Factors account for different excitation
energies and integration times.
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TABLE I. Summary of the peak energies of the 1S*, ry, and
ry lines taken from the SHG, THG, and FHG spectra in Fig. 5 in
comparison to the energies of the longitudinal and transversal exciton
extracted from reflectivity. All values are given in units of eV.

Measurement 15* r r Er E.
Reflectivity 2.80268 2.80389
SHG 2.80707

THG 2.80685 2.80404

FHG 2.80671 2.80417 2.79992

with Fig. 4). Again, the signal in crossed configuration is
much weaker and does not exhibit any pronounced modulated
pattern. Note that the anisotropies of the r; resonance in Fig. 6
have the same shape as those of the 15* line.

It is worthwhile to remind that THG energy shifts of about
0.8 and 1 meV relative to the bare exciton position were also
seen in GaAs and CdTe, respectively [11]. However, ZnSe
with 20-meV exciton binding energy [38] is particularly suited
to observe a clear polariton shift. Similar measurements on
Cu,0 with a 1S exciton binding energy of 150 meV [39] do
not show a shift due to its different crystal symmetry and band
structure. In Cu,0O, for the 1S exciton, one-photon optical
transitions are “forbiddden,” e.g., only quadrupole allowed,
and excitons have lower oscillator strengths.

(@) 3hw (1S*) = 2.80685 eV
[112)

3ho (r,) = 2.80404 eV (b)

[112]

330 30 THG 330 30

300

270

240

210
180
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(©) 4ne (15%) = 2.80671 eVIE® L E*™*J4ng (r,) = 2.80417 ev  (d)

112] 112]
330 [112] 30 FHG 330 [112] 30
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240

FIG. 6. Rotational anisotropies of the resonances 15* (a) and
r; (b) in THG and in FHG (c) and (d). Full black and open
red dots represent data for parallel E® | E** and crossed E® L
E?® polarization configuration, respectively. Note that the crossed
signal in the THG anisotropies is magnified by a factor of 5 for
better visibility.
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FIG. 7. Comparison of the 1S exciton-polariton dispersion
curves consisting of the UPB and LPB (solid blue lines) and the
peak positions in the harmonic measurements, shown in Fig. 5. Also,
the longitudinal and transversal exciton energies (dashed and dotted
blue lines) are shown. The points give the resonance energies in
SHG (black), THG (red), and FHG (green). The almost vertical lines
give the dispersions of the fundamental light in the corresponding
harmonic measurement. The inset shows a zoom of the dispersions
around the 15* resonances.

V. THEORY

In this section, we introduce first the exciton-polariton
concept to explain the spectral shift of the 15* line in the
optical harmonic spectra with respect to the exciton resonance
in the reflectivity spectrum. Afterward, we turn to a general
symmetry analysis of the optical nonlinearities in ZnSe in
terms of group theory. We simulate the expected rotational
anisotropies for 2P-PLE and optical harmonic generation.
These are explicitly given for light directed along the [111]
crystal axis.

A. Exciton-polaritons

In semiconductors, strong light-matter interaction results
in the formation of exciton-polaritons with a specific energy
dispersion, modifying not only the linear optical properties,
but also the nonlinear ones and thus the spectra of optical
harmonic generation. Recently, the microscopic theory of
THG on exciton-polaritons was developed for zinc-blende
semiconductors and was used to describe the THG enhance-
ment in magnetic field [11].

In Fig. 7, the dispersion of the 1§ exciton-polariton in ZnSe
with the UPB and LPB is plotted [27]. The longitudinal Ey,
and transversal Ep exciton energies are given by the dashed
and dotted lines, respectively. A resonant signal in the optical
harmonic generation spectra corresponds to the energy, where
the linear light dispersion NK§, crosses the UPB (see the
colored dots in Fig. 7). The light wave vectors ky of the
incoming photons can be calculated knowing the index of
refraction at the respective energy n(fiwy ):

n(hwy)e

k¢ = ——hoy, 7
N o WN @)

045203-5



MUND, YAKOVLEYV, SEMINA, AND BAYER

PHYSICAL REVIEW B 102, 045203 (2020)

TABLE II. Summary of fundamental photon energy /iwy, corre-
sponding index of refraction n(fiwy) [40], peak energies hw™® from
Fig. 5, and k™ values for SHG, THG, and FHG.

