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How non-Fermi liquids cure their infrared divergences
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Non-Fermi liquids in d = 2 spatial dimensions can arise from coupling a Fermi surface to a gapless boson.
At finite temperature, however, the perturbative quantum field theory description breaks down due to infrared
divergences. These are caused by virtual static bosonic modes and affect both fermionic and bosonic correlators.
We show how these divergences are resolved by self-consistent boson and fermion self-energies that resum
an infinite class of diagrams and correct the standard Eliashberg equations. Extending a previous approach in
d = 3 − ε dimensions, we find a new “thermal non-Fermi liquid” regime that violates the scaling laws of the
zero-temperature fixed point and dominates over a wide range of scales. We conclude that basic properties of
quantum phase transitions and quantum-classical crossovers at finite temperature are modified in crucial ways in
systems with soft bosonic fluctuations, and we begin a study of some of the phenomenological consequences.
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I. INTRODUCTION

Finite density quantum field theory (QFT) provides a very
promising framework for understanding strongly correlated
electronic systems in two spatial dimensions. Already simple
models, such as a Fermi surface coupled to a light scalar
field, can produce non-Fermi liquid (NFL) behavior. The
light scalar field can appear as an emergent soft bosonic
mode describing an order parameter for symmetry breaking,
or as a gauge field in spin liquids. The Yukawa coupling
to the Fermi surface, generically allowed by symmetries, is
strongly relevant in d = 2 dimensions and can give rise to an
interacting quantum critical point.

So far, these theories have been most developed at zero
temperature, and our goal in this work is to study them at finite
temperature. This is important for phenomenological reasons,
since most experimental and numerical results of strongly
correlated systems are at finite temperature. From a more
conceptual viewpoint, we need to understand how quantum
and thermal fluctuations compete, and the resulting properties
of the “quantum critical region” in the phase diagram [1]. Fur-
thermore, understanding quantum matter at finite temperature
is a central area of research in basic QFT, one that has a long
history at zero density (see, e.g., Ref. [2]).

Finite temperature brings in new infrared divergences that
are absent from the zero-temperature theory. They originate
from the same ingredient that is required to produce a non-
Fermi liquid—exchange of virtual soft bosons. To see how
this comes about, let us consider for concreteness a scalar field
with a linear dispersion relation (we will analyze other disper-
sion relations below). At zero temperature, contributions to
Feynman diagrams from bosonic internal lines are of the form∫

d2qd� 1
q2+�2 , which is finite at small frequency/momenta.

However, at finite temperature, the frequency is quantized in
terms of Matsubara modes, giving

T
∑

n

∫
d2q

q2 + (2πT n)2
= T

∫
d2q

q2
+ T

∑
n �=0

∫
d2q

q2 + (2πT n)2
.

(1.1)

We see that the exchange of the static n = 0 mode leads to
an infrared logarithmic divergence. We can also understand
this by taking a large T limit and dimensionally reducing
on the thermal circle; this gives an effective action with a
two-dimensional euclidean massless scalar, and a logarith-
mically divergent Green’s function at long distances. New
insertions of boson lines in Feynman diagrams will produce
more logarithmic-divergent powers, leading to a breakdown
of perturbation theory. Our aim is to resolve this problem, and
understand how it affects quantum criticality.

Thermal divergences in QFT have received a lot of atten-
tion at zero density, where they can be cured by nonperturba-
tive effects or by resummation of perturbative corrections.1 In
contrast, much less is known about infrared problems at finite
density. Work in this area, both in the condensed matter and
high energy fields, includes [6–17].

The starting point for our analysis is Ref. [14], so let us
briefly summarize its main results. This work focused on
NFLs in an ε expansion around d = 3 dimensions, obtained
by coupling a massless overdamped N × N boson to a Fermi
surface of N-flavor fermions. The infrared divergences were
identified already in the one-loop fermion self-energy, due
to exchange of bosons with zero Matsubara frequency (static
modes). It was argued that, in order to resolve the thermal
divergences, it is necessary to go beyond the usual Eliashberg
equations, by resumming an infinite class of perturbative
corrections (rainbow diagrams). This resummation is exact
when N � 1. The main consequence of this procedure is
that the finite-temperature fermion self-energy develops a
new “thermal” NFL contribution �T (ωn) that comes from
exchange of static modes,

�(ωn) = �T (ωn) + �NFL(ωn) . (1.2)

The last term here comes from virtual bosons with nonzero
Matsubara frequency, has no infrared problems, and recovers

1The literature is vast; some reviews include [2–4]. The title of our
work is motivated by Ref. [5].
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FIG. 1. Depiction of phase diagram at finite temperature. Here � is a dynamical scale that controls the flow to the fixed point and g is the
Yukawa coupling; we take � � g2. The left figure ignores thermal effects and represents the traditional quantum critical region; the right figure
includes �T . In this case there appears a thermal NFL regime, which dominates over a wide range of scales, �2/g2 < T < g2, and modifies
the quantum-classical crossover.

the NFL self-energy of the quantum critical point as T → 0. It
was found that �T � �NFL over a broad range of frequencies
at finite temperature.

In this work, we undertake the analysis of the finite-
temperature dynamics but in d = 2 spatial dimensions.2 For
reasons of perturbative control, we focus on the large N
limit of an overdamped N × N boson and a Fermi surface
of N-flavor fermions, coupled through a Yukawa term [18].
However, the lessons on the origin and resolution of IR
divergences will apply more generally. The main new effect
in decreasing the dimensionality from d = 3 to d = 2 is that
boson divergences become much more severe, as reviewed in
Eq. (1.1). As a result, we will have to go beyond [14]: we will
incorporate quantum corrections to the boson self-energy that
have the effect of modifying Landau damping and inducing a
self-consistent boson mass.

We find that the self-consistent boson and fermion self-
energies � and �, respectively, are dominated at low frequen-
cies by thermal contributions of the form

�(0, q) ∼ λφT , �T ∼
√

g2T , (1.3)

up to logarithmic terms, and where λφ and g are the strengths
of the 4-boson and Yukawa interactions. Similar temperature
scalings are obtained in other setups, e.g., in Refs. [9,19,20].
The resulting finite-temperature QFT is free of IR diver-
gences, depends nonanalytically on the original couplings,
and has a continuous limit T → 0. These results are presented
in Secs. II and III.