howy V) n (hoy) haN® (eV) NK$ (107 m™")
SHG 1.40354 2.492 2.80707 (15%) 3.545
THG 0.93562 2.453 2.80685 (15%) 3.489
0.93468 2.453 2.80404 (r1) 3.485
FHG 0.70168 2.438 2.80671 (15%) 3.467
0.70104 2.438 2.80417 (ry) 3.464
0.69998 2.438 2.79992 (r,) 3.459

where e is the elementary charge and c the speed of light. We
take the n(fiwy) values for ZnSe from Table 8 in Ref. [40].
Here, the data are given for 7 = 93 K and are expected to be
slightly larger for T = 5 K.

The n(fiwy) values, used by us, are given in Table II
together with the results for k§ of Eq. (7) for the specific
photon energies of the resonances in SHG, THG, and FHG.

The harmonic resonances are given as the colored dots in
Fig. 7, together with the corresponding fundamental photon
dispersions. The resonances 7| from the THG and FHG spec-
tra are plotted at one third and at half of the calculated k&
values, respectively. They give access to the UPB at small
k values whereas the 1S* resonances are located at larger
k on the polariton dispersion [14]. The explanation is that
the r; line arises from combinations of the ingoing photons
and those which are reflected from the sample backside.
Therefore, one observes the r line in THG at

k)’ = 2K{ — k3 =k ®)
and in FHG at
K" = 3ky — k§ = 2k;. )

The 1S* resonance of each harmonic spectrum is plotted
onto the dispersion of the corresponding k values: k>, k3¢,
and k**. For better visibility a zoom of the plot around the
1S* line positions is shown in the inset of Fig. 7.

The r; line is observed only in the FHG spectrum, but does
not show up in SHG and THG. Its origin is not clear and
requires further investigations. One can only say that it cannot
be associated with Brillouin scattering from the UPB to the
LPB, as for the spectral energy of 15* in ZnSe the expected
shift is about 2.5 meV (see Fig. 5 in Ref. [24]), while in our
experiment the r, line is shifted from 15* by 6.8 meV.

B. Symmetry analysis

ZnSe crystallizes in the zinc-blende structure of point
group Ty. The structure is not centrosymmetric so that parity
is not a good quantum number. SHG is allowed in ZnSe
in ED approximation. The expected rotational anisotropy for
nonlinear optical processes can be calculated when the sym-
metries of the involved electronic states are known. We take
the necessary information from the tables of Koster ez al. [41].

The symmetry of an exciton I'¢ is determined by the
tensor product of three irreducible representations:

Fexe = e @ T'vg @ ey (10)

I'cp and T'yp give the irreducible representations of the elec-
tron in the conduction band and of the hole in the valence
band, respectively. I'¢yy denotes the symmetry of the exciton
envelope. In ZnSe, the lowest conduction band (s orbitals of
Zn) has I'y symmetry. If the spin is included, an electron
in the conduction band is represented by I'¢ symmetry. The
uppermost valence band (p orbitals of Se) has I's symmetry
which transforms to I's symmetry by spin. For the 1§ exciton,
the spherical envelope is of I'; symmetry resulting in

Fs=Te®@IsQ =T30T4®Ts. (11)

The symmetry I'; belongs to the pure triplet paraexciton,
whereas 'y and I's correspond to states with singlet orthoex-
citon admixture.

In the point group 7, the photon dipole operator Op
transforms as the irreducible representation I's. Thus, one
photon can be absorbed by exciting a I's state, or can be
emitted when a I's exciton recombines. If more than one
photon is involved in the excitation process, states with other
symmetries can be excited. In the case of SHG, the first photon
excites virtually a I'5 state, whereas the second photon induces
a transition from this intermediate state to a final one with I";,
I's, or I's symmetry. Possible final states for single-photon and
multiphoton excitation (up to four photons) are

1 photon : T, (12)
2 photons : T'y @ I'; @ Ts, (13)
3 photons : I') @ I's @ 2I'y @ 3Ts, (14)

4 photons : 31"y @2, & 5T @ 6I's D TTs. (15)

For modeling the rotational anisotropies we need to con-
sider the photons in more detail. The ingoing photons are
described by their wave vector ky and polarization of Ey.
The components uy, vy, and wy of the electric field Ey
depend on the polarization angle i of the incoming photons
(see Fig. 1). The emitted photons have the wave vector kN®
with components k¢, k;v @, kN, and polarization along EV®
(N =2, 3, and 4 for SHG, THG, and FHG, respectively).
The components m™®, n¥°, and o™ depend on the outgoing
polarization angle ¢:

un () knx

Ey = ov@¥) |, k= |k |- (16)
wy (Y) k-
m"(¢) ke

EY = | n(p) |, KY = [k ]. (17)
o (p) ke

C. Microscopic analysis

However, the symmetry analysis is not sufficient to predict
the mechanisms that lead to the observed harmonic rotational
anisotropies. A microscopic analysis is necessary to evaluate
the transition probabilities to different intermediate states.
This is particularly important for THG and FHG. In these
cases, the final exciton state can, in principle, be excited by
a manifold of excitation paths due to symmetry reasons.
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(a) 2P-PLE SHG (b)
@&l M@r,8rs
A A
Op| Op
A 4| Oo
OD OD
rl A4 rl v

FIG. 8. (a) 2P-PLE process: excitation by two photons and
emission of one photon after relaxation. (b) SHG process: co-
herent excitation by two photons and emission of one photon
without relaxation.

We have done such a microscopic analysis, along the
approach presented for THG in Ref. [11]. It allows to ac-
count for specifics of excitons and exciton-polaritons, which
goes beyond the symmetry considerations based on crys-
tal symmetries and group theory. Details of this analy-
sis will be published elsewhere. Here, we will comment
where the conclusions of microscopic analysis coincide with
the group-theory considerations, and where they bring in
additional information.

D. Two-photon photoluminescence excitation

Here and below we concentrate only on dominant pro-
cesses. For example, we neglect quadrupole transitions if
dipole transitions are allowed. Also, we neglect dipole pro-
cesses which are weaker according to microscopic analysis.

The 2P-PLE process is drawn in Fig. 8(a). From Eqgs. (11)
and (13) we conclude that only the three components of
the I's exciton can be excited by two ED transitions. States
with I'} and I'; symmetries are not excited because the 1S
exciton does not provide a state of I'j symmetry, whereas
the I'3 paraexciton is not accessible by ED transitions. After
two-photon excitation of the I's exciton it relaxes into a lower-
lying state and recombines with emission of one photon.
Therefore, the emission in 2P-PLE is only dependent on the
distinct polarization dependence of the excitation path.

The polarization-dependent two-photon ED transition is
described by the operator Opp:

v (Y wa ()
Opp (B3, ¥) = V2| wo(¥)wa(y) |. (18)
ur (Y )va(yr)

For the present case of the light k vector directed along the
[111] crystal direction the polarization anisotropy of the 2P-
PLE is measured in the [112]/[110] plane. Its explicit form
is

—cos(¥)[cos(¥) + /3 sin(y)]
cos(yY)[—cos(¥) + +/3 sin(¥)]
%[—1 +2cos(2y)]

2
Opp(E3. ) = 3

(19)
The detected PL intensity is proportional to the square of Opp:

PPPLE o |Opp (Y) 2. (20)

(@) 2hw(1S*) =2.8068 eV
2P-PLE

2ho(1S%) = 2.80707 eV (b)
SHG

E® ” E2u)

E® | EZ(x) 330 _— ‘;

A

300

FIG. 9. (a) Measured 2P-PLE data (full black dots) at the 1S5*
line and simulation by Eq. (20) (gray shaded area). (b) Full black
and open red dots are measured SHG data at the 15* resonance for
parallel E¢ || E** and crossed E¢ L E* configuration, respectively.
Gray and red shaded areas represent the simulations by Eq. (22).

Note that, despite the form of Eq. (19), I?*PLE is a constant
function for all i and thus gives an isotropic pattern for the
rotational diagram.

The measured rotational anisotropy of 2P-PLE on the 15*
line, shown in the inset of Fig. 2(b), is compared with model
calculations in Fig. 9(a), where the simulation by Eq. (20) is
given by the gray shaded area.