In the second part of the work (Sec. IV), we focus on the
consequences of these thermal contributions. (1) We show that
�(0, q) only affects the static mode and is irrelevant for the
higher Matsubara modes. On the other hand, �T dominates
the fermion dynamics over a wide range of frequencies and
temperature. (2) Quantum critical scaling at finite T would
imply a typical thermal length ξT ∼ T −1/z, with dynamical
exponent z = 3/2 here. This scaling is violated by �T , which
instead gives ξT ∼ (g2T )−1/2. (3) The basic picture of quan-
tum phase transitions and the quantum-classical crossover

2Recently, Refs. [16,17] appeared, which have some overlaps with
the results in Sec. III C.

[1] is then dramatically modified by the strong IR effects
mediated by the soft boson. We expect the new thermal expo-
nent ξT ∼ (g2T )−1/2 to change various observable quantities
(thermodynamics and transport). We illustrate these results in
Fig. 1.

We end the paper with a discussion and future directions
in Sec. V. We also present various detailed calculations in
Appendices.

II. BOSON-FERMION MODEL AT FINITE TEMPERATURE

Although our analysis can be carried out more generally,
we will focus on a simple fermion-boson model that features
a controlled quantum critical point: a spherical Fermi sur-
face of an N-component fermion, coupled to an overdamped
N × N massless boson, with zb = 3 dynamical exponent. It is
described by the euclidean action S = S f + Sb + SY , with3

S f = −
∫

ω,p
ψ

†
i (iω − εp)ψ i,

Sb = 1

2

∫
�,q

φ
j
i

(
q2 + M2

D

|�|
q

)
φi

j,

SY = g√
N

∫
ω,p

∫
�,q

φi
j (�, q)ψ†

i (ω, p)ψ j (ω − �, p − q) .

(2.1)

Note that we start with an overdamped scalar field; it can
arise as an order parameter, or as the magnetic component
of a gauge field. We take MD as the UV energy scale in the
problem, above which a microscopic theory (such as a lattice
construction) is needed. We have tuned to zero a possible bare
mass term, in order to approach the quantum critical point. We
take N � 1 with fixed g.

We restrict to low energies near the Fermi surface,
linearizing

εp = p2

2m
− μF ≈ vp⊥ , (2.2)

3The integrals are short-hand for
∫

ω,p = ∫
dω

2π

d2 p
(2π )2 .
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FIG. 2. One loop boson and fermion self-energies. The wiggly
line represents a boson, and the straight line is a fermion; frequencies
are omitted to avoid cluttering the diagrams.

with 
p = n̂(kF + p⊥). Here n̂ is a unit vector on the Fermi
surface, kF = √

2mμF , and v = kF /m. From the Yukawa
interaction, the boson momentum 
q · n̂ transverse to the Fermi
surface scales like a difference of fermion momenta. Near the
position n̂ on the Fermi surface, we shall then decompose

q = q⊥n̂ + 
q‖. Furthermore, we denote the relative angle by
cos θ = 
q · n̂/q.

At large N with fixed MD, the quantum dynamics leads to
a critical point that is one-loop exact, recently described in
[18]. Corrections to the boson propagator are all suppressed
by 1/N , but there is a leading one-loop fermion self-energy,

�(ω) = g2

2π
√

3v

1

M2/3
D

sgn(ω) |ω|2/3 . (2.3)

Higher nonplanar loop diagrams are also suppressed by 1/N .
Therefore, below the dynamical scale

� = g6

(2π
√

3 v)3M2
D

, (2.4)

the system flows to a nontrivial NFL with a zb = 3 boson
(q3 ∼ M2

D|�|) and z f = 3/2 fermion (p⊥ ∼ �1/3|ω|2/3). For
more details see Refs. [18,21–23]. We will next consider the
fate of this fixed point at finite temperature.

A. Origin of infrared divergences

At finite temperature, frequency integrals are replaced by
Matsubara sums over discrete bosonic (�n) and fermionic
(ωn) frequencies,

�n = 2πT n , ωn = (2n + 1)πT . (2.5)

In the action (2.1), there are two one-loop corrections shown
in Fig. 2: a fermion bubble that modifies the bosonic prop-
agator, and a one-loop fermion self-energy. In terms of the

tree-level propagators

D(�n, q) = 1

q2 + M2
D

|�n|
q

, G(ωn, p) = − 1

iωn − vp⊥
,

(2.6)
the two one-loop effects are given, respectively, by

�(�n, q) = g2

N
T

∑
m

∫
p

G(ωm, p)G(ωm + �n, p + q),

i�(ωn) = g2T
∑

m

∫
q

D(�m, q) G(ωn + �m, p + q) . (2.7)

The zb = 3 scaling implies that the dependence of the
fermion self-energy on the external momentum p⊥ is sup-
pressed by MD, and hence we can neglect it. For this reason,
in what follows it will be sufficient to take p⊥ = 0, so that the
momentum lies on the Fermi surface, 
p = n̂kF . The indepen-
dence on p⊥ is required for making the analysis tractable.

Let us consider the Landau damping correction first. A
short calculation reproduced in Appendix A obtains

�(�n, q) = kF
g2

2πvN

|�n|√
�2

n + (vq)2
. (2.8)

This is the same as the one-loop Landau damping function
at zero temperature. This result is important: it shows that
there are no thermal divergences due to fermion bubbles and,
crucially for what follows, no boson thermal mass is generated
from this diagram, namely �(0, q) = 0. The original tuning
of the bare mass to reach the T = 0 fixed point is sufficient
to keep the boson massless at finite T (at this order). Finally,
in the z = 3 scaling regime, q3 ∼ M2

D|�n|, and � ∼ |�n|/q.
This is of the form of the original kinetic term, but suppressed
by 1/N . In spite of this suppression, we had to go over this
derivation to ensure that there is no mass (and no divergences)
from this contribution, which otherwise would have been the
leading term in the propagator at low frequencies.

Now we come to the fermion self-energy. Denoting the
angle between the external fermionic momentum (the position
on the Fermi surface) and the internal boson momentum q by
θ we have, more explicitly

i�(ωn) = −g2T
∑

m

∫
dθ

2π

qdq

2π
D(iωn − iωm, q)

× 1

iωm − vq cos θ
. (2.9)

Peforming the angular integral gives

i�(ωn) = i
g2

2π
T

∑
m

∫
qdq

sgn(ωm)√
ω2

m + (vq)2
D(iωn − iωm, q) .

(2.10)
We split the Matsubara sum into the m = n mode and the other
ones, and use the fact that

D(0, q) = 1

q2
. (2.11)
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Then

�(ωn) = g2

2π
T

{ ∫
dq

q

sgn(ωn)√
ω2

n + (vq)2

+
∑
m �=n

∫
qdq

sgn(ωm)√
ω2

m + (vq)2
D(iωn − iωm, q)

}
.

(2.12)

We thus find a logarithmic IR divergence
∫

dq/q in the m = n
contribution, from an exchange of a virtual static boson.

Our derivation so far was for general D(�, q), as long as
(2.11) is satisfied. This emphasizes that the infrared diver-
gence is quite generic and is associated to a static boson with
self-energy �(0, q) = 0. This will afflict other NFL models
with soft bosons as well. We see that the resolution of this
problem requires a mechanism to produce �(0, q) �= 0.

As in Ref. [14], the self-energy is a sum a thermal part and
a NFL part,

�(ωn) = �T (ωn) + �NFL(ωn) , (2.13)

where �T (ωn) contains the virtual static boson alone, while
�NFL(ωn) includes all the other terms:

�NFL(ωn)= g2

2π
T

∑
m �=n

∫
qdq

sgn(ωm)√
ω2

m + (vq)2
D(iωn−iωm, q) .

(2.14)

This contribution is expected to be free of IR divergences,
and should reproduce the NFL behavior as T → 0. To see
this at one loop, we use the tree-level form of the boson
propagator (2.6). The integral over q in the NFL part of (2.12)
is dominated by the bosonic z = 3 scaling, and gives

�NFL(ωn) ≈ g2T

3
√

3v

∑
m �=n

sgn(ωm)(
M2

D|ωm − ωn|
)1/3 . (2.15)

As discussed in Appendix A, this sum can be made in terms
of (generalized) Riemann zeta functions, obtaining

�NFL(ωn)

sgn(ωn)
≈�1/3(2πT )2/3 2

3

[
ζ

(
1

3

)
−ζ

(
1

3
, |n + 1

2
| + 1

2

)]
(2.16)

with � the NFL scale (2.4). Low temperature
means T � |ωn|, so that |n| � 1. In this limit,
2
3 (ζ ( 1

3 ) − ζ ( 1
3 , |n + 1

2 | + 1
2 )) ≈ |n|2/3, and we indeed recover

the NFL result (2.3). In contrast, so far the additional
contribution �T (ωn) is divergent, and higher loop diagrams
will contain additional powers of the IR singularity. So
thermal perturbation theory breaks down.

We note that the separation into thermal and quantum
contributions (2.13) was also found before in Ref. [20]. This
work performed a real time analysis in metallic systems
near a symmetry-breaking Pomeranchuk instability. The phe-
nomenology of this model is similar to the one we find below
(temperature scaling of �T and violation of quantum critical
scaling described in Sec. IV).

The last source of divergences at one loop comes from a
φ4 interaction. This has been neglected so far because it is
irrelevant at the fixed point. However, it gives a logarithmi-
cally divergent contribution to the boson mass, coming from

FIG. 3. Rainbow diagrams for the fermion self-energy. They all
have the same leading in N behavior.

virtual modes with �n = 0. This will be discussed in detail in
Sec. III.

At this stage, it is useful to make make contact with some
previous approaches. The form (2.15) is quite familiar in
various contexts, and its generalization

�NFL(ωn) = gγ

1πT
∑
m �=n

sgn(ωm)

|ωm − ωn|γ (2.17)

(with g1 a coupling with dimensions of energy) covers a wide
range of NFL behavior. See Refs. [24–26] for further details
and references. The usual approach is to also take (2.17) to
describe the full self-energy, ignoring �T (ωn) and discarding
the m = n contribution. As explained for instance in Ref. [25],
for calculations of superconductivity this can sometimes be
justified by a rescaling procedure (similar to Anderson’s the-
orem). However, this leaves the physical fermionic Green’s
function undetermined up to an overall scale. As a result, the
phenomenological consequences of the NFL theory at finite
T cannot be determined, and the question of how infrared
divergences are resolved is left unanswered. Here we will seek
instead a self-consistent way of determining a finite �T (ωn).

B. ε-expansion and SD equations

To obtain a better characterization of the divergence, let us
regularize it by deforming the dimensionality to d = 2 + ε,
with ε � 1. Then

�T (ωn) ≈ sgn(ωn)
vεT

2πε

1

|ωn|1−ε
. (2.18)

The 1/ε factor is equivalent to the log divergence discussed
above. On the other hand, the NFL part can be evaluated in
terms of zeta functions as in (2.18)

�NFL(ωn) = g2

2π
√

3v

1

M
2
3 (1−ε)

D

(2πT )
2+ε

3 sgn(ωn)

× 2

3

[
ζ

(
1 − ε

3

)
− ζ

(
1 − ε

3
, |n + 1

2
| + 1

2

)]
(2.19)

and gives, at low temperatures,

�NFL(ωn) ≈ �
1−ε

3 sgn(ωn)|ωn| 2+ε
3 . (2.20)

Reference [14] studied IR divergences in NFLs, in an ε ex-
pansion around d = 3 spatial dimensions. The main result was
that resumming an infinite class of perturbative corrections
(rainbow diagrams) resolves the thermal singularities. Let us
apply the same method here, now in 2 + ε dimensions. The
rainbow diagrams to be resummed are shown in Fig. 3. These
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diagrams are all leading order in N , while other contributions
are subleading in N .

Introducing the notation

A(ωn) ≡ ωn + �(ωn) , (2.21)

the resummation of rainbow diagrams can be written as a
Schwinger-Dyson equation for �(ωn):

�(ωn) = g2

2π
T

{ ∫
dq

q1−ε

sgn(ωn)√
A(ωn)2 + (vq)2

+
∑
m �=n

∫
q1+εdq

q2 + M2
D

|ωm−ωn|
q

sgn(ωm)√
A(ωm)2 + (vq)2

}
.

(2.22)

Solving this perturbatively in g2 reproduces the sum of rain-
bows. The second line in (2.22) is well-approximated by the
NFL answer (2.19).4 Performing the momentum integral in
the first line, and writing � = �T + �NFL, we arrive to the
following form of the Schwinger-Dyson equation:

�T (ωn) = sgn(ωn)
vεg2T

2πε

1

|ωn + �T (ωn) + �NFL(ωn)|1−ε
.