E. Second harmonic generation

For SHG, the two-photon excitation process is the same as
in 2P-PLE and is followed by the one-photon emission from
the same state. Therefore, additional selection rules are due
compared to 2P-PLE. The operator for one-photon emission
along the [111] direction is given by

cos(p) — +/3 sin(p)
Op(E**, ¢) = G cos(p) 4+ /3 sin(p) |- (21)
2 cos(p)

Note that the same operator is valid for the one-photon emis-
sion in THG and FHG processes considered below. The SHG
intensity is calculated by

I* o |Opp(¥)Op(9)*. (22)

Thus, we expect a sixfold pattern for both parallel and crossed
configurations, which are, however, rotated by 30° with re-
spect to each other. In Fig. 9(b), the experimental SHG ro-
tational anisotropies at the 1S* resonance are compared with
the simulations according to Eq. (22). The parallel and crossed
configurations are realized by fixing ¢ = ¢ and ¢ = ¥ + 90°,
respectively.

As can be seen in Fig. 9(b), the SHG signal, measured
on the 15* line, shows general agreement, but also has some
deviations from the modeling. In particular, the sixfold pattern
of the simulation is reproduced, but with varying intensities
of the individual lobes. On the one hand, this finding can be
explained by the potential presence of residual strain in the
sample. Strain can provide a splitting of the ideally threefold-
degenerate I's exciton. Then, interference of the emission
from the two transversal and the longitudinal exciton state
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(a) o 3ha(1S*) = 2.80685eV (D)
THG excitation scheme [113)
N
& 330 30
< — ~
(- v <
300 60
a /
mA LA Ts / N
270 - % 4/[‘10]
I3 G \‘\ - 9P . /
NS
240 - /120
r v \:....... ..Of/ /
210 150 E® || E®
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FIG. 10. (a) Excitation paths for I's excitons in THG. The dashed
line is a guide to the eye for the virtually excited intermediate
state. Arrows represent photon transitions of I's symmetry. (b) Full
black and open red dots are measured THG data at the 1S* line for
parallel E¢ || E3* and crossed E¢ L E3 configuration, respectively.
The gray shaded area represents the simulation by Eq. (24) with the
ratio C/A = 1.

has to be taken into account, as shown for Cu,O [35]. The
parameters of the exciton splittings under uniaxial stress in
ZnSe can be found in Ref. [27]. On the other hand, also a small
deviation of k§ from the [111] direction can induce mixing of
the exciton states. Note that the 2P-PLE rotational anisotropy
is not affected by interference because prior to emission, the
excitation relaxes into an energetically lower state. During this
process, the information about k vector and polarization of
the excitation is not conserved and, therefore, the coherence
is lost.

A second possible reason for the mismatch between the
SHG experiment and modeling can be photon processes be-
yond the ED approximation. Additionally to the considered
ED transitions, EQ and/or MD transitions may contribute

J

to SHG [8,9]. For example, the I's exciton can be excited
by two photons in ED order and emit a photon in ED
or EQ order, which can interfere resulting in a modified
rotational anisotropy.

The microscopic analysis coincidences with the group-
theory approach for SHG. There is only one path due to
symmetry by which the I's 1S exciton can be excited in ED
approximation. Also, there is only one independent tensor
component Xyy; [13]. An in-depth microscopic analysis re-
veals that the first photon of the two-photon excitation path in
SHG virtually excites a remote band before the second photon
excites the 1S exciton.

F. Third harmonic generation

THG differs from SHG by the increased number of photons
in the excitation process. Therefore, as shown in Eq. (14),
also states of symmetry I's can be excited by three photons.
Furthermore, additional excitation paths become available for
states of a certain symmetry due to the increased number of
intermediate states, which are virtually excited by the photons.
This number of paths is given by the coefficients in Eq. (14).
Let us discuss the case of 3I's as an example, which is illus-
trated in Fig. 10(a). By two photons, states of I'j, '3, and I's
symmetry can be virtually excited. From each of these states
an additional photon of I's symmetry can excite the final 15 I's
state. Thus, the increased number of excitation paths can lead
to signals of different polarizations, which can interfere with
each other. However, a microscopic analysis of the different
paths accounting only for interband transitions and excluding
transitions to remote bands gives further information about
the strengths of each excitation [11]. Analysis shows that the
paths via states I'; and I's are strongest.