(2.23)

This is an equation that determines �T (ωn) explicitly.
Equation (2.23) is easy to solve numerically. However, for

our purpose here, it is sufficient to develop intuition about
�T (ωn) by focusing on the low frequency and low temper-
ature behavior, where both ωn and �NFL(ωn) can be neglected
in the right-hand side of (2.23). (In fact, �NFL(±πT ) ≈ 0.)
Then we find

�T (ωn) ≈ sgn(ωn)

(
vε

2πε
g2T

) 1
2−ε

. (2.24)

This result has several implications.
Taking the limit ε → 0, the resummed �T (ωn) still di-

verges. So, in contrast with Ref. [14], rainbow resummation
has not been enough to cure the IR divergence here. Never-
theless, note that the order of the divergence has decreased
from 1/ε at one loop, to 1/ε1/2 at all orders. Another aspect to
emphasize in (2.24) is the dependence on T : as ε → 0, we find
�T ∼ (g2T )1/2. In Sec. III, we will see that this parametric
dependence is essentially correct, with the 1/ε1/2 singularity
getting resolved by a self-consistent boson thermal mass.

We can also compare with the results of [14] around d = 3
by taking ε → 1. Replacing ε = d − 2 and taking d → 3,
(2.24) reproduces Eq. (4.11) in that reference. Furthermore,
we see explicitly that there is no divergence in this limit,
and rainbow resummation is enough to resolve the thermal
divergences.5

4This is because in the z = 3 approximation, this piece is actually
independent of A(ωn). This is valid as long as A(ω) � M2/3

D |ω|1/3

at low frequencies or temperatures, something that can be checked
self-consistently at fixed ε.

5However, we note that even if (2.18) is finite as ε → 1, it still
diverges after analytically continuing to real time and taking frequen-
cies p0 → 0. This problem is solved by rainbow resummation.

FIG. 4. Schwinger-Dyson equations for boson and fermion self-
energies.

We can try a more general approach by allowing �(�, q)
to also adjust self-consistently, solving a coupled system of
Schwinger-Dyson equations for the boson and fermion self-
energies in the Yukawa model. These are shown in Fig. 4.

Explicitly, the equations for d = 2 are

�(�n, q) = kF
g2

N
T

∑
m

∫
d p⊥
2π

dθ

2π

1

iA(ωm) − vp⊥

× 1

iA(ωm + �n) − v(p⊥ + q cos θ )
,

i�(ωn) = −g2T
∑

m

∫
qdq

2π

dθ

2π

1

iA(ωm) − vq cos θ

× 1

q2 + M2
D

|ωm−ωn|
q + �(ωm − ωn, q)

, (2.25)

with A(ωn) defined in (2.21). Performing the angular and
momentum integrals obtains

�(�n, q) = kF
g2

vN
sgn(�n) T

×
∑

m

�(ωm + �n) − �(ωm)√
[A(ωm + �n) − A(ωm)]2 + (vq)2

(2.26)

and

�(ωn) = g2

2π
T

∑
m

∫
qdq

sgn(ωm)√
A(ωm)2 + (vq)2

× 1

q2 + M2
D

|ωm−ωn|
q + �(ωm − ωn, q)

. (2.27)

From (2.26), �(0, q) = 0 for any �(ωn) – the two poles in
(2.25) are on the same side. Plugging this into (2.27) then
gives a divergence from the term m = n in the sum. So
the boson-fermion system with a Yukawa interaction fails to
resolve the infrared problem.
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III. RESOLUTION OF THE INFRARED DIVERGENCES

So far we have characterized the IR divergences in our
finite density QFT, and have argued that they are not rendered
finite in the boson-fermion action with just a Yukawa cou-
pling. In this section we will argue that the φ4 interaction—-
which we have not discussed so far because it is irrelevant—
actually becomes important for the static boson mode, and
provides a natural resolution of thermal divergences through a
self-consistent boson mass. We will then add this term to the
fermion sector and perform a rainbow resummation in order
to obtain a self-consistent fermion self-energy.

A. A dangerous irrelevant operator in the thermal theory

Let us focus in more detail on the purely bosonic sector,
with the addition of a (single trace) φ4 interaction,

Sb =
∫

d�

2π

d2q

(2π )2

1

2
tr

{
φq

(
q2 + M2

D

|�|
q

)
φ−q

}

+ λφ

8N

∫ 3∏
i=1

d�i

2π

d2qi

(2π )2
tr(φq1φq2φq3φ−q1−q2−q3 ) . (3.1)

The tr(φ4) interaction is allowed by symmetries (note that it
respects the global SU (N ) symmetry). It is familiar from the
Ising fixed point; if φ comes from a gauge field, it arises from
the kinetic term of the gauge field. It also arises generically
in lattice constructions. We keep λφ fixed at large N , in order
to have a finite perturbative expansion. For consistency, we
also choose the coupling to be smaller than the UV cutoff,
λφ < MD.

Before proceeding, let us also point out that, already at one
loop, fermions induce an effective φ4 interaction. We will,
however, neglect this quantum correction compared to (3.1)
for two reasons. First, in our large N limit, this effect is of
order g4/N2, much smaller than λφ/N for fixed couplings. The
other reason is dynamical: the quantum term vanishes when
all external frequencies are zero; the same effect has already
been observed in (2.26) for the one-loop correction with two
external boson lines. This means that bosonic modes with
strictly nonzero Matsubara frequency appear in this term; but,
as argued below in (3.4), such modes give small contributions
in the low energy effective theory.

Here we want to understand the effects of tr(φ4) on the
dynamics of the theory. The coupling has engineering dimen-
sions of an energy scale, [λφ] = 1, the same as g2. However, to
quantify whether it can lead to important quantum corrections,
we need its scaling dimension in the renormalization group
sense. Consider first what happens at zero temperature. The
quadratic term in Sb is invariant under the scale transforma-
tions

� → es� , q → e
s
3 q , φ → e− 7

6 sφ , (3.2)

where the difference in scaling between frequency and mo-
menta reflects the zb = 3 dynamical exponent. Under this
scaling, the coupling transforms as

λφ → e− s
3 λφ . (3.3)

This negative scaling dimension means that λφ is irrelevant
at the fixed point of the zb = 3 damped boson. Quantum

corrections at a given energy scale E will come in powers of
the dimensionless combination λφE1/3, and these vanish in the
low energy limit E → 0.

So at zero temperature, we can neglect the effects of λφ

at the fixed point, and this is indeed what we have done so
far. However, the behavior at finite temperature turns out to be
quite different. At low energies and momenta,

E � T, q � (
2πT M2

D

)1/3
, (3.4)

there is a large thermal gap of order 2πT between the zero
mode and the higher Matsubara modes. So the low energy
theory contains only the static mode

φ̃(q) ≡ T 1/2φ(�n = 0, q) , (3.5)

and the action becomes

Seff =
∫

d2q

(2π )2

1

2
tr (φ̃qq2φ̃−q)

+ λφT

8N

∫ 3∏
i=1

d2qi

(2π )2
tr(φ̃q1 φ̃q2 φ̃q3 φ̃−q1−q2−q3 ) . (3.6)

This is an euclidean action for a two-dimensional scalar field
φ̃, canonically normalized, and with quartic coupling λφT .

Under a scale transformation6 q → e
s
3 q, we now have

φ̃ → e− 2
3 sφ̃ , λφT → e

2
3 sλφT . (3.7)

So in the effective theory for the static mode, the coupling
λφT has positive scaling dimension at the gaussian fixed point
and becomes relevant. The operator φ4 then changes from
irrelevant in the 2 + 1-dimensional theory (high energies/low
temperatures) to relevant in the two-dimensional effective
theory (low energies/high temperatures). We call this a “dan-
gerous irrelevant operator” in the thermal theory. The name
is inspired by a phenomenon sometimes seen in RG flows,
whereby an irrelevant operator at high energies becomes
relevant at low energies.7 However, we should stress that there
are important differences between this and the thermal case
where, as we just saw, a dimensional reduction on the thermal
circle is operating.

To sum up, the bosonic sector contains an operator tr(φ4),
allowed by symmetries, which is irrelevant at the zero-
temperature fixed point, but becomes relevant at finite tem-
perature. We will next determine its effects on the dynamics
of the theory.

B. Self-consistent boson mass

We will carry out our analysis using the low energy ef-
fective theory of the static mode, valid up to a cutoff q <

(2πM2
DT )1/3. The same result is reproduced including all the

Matsubara modes in Appendix B. With the addition of the φ4

interaction, the bosonic sector now has its own IR divergences
from exchange of virtual static bosons. For instance, there is a

6We keep the definition of scaling dimension of q from (3.2) so that
we can compare with the behavior at T = 0.

7See Ref. [27] for a nice review in the relativistic setup.
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FIG. 5. Quantum corrections from boson bubble diagrams.

one-loop contribution to the boson mass,

m2
b = λφT

∫
d2q

(2π )2

1

q2
, (3.8)

which diverges logarithmically with an IR cutoff.
The divergence is resolved by summing the boson bubble

diagrams, shown in Fig. 5. This can be written as a self-
consistent equation for a boson mass,

m2
b = λφT

∫
d2q

(2π )2

1

q2 + m2
b

. (3.9)

Integrating up to the cutoff of the effective theory gives

m2
b = λφT

4π
ln

((
2πT M2

D

)2/3 + m2
b

m2
b

)
. (3.10)

At weak coupling,

m2
b ≈ λφT

4π
ln

(
4π

(
2πT M2

D

)2/3

λφT

)
. (3.11)

The argument in the logarithm is the ratio between the cutoff
(2πT M2

D)2/3 of the effective theory and the coupling λφT .
So by resumming the bubble diagrams we find a finite self-
consistent boson mass, which cures the IR divergences. The
mass is not analytic in λφ at weak coupling; we would then
find divergences if we tried to expand it around λφ = 0, which
explains the failure of the original perturbative expansion.

The result (3.11) used weak coupling, and we need to check
whether the flow of the relevant interaction λφT towards
strong coupling does not invalidate this. The strong coupling
regime is avoided if the mass gap is larger than the scale set
by the interaction; this requires

m2
b � λφT

4π
. (3.12)

Indeed, the diagrammatic expansion is given in powers of the
dimensionless ratio λφT/(4πm2

b ). Equation (3.12) is guaran-
teed by the large logarithm in (3.11), and this is a consequence
of (λφT )/(M2

DT )2/3 � 1. Therefore, the effective theory of
the zero mode never flows to strong coupling, and Eq. (3.11)
is valid.8

This mass also arises for the higher Matsubara modes, but
it is irrelevant on their dynamics. This follows from their
zb = 3 scaling. Indeed, at a given temperature T , they have

8A related mechanism operates in gauge theories in 2 + 1 dimen-
sions; see, e.g., Ref. [28]. Another instance of a self-consistent boson
mass occurs in the Ising nematic case [12].

momenta q2 ∼ (M2
D2πT n)2/3. So the relative size of the mass

is

m2
b

q2
� λφT

4π
(
M2

D2πT
)2/3 � 1 , (3.13)

for all temperatures below the UV cutoff MD, as long as
λφ/MD < 1. The thermal gap then has a negligible effect on
all Matsubara modes except for the static one.

C. The fermion self-energy

We will next determine the backreaction of m2
b on the

fermionic sector, and its role in resolving the thermal
divergences.

As we argued in the previous section, the thermal mass
only has an appreciable effect on the static mode, so it is suffi-
cient to approximate the fermion Schwinger-Dyson equation
(2.25) by

�(ωn) ≈ g2

2π
T

{∫
qdq

q2 + m2
b

sgn(ωn)√
A(ωn)2 + (vq)2

+
∑
m �=n

∫
qdq

q2 + M2
D

|ωm−ωn|
q

sgn(ωm)√
A(ωm)2 + (vq)2

}
.

(3.14)

The first term violates quantum critical scaling and the fac-
torization of transverse and tangential momenta on the Fermi
surface [14]. It gives a thermal correction to the standard
Eliashberg equations that describe the normal state of the
fermionic sector.

We will find self-consistently below that A(ωn) can be
neglected in the second line of (3.14). Performing the momen-
tum integrals with this approximation, obtains

�(ωn) = g2T

2π

ln

(
An
vmb

+
√(

An
vmb

)2
− 1

)
√

A2
n − v2m2

b

+ �NFL(ωn) ,

(3.15)

where we recall that A(ωn) = ωn + �(ωn), �NFL(ωn) was
given in (2.19). For simplicity, we shall focus on ωn > 0 to
avoid having to write the sign of the Matsubara frequency
in all formulas. This equation determines explicitly the ther-
mal part �T (ωn) in the decomposition �(ωn) = �T (ωn) +
�NFL(ωn),

�T (ωn) = g2T

2π

ln

(
An
vmb

+
√(

An
vmb

)2
− 1

)
√

A2
n − v2m2

b

. (3.16)

Let us analyze first the behavior for the first Matsubara
mode, ωn = ±πT , for which �NFL(±πT ) = 0 within the
previous approximation. We will work first at sufficiently
small temperatures (determined below) so that it is consistent
to neglect πT compared to �T in An, for the first modes. The
equation can be brought to a more convenient form by the
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change of variables

�T (πT ) = vmb u(η) , η ≡ g2T

2πv2m2
b

, (3.17)

so that (3.16) becomes

u(η) = η
ln(u(η) +

√
u(η)2 − 1)√

u(η)2 − 1
. (3.18)

This equation can be solved numerically, and we find the
asymptotic behavior

u(η) ∼
{

π
2 η , when η � 1√

1
2η ln(η) , when η � 1

. (3.19)

For η � 1 (valid except at exponentially low temperatures),
our final result for the thermal part of the fermion self-
energy is

�T (πT ) ≈
(

g2T

4π
ln

(
g2T

2πv2m2
b

))1/2

. (3.20)

We conclude that the self-consistent boson mass cuts off the
IR divergences, and combining this with rainbow resumma-
tion leads to a finite answer �T ∼

√
g2T .