The three-photon excitation operator for the light k vector
directed along the crystal [111] direction is given by

2(A — C)cos(3) + (3A + C)[cos(¥) — +/3sin(y)]

1
ODDD(E?, v, A, C) = ﬁ

2(A — C)cos(3¥) + BA 4+ C)[cos(y¥) + /3 sin(y¥)] |- (23)

4cos(P)[—2A + (A — C)cos(2y)]

The parameters A and C give the strength of the paths
via I's and I's, respectively. They can be assigned to tensor
components A = xxyyy and C = xyxxx as in Ref. [11].

Thus, the THG intensity is calculated according to

IP°(A, C) o |Oppp (¥, A, C)On(p)|*. (24)

A comparison of the THG rotational anisotropies at the
15* resonance with simulations using Eq. (24) for C/A =1
is shown in Fig. 10(b). For the parallel configuration, an
isotropic signal intensity is expected from Eq. (24) whereas
in the crossed configuration no signal is allowed. In the
measurement, a slight deviation of the parallel signal from
the expected one is observed and, furthermore, weak THG
intensity with a fourfold pattern is present in the crossed
configuration. Deviations from the expected shape might be
explained by strain in the sample which can disturb the
crystal symmetry, or processes beyond the ED approximation.

(

In Ref. [11], the THG signal in GaAs deviated from the
isotropic shape and was fitted with C/A = 0.82.

In Figs. 11(a) and 11(b), we show expected anisotropy
shapes for the two paths, denoted by A and C, for k® ||
[111] and k® || [001] crystal direction. Figure 11(c) shows
the interference of both paths with A = C. The shapes are
calculated by Eq. (24) with Oppp from Egs. (24) and (A9),
respectively. Particularly for the [001] direction it is interest-
ing and instructive, that each individual path via either I'; or
I's5 state results in strongly modulated diagrams, whereas their
interference for the case A = C results in an isotropic pattern.

G. Fourth harmonic generation

In the case of FHG, four photons are involved in the exci-
tation providing a variety of intermediate states and excitation
paths. The possible paths for a I's exciton in FHG are depicted
in Fig. 12. From the symmetry calculation, several paths can
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be excluded. As shown in Fig. 12 the paths that contain I'5 and
one ['3 intermediate state (e.g., ['s — I's — I's — ['s) give
zero FHG signal. Furthermore, those paths which pass a I's
state result in crossed signal only. Finally, paths that contain
either a I'y (G), or only I's (F) intermediate states result
in a sixfold signal as obtained in the measurement Fig. 13.
The microscopic analysis shows that paths “G” are much more

J

intense than all others. “G” can be identified with the tensor
component Xyxxyz as it requires only one transition through a
remote band (as was the case in SHG).

The four-photon excitation operator for the light k vector
directed along the crystal [111] direction for indistinguishable
paths “G” is given by

[1 4 2cos(2y¥)1[v/3 + 3 cot(y)]sin® ()

1
Oppop (Ef, ¥) = —= x

92

Thus, the FHG intensity is calculated from

1** o |Opppp (¥)Op (@) (26)

A comparison of the FHG rotational anisotropy of the
15* line with the simulation according to Eq. (26) is shown
in Fig. 13. From the simulation the parallel anisotropy is
expected to show a sixfold pattern, as was the case in SHG,
compare with Fig. 9(b). In FHG, the crossed configuration is
expected to show no signal at all.

(@)

k1] [111] k*]| [001]
[112] [010]
EC || E*® 330 30 330
E® L E2 300 60 300 60
‘ 270 [110] 270 [100]
via Ty
A=0 240 120 240 120
c=1 x2
210 "o 150 210 g 150
b 112
(b) 550 1112
300
] 270
via Ty
A= 240
C=0
210 oo
c 112 010
© 330 (112l 30 330 o101 30
300 60 300 60
) 270 [110] 270 [100]
via I';+ly
A=C 240 120 240 120
210 = 150 210 "~ 150

FIG. 11. Expected rotational anisotropies for k“ || [111] (left
side) and k“ || [001] (right side) by Eq. (24) with Oppp from
Egs. (24) and (A9). Panels show calculation for (a) A=0,C =1,
b)A=1,C=0,and (c) A =C.

[1+ 2 cos(2y)]sin(¥)[—3 cos(¥) + +/3sin(y)] |. (25)
V3[—cos(2y) + cos(4y)]

(
H. Rotational anisotropies for various crystal orientations

The calculated rotational anisotropies for S excitons of I's
symmetry in 2P-PLE and optical harmonics generation (up
to FHG) for several crystal orientations are given in Fig. 14.
THG anisotropies are calculated setting A = C. The corre-
sponding excitation operators are presented in the Appendix.
One can see that the shape of the rotational anisotropies is very
close for SHG and FHG. Two-photon absorption is allowed
for all considered orientations. The stricter selection rules for
harmonic generation are illustrated by the fact that for a light
k vector along the high-symmetry direction [001], SHG and
FHG are forbidden. Nevertheless, in particular this forbidden
orientation allows us to study conveniently the field-induced
mechanisms in optical harmonic generation, e.g., magnetic-
field-induced signals [5,7,9]. For the allowed orientations, the
anisotropies present an opportunity to determine the crystal
axis by pattern analysis. Furthermore, even a small tilting of
the sample from the nominal orientation can be noticed and
corrected through anisotropy shapes deviating from the the-
ory. The anisotropies also provide a possibility to resolve state
splittings on the order of eV through the pattern distortions
without the need for high optical resolution [35]. All in all, the
rotational anisotropies are in many respects a valuable tool in
optical harmonic generation.

& FHG 3

& © o &
r._@ ¢ A AR <
5 |
Mok~ Mok Msa rl-T- Msa- Ma-k - Tsh-
Mk~ M-l --- Moot -1
Msk-----lmmmmmmm- - -
|—1 A 4

FIG. 12. Excitation paths for I's excitons in FHG. Dashed lines
are a guide to the eye for virtually excited intermediate states with
corresponding symmetries. Arrows represent photon transitions of
I's symmetry. The result of each path is described at the top line:
“F” and “G” correspond to tensor components of the microscopic
analysis, “zero” means no signal from that path, “crossed” means
only crossed signal from that path.
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4ho(1S*) = 2.80671 eV

—}[71 0]

\ g o . /
240 \ L) /120
~{ b.//
210 ———— 150
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E© ” E4m
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FIG. 13. Full black and open red dots give measured FHG data
at the 15* resonance for parallel E¢ || E* and crossed E¢ L E*
configuration, respectively. The gray shaded area represents the sim-
ulation for parallel configuration by Eq. (26). No signal is expected
in crossed configuration.

VI. CONCLUSIONS

We have extended the recently developed approach of SHG
spectroscopy by excitation with spectrally broad femtosecond
laser pulses and spectrally resolved detection for SHG, THG,
and FHG studies of exciton-polaritons in the semiconductor
ZnSe. The observed spectral shift of the optical harmonic gen-
eration signals from the exciton resonance in the reflectivity
spectrum of about 3.2 meV is well described by the exciton-
polariton dispersion. The experimentally measured rotational
anisotropies for light propagation along the [111] crystal axis
are in good agreement with the group-theory modeling. We
provide simulations also for other crystal orientations and
show that, e.g., the SHG is symmetry forbidden for [001]
orientation, for which therefore application of an external
magnetic field is promising to induce magnetic-field-induced
SHG signals. The developed approach can be readily extended
for other semiconductors and semiconductor heterostructures,

£o [ ENo KO || [111] ke || [170] Ko || [112] k® || [001]
Q) No > _
112
E°LE a0 M 5 330 M1 3 sz MM 59 330 19 45
300 60 | 300 60 | 300 60 300/// \\\60
2P-PLE (270 [110) 270 [111]270 [1101270 % [100]
240 120 | 240 120 | 240 120 | 240 120
210 150 210 150 210 150 210 150
180 180 180 180
szp M4 5 sz 1A 3 330 M1 3 3zp [0 g9
300 60 | 300 60 300/// \\\60
SHG 270 [111]|1270 [170]|270 [100]
240 120 | 240 120 24(& //20
210 150 210 150 210 150
180 180 180
3zp 112 5 330 M4 5 330 M1 3o 330 10101 35
300 60 | 300 60 | 300 60 | 300 60
THG 270 [110] 270 [111])270 [170])270 [100]
240 120 | 240 120 | 240 120 | 240 120
210 150 210 150 210 150 210 150
180 180 180 180
330 112 3o 330 M2 4 330 M1 39 330 _[0101 3
30 300 300
FHG 270 270 [170]270