The condition to neglect ωn compared to �T (ωn) for ωn =
πT is then T � g2. For T � g2, we can instead neglect
�T in the right-hand side of (3.16), and it gives �T (πT ) ≈
g2/(2π2). The contribution of the thermal part to A(πT ) is
then negligible in this regime.

It remains to analyze �T (ωn) for higher frequencies. For
this, we can solve (3.16) numerically, but it is useful to
develop intuition about the different regimes. Let us again
work at low temperatures (we will fix the temperature window
shortly). For the first Matsubara modes, we expect �T (ωn)
to dominate over �NFL(ωn) in the right-hand side of (3.16).
Then the solution for �T (ωn) is approximately the same as in
(3.20). The NFL part starts to compete with the thermal part,
�NFL(ωn) ∼ �T (ωn), at frequencies of order

�T (T ) ≈ g3/2T 3/4

�1/2
. (3.21)

For simplicity of presentation, we avoid writing order one
constants and logarithmic corrections, though these are taken
into account in the numerical result below. For scales �T <

ωn < �, �NFL(ωn) will dominate in (3.16); and for � < ωn <

MD (recall that MD is taken as the highest energy scale in
our approach), the Fermi-liquid term A(ωn) ∼ ωn dominates
instead. Combining these regimes obtains

�T (ωn) =

⎧⎪⎪⎨
⎪⎪⎩

( g2T
4π

ln
( g2T

2πv2m2
b

))1/2
, ωn < �T

g2T
2π

ln (2�NFL(ωn )/vmb)
�NFL(ωn ) , �T < ωn < �

g2T
2π

ln (2ωn/vmb)
ωn

, � < ωn < MD

.

(3.22)

The existence of these three regimes requires �T (T ) < � or,
equivalently, T/� < �/g2. We show the numerical solution
and the first two analytic behaviors in Fig. 6.

For larger temperatures, we find that the intermediate NFL
regime is absent – this is an important dynamical consequence

FIG. 6. Log-log plot of the numerical solution for �T (ωn), for
T/MD = 10−13, g/MD = 1, and λφ/MD = 10−2. The thermal and
NFL regimes of (3.22) are also shown.

of the thermal corrections, which we explore more in Sec. IV.
In this case,

�T (ωn) =
{( g2T

4π
ln

( g2T
2πv2m2

b

))1/2
, ωn < �′

T
g2T
2π

ln (2ωn/vmb)
ωn

, �′
T < ωn < MD

,

(3.23)

with transition scale

�′
T (T ) ≈

√
g2T . (3.24)

The second regime in (3.23) was also recently found in
Ref. [17], where it was argued to be relevant for matching
quantum Monte Carlo results [29].

We should also verify our assumption that A(ωm) � vq in
the second line of (3.14), which allowed us to replace that
term by �NFL(ωn) of (2.16). The only new possibility here is
that the thermal term �T violates the z = 3 scaling form of the
T = 0 result. So it is sufficient to approximate A(ωn) ≈ �T .
Changing variables to vq/�T , it is not hard to see that the
z = 3 result will continue to hold as long as

M2
D|ωm − ωn|
(�T /v)3

∼ M3/2
D

g3

M1/2
D

T 1/2
� 1 . (3.25)

This is always satisfied in our theory. See Sec. IV for more
details on the relations obeyed by these energy scales.

To end, it is important to stress that �T (ωn) is not deter-
mined by the T = 0 dynamics, and violates the scaling laws
of the quantum critical point. These would require �T ∼ T 2/3,
but instead we find �T ∼ T 1/2.

IV. PHENOMENOLOGICAL CONSEQUENCES

With a view towards phenomenological applications, in
this section, we will put together our previous results, and
study their consequences for quantum criticality at finite
temperature and frequencies. We will also comment on BCS
pairing interactions and superconductivity.

At zero temperature, the dimensionful scales are MD (the
UV cutoff), the relevant coupling g that is responsible for
the quantum critical point, and the strength λφ of the φ4

interaction. We will choose to work at weak coupling g2 �
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MD. Then the NFL scale below which the system flows to the
quantum critical point is [see (2.5)]

� ≈
(

g2

MD

)2

g2 (4.1)

and we have

� � g2 � MD . (4.2)

Furthermore, since λφ is irrelevant at the fixed point, it is
natural to take it to be small, λφ � g2. We will now discuss the
rich dynamics that ensues from turning on finite temperature,
and the competition between quantum and thermal effects.

A. Quantum and thermal dynamics

We discuss the behavior of the fermionic A(ωn) = ωn +
�T (ωn) + �NFL(ωn) which, according to Sec. III C, depends
strongly on T and ωn. We will focus on the parametric
dependence, avoiding order one numerical factors for clarity
of presentation. We distinguish four ranges of temperatures.

(1) T = 0.

A(ω) ≈
{
�1/3ω2/3 , ω < �

ω , � < ω < MD
. (4.3)

(2) 0 < T < (�/g2)�.

A(ωn) ≈
⎧⎨
⎩

√
g2T , ωn < �T

�1/3ω2/3
n , �T < ωn < �

ωn , � < ωn < MD

. (4.4)

We recall that

�T (T )

�
≈

(
g2

�

)3/4(
T

�

)3/4

. (4.5)

So in the current range of temperatures, �T (T ) < �, and
the three different behaviors arise—thermal NFL, quantum
NFL, and Fermi liquid. A large number of Matsubara modes
belong to each of these regimes. As the temperature increases,
the scale separation between �T and � decreases, eventually
shrinking to zero for T/� ≈ �/g2.

(3) (�/g2)� < T < g2.

A(ωn) ≈
{√

g2T , ωn < �′
T

ωn , �′
T < ω < MD

. (4.6)

In this range the quantum NFL disappears, and the fermionic
behavior transitions from thermal NFL directly into the Fermi
liquid regime, at a scale

�′
T (T )

�
≈

(
g2

�

)1/2(
T

�

)1/2

. (4.7)

Note that �T = �′
T at the boundary T/� = �/g2 between

(2) and (3). The disappearance of the quantum NFL regime is
a consequence of the strong IR divergences. Indeed, ignoring
�T , the NFL behavior disappears at T ≈ �. But here this
happens instead for T ≈ (�/g2)� � �.

(4) g2 < T < MD.

A(ωn) ≈ ωn , ωn < MD . (4.8)

The totality of the fermionic modes present a linear disper-
sion, thus being a standard Fermi liquid (FL) regime.

FIG. 7. Behavior of the fermionic A(ωn) in (T, ωn). The two
curves delimiting the thermal NFL region from above are �T (T )/�
and �′

T (T )/�.

We combine these results in Fig. 7. This diagram sum-
marizes the interplay between quantum, thermal and Fermi-
liquid effects. For instance, fixing a frequency πT < ω < �

and increasing the temperature, gives quantum NFL, thermal
NFL, and FL behavior. The quantum critical region, defined
as the regime controlled by the T = 0 fixed point scaling,
then extends up to a temperature �T (T ) ∼ ω. At higher
temperatures, a different type of NFL behavior emerges—the
thermal regime associated to nonperturbative effects from
static modes. This is not controlled by the quantum critical
point scaling. Eventually, for T ∼ g2, a standard FL regime
appears. A plot of this type was given in Fig. 1. Similar
conclusions were reached in the nematic system [20] and for
d = 3 − ε [14].

It only remains to check whether the Green’s function of
the boson is modified in these regimes. Taking into account
the restrictions from the Heaviside functions on the Matsubara
sum in (2.28),

�(�m, q) = kF g2

vN
T

×
m∑

n=1

1√
(|A(ωn + �m)| + |A(ωn)|)2 + (vq)2

.

(4.9)

Neglecting A(ω) compared to vq leads to a Landau damping
for a zb = 3 boson. However, now we want to determine
whether effects from A(ω) here can be important.

For this, let us focus on the first regime above, with T/� <

�/g2, so that �T < �. The Matsubara sum is constrained by
the external frequency �m. In order to check whether the new
thermal part �T can modify the boson self-energy, we can
consider �m < �T ; then for all the Matsubara modes in the
sum A(ω) ≈ �T and we have

�(�m, q) = kF g2

2πvN

|�m|√
(2�T )2 + (vq)2

. (4.10)

Taking q → 0 gives

�(�m, 0) = kF g2

4πvN�T
|�m| . (4.11)
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This is an interesting modification from the Fermi-liquid re-
sult (2.9), which instead gives a mass term in this limit. A self-
energy that is linear in frequency could give a zb = 2 boson;
however, it is not hard to check that this does not happen near
the mass-shell, q2 ∼ �(�, q), since there (vq) � �T . Hence
on-shell bosons do not obey a zb = 2 scaling, something also
observed in Ref. [13]. Nevertheless, there can be off-shell
processes for which (4.11) matters, as discussed recently in
Ref. [16] in connection with the Monte Carlo results [29–33].

We conclude that, while thermal contributions modify the
fermion dynamics in important ways, their effects on the bo-
son are negligible on-shell, besides the thermal boson mass for
the static mode. Recalling (3.13), for most of the Matsubara
modes we obtain a nearly gapless zb = 3 Green’s function at
finite temperature and at the nonperturbative order that we
have worked.

B. BCS interactions and superconductivity

One of the main consequences of our results is that, due
to the self-consistent boson mass and the resolution of IR
divergences, the dynamics is continuous as T → 0. This is
generally expected in QFT, and we have shown how it works
out in detail at finite density. On the other hand, so far we have
not included the BCS 4-Fermi interaction, which becomes
relevant at one loop and could induce a superconducting
instability. In fact, the formation of a superconducting gap can
also resolve IR divergences and hence can compete with the
mechanism we have presented in previous sections. We will
see, however, that this does not occur as long as N > 8.

For this purpose, we shall study the interplay between pair-
ing interactions and typical effects of incoherence due to NFL
dynamics, establishing the absence of pairing instabilities at
large N . We do this at T = 0, postponing the treatment at finite
temperature to a future work. Because of continuity between
the zero- and finite-temperature theories, we expect that our
results will also hold at finite temperature.9

We extend the approach developed in Refs. [23,34] for
d = 3 − ε to d = 2. Our conclusions will be qualitatively
similar: we will find a critical value Nc, such that for N > Nc

the system does not superconduct but instead develops critical
BCS interactions. For N < Nc a superconducting instability
develops; both regimes are separated by an infinite order
BKT-type transition as N → Nc.

Pairing interactions are driven by the standard marginal 4-
fermion BCS interaction. Since the leading contribution of the
boson exchange to this interaction arises in the s-channel, we
will focus on this case,

SBCS = − λ

4kF N

∫
(

3∏
l=1

dωl )dq⊥d p⊥d p′
⊥d
n

×ψ
†
i (3)ψ j (1)ψ†

j (4)ψ i(2), (4.12)

9This was already the case in d = 3 − ε [15]. However, one can
also modify the Schwinger-Dyson equations as in Refs. [25,26],
leading to a discontinuity between T = 0 and finite T dynamics due
to an enhanced role of first Matsubara frequencies. This, however,
does not occur in the QFT models we consider.

where p = (kF + p⊥)
n, p′ = (kF + p′
⊥)
n, q = q⊥
n and

ψ (1) = ψ (ω1, p) , ψ (2) = ψ (ω2,−p),

ψ (3) = ψ (ω3, p + q) , ψ (4) = ψ (ω4,−p − q),

with ω4 = ω1 + ω2 − ω3.
There are two ways of approaching the problem. The first

uses the renormalization group beta function for the BCS
interaction. As analyzed in Ref. [23], it has three terms: a
constant tree-level contribution due to boson exchange [35],
a linear in λ term due to the fermion anomalous dimension
[23], and the one-loop λ2 contribution originally obtained in
[36,37],

dλ

d ln μ
= −8π

3
α + αλ − λ2

4πN
(4.13)

with α = 1/3 the fixed point value of the coupling α ∼ g2/v

[18]. This beta function is a concrete instance of the compe-
tition between incoherence and pairing fluctuations. The RG
flow λ(μ) is determined by the discriminant of the right-hand
side of (4.13). For N > 8, the right-hand side vanishes at two
real values

λ± = 2π

3
N (1 ±

√
1 − 8/N ) . (4.14)

These two roots collide as N → 8, and disappear into the
complex plane for N < 8.

Therefore, as long as N is larger than the critical value

Nc = 8 , (4.15)

the BCS coupling flows to a stable IR fixed point

λ∗ = 2π

3
N (1 −

√
1 − 8/N ) . (4.16)

This intriguing quantum state has critical pairing interac-
tions, and was analyzed in [23] when d = 3 − ε. Similar
considerations apply in our current d = 2 setup. We see then
that at large N and up to N = 8, quantum criticality wins
over superconductivity, preempting the pairing instability and
giving rise to a critical point including BCS interactions. The
quantum and thermal dynamics obtained in previous sections
is then expected to apply for N > Nc.

The IR and UV fixed points λ± annihilate for N = Nc,
and superconductivity develops. On general grounds [38],
this is expected to be an infinite order Berezinskii-Kosterlitz-
Thouless type (BKT) transition. This can be seen by comput-
ing the correlation length ξ in the superconducting state as
N → Nc:

ξ−1

MD
≈ exp

(∫ λIR

λUV

dλ

dλ/d ln μ

)
≈ exp

(
− 6π√

8/N − 1

)
.

(4.17)

This vanishes as N → 8, but is infinitely differentiable there –
a BKT transition. A detailed analysis of the solution to (4.13)
is presented in Appendix C.

Another possibility is to use the Schwinger-Dyson-
Eliashberg equations. Ref. [34] showed that this ends up
being equivalent to the RG approach under a certain local ap-
proximation. We will now briefly argue that this equivalence
extends all the way to d = 2.
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Introducing a gap term �̃(ω)ψψ + H.c. in the Hamilto-
nian, linearizing around �̃ = 0 at the onset of the instability
and assuming an even profile, the gap equation reads [34]

�̃(ω) = 1

2N

∫ ∞

0
dω′u(ω,ω′)

�̃(ω′)
A(ω′)

, (4.18)

where A(ω) = ω + �1/3ω2/3 and the convolution kernel is

u(ω,ω′) = 2�1/3

3

(
1

|ω − ω′|1/3
+ 1

|ω + ω′|1/3

)
. (4.19)

The above equation can be solved numerically, thus con-
firming the critical value (4.15) for the existence of
solutions.

The integral equation can be transformed into a differential
equation by means of a “local approximation”

u(ω,ω′) ≈
{

2u(ω) , ω′ < ω

2u(ω′) , ω′ > ω
, (4.20)

whose validity we have checked by comparing with the full
solution. Differentiating twice with respect to ω on both sides
of the integral equation obtains

d

dω

(
�̃′(ω)

u′(ω)

)
= �̃(ω)

NA(ω)
. (4.21)

Physically, the local approximation means that nonlocal
effects (in frequency space) are small. Then we can hope to
match with the RG approach, which is intrinsically local. The
explicit map is found to be

λ(ω) = f (ω)
�̃(ω)

�̃′(ω)
, f (ω) = 8π

3

u′(ω)

u(ω)
. (4.22)

Rewriting (4.21) as an equation for λ′(ω) and using that
d ln u(ω)

d ln ω
= −1/3, we end up with

dλ(ω)

d ln ω
= −8π

9
+ λ

3
− λ2

4πN
, (4.23)

which agrees with the RG beta function (4.13) evaluated at
the critical point α = 1/3.10 Eq. (4.22) connects explicitly the
formation of a gap (below which the gap function becomes
stationary, �̃′(ω) = 0), with the divergence λ → ∞ of the
BCS coupling.

V. DISCUSSION AND FUTURE DIRECTIONS

In this work, we have shown that soft bosonic modes,
which are generic in non-Fermi liquid models in d = 2 dimen-
sions, lead to infrared divergences at finite temperature and to
a breakdown of perturbation theory. We have argued that these
divergences are resolved in terms of self-consistent boson
and fermion self-energies. The φ4 interaction becomes dan-
gerous irrelevant at finite temperature, and the self-consistent
equation for the boson self-energy resums the corresponding
bubble diagrams. This leads to a boson mass m2

b ∼ λφT that
gaps the static mode; on-shell it is still irrelevant for the higher
modes, which continue to have a zb = 3 scaling. We then used

10The function f (ω) is fixed by reprodicing the 1-loop renormal-
ization term ∼λ2.

this as an input for the fermion sector, where we found a con-
sistent solution to the IR problems by including all rainbow
diagrams. This corrects the usual Eliashberg equation for the
fermion self-energy, in agreement with Ref. [14]. The main
result is a thermal contribution �T ∼

√
g2T that dominates

over a wide range of frequencies and temperatures. A similar
scaling was recently found in Ref. [16]. We argued that this
modifies the standard picture of quantum phase transitions and
the quantum to classical crossover in conceptually important
ways, and we discussed some of the implications.

These thermal effects will have important consequences for
the phenomenology of NFL models. To end we would like to
discuss some of the future directions.

First, a natural question is the extent to which our conclu-
sions apply in realistic systems that have finite N . Large N
expansions have a good track record of explaining finite N
physics, from the Ising model to quantum chromodynamics,
and it would be interesting to understand this for non-Fermi
liquids. A concrete step in this direction would be to incor-
porate 1/N vertex corrections. Comparison with numerical
results for N ∼ 1 (see below) could provide another way of
validating these analytic methods.

It will be interesting to analyze how the thermal scale ξT ∼
(g2T )−1/2 modifies thermodynamic and transport properties.
Furthermore, while we have argued that superconductivity
becomes irrelevant above Nc = 8, we plan to present a de-
tailed analysis at finite temperature in future work, finding the
solutions to the corrected Eliashberg equations and revisiting
the role of the first Matsubara frequencies [15,25,26].

Another direction recently explored in Refs. [16,17] is
the relevance of thermal effects to numerical quantum Monte
Carlo results [30–33], something that deserves further study
both at finite but small temperature and including the effects
of pairing interactions. Finally, the methods of this paper for
a zb = 3 bosonic scaling could be extended to more general
zb > 1. We hope to present this general analysis in future
work.
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APPENDIX A: ONE LOOP CALCULATIONS

In this Appendix. we calculate the one loop boson and
fermion self-energies.

The 1-loop correction to Landau damping is generated by
bare one-loop fermion bubble diagrams. We have

�(�m, q) = g2

N
T

∑
n

∫
d2 p

(2π )2
G(ωn, p)G(ωn + �m, p + q)

= kF g2

N
T

∑
n

∫
d p⊥dθ

(2π )2

× 1

iωn − vp⊥

1

i(ωn + �m) − v(p⊥ + q cos θ )

= i
kF g2

vN
T

∑
n

∫
dθ

2π

�(