240

210 1

50
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o

180
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FIG. 14. Calculation of rotational anisotropies for S excitons of I's symmetry in 2P-PLE, SHG, THG, and FHG for several crystal
orientations. Black and red lines give the simulations for parallel E® | E¥® and crossed E® 1 EN® configuration, respectively. THG
anisotropies are calculated using A = C.
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e.g., for exciton-polaritons in microcavities in the strong 1. One-photon emission
coupling regime. One-photon emission operator for kM || [110]:
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APPENDIX: FORMULAS FOR ANISOTROPY

SIMULATION One-photon emission operator for kM || [001]:
Here, we give the explicit forms of the operators Op
which give the one-photon emission and Oyp for excitation —sin(¢p)
in the different harmonic orders. Formulas are shown for Op(EN?, 0) = | cos(e) |. (A3)
ky || [110], [112], and [001]. Note that Opp is the same for
2P-PLE and SHG since in both cases excitation is done by 0

two photons.
J

2. Two-photon excitation

Two-photon excitation operator for k%, || [110]:

—4cos(2y) — +/2sin(2y)
Oop (ES, ) = % x | —4cos@y) — +/2sin@y) |. (A4)
[V2cos(¥) + 2 sin(y)]?

Two-photon excitation operator for k% || [112]:

| 232 cos(Y)[v/2 cos(¥) — v/3sin(¥)]
Obp(ES, ¥) = ke 22 cos(¥)[v2 cos(¥) + /3 sin(y)] |- (AS)
—1+4+5cos(2y)

Two-photon excitation operator for k3, || [001]:

0
Opp (ES, ¥) = 0 . (A6)
—/2 cos(y)sin()

3. Three-photon excitation

Three-photon excitation operator for k% || [110]:

[V2(5A = C)cos? () — 2(3A + C)cos (¥ )sin(yr) + 4+/2Ccos(y)sin? () — 8Asin® ()]
x| [V2(5A — C)cos® () — 2(3A + C)cos?(yY)sin(¥) + 4+/2Ccos (¥ )sin® () — 8Asin® ()]
2[v2cos(¥r) + sin(¥)][=3A — C + (A — C)[cos(2y) + 2+/2sin(2y)]]

1
0 EY, v, A, C)=——
DDD( 3.V ) 1243
(A7)
Three-photon excitation operator for k% || [112]:
2[2 cos(¥) 4+ V6 sin(¥)][4Acos?(¥) + (3A + C)sin®(¥) + v/6(—A + C)sin(2y)]

[2cos(¥) — /6 sin(¥)][7A + C 4 (A — C)[cos(2¥) + 2+/6sin(2y)]] . (A8)
—4 cos(YP)[—5A + C+ (A — C)cos(2yr)]

Oppp (E§, ¥, A, C) = YW X
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Three-photon excitation operator for ky || [001]:

| [3A + C + 3(A — C)cos(2y)]sin(yr)
Oppp(ES, ¥, A, C) = G cos(Y)[3A + C 4 3(—A + C)cos(2y)] |. (A9)

0

4. Four-photon excitation

Four-photon excitation operator for k; || [110]:

—2[—2cos(¥) + v/2sin(y)P[cos(¥) + v/2 sin(y)]

1
Oppop (B, ¥) = —— | —
poop (EY, ¥) YW

Four-photon excitation operator for k% || [112]:

Oboop (Ef, ¥) = 36

Four-photon excitation operator for k§ || [001]:

2[—2cos(¥) + v2sin(¥)P[cos(¥) + v/2 sin(¥)] (A10)
9 + 7 cos(4yr) + 4v/2 sin(4y)
[1 4 5cos(2y)]sin(¥)[—3 cos(¥) + /6 sin(y)]
[1 + 5 cos(2y)]sin(¥)[3 cos(¥) 4+ /6 sin(y)] (A11)
V6sin?(Y)[1 + 5 cos(2y)]
0
Obpop (Ef, ¥) = | 0 (A12)
0
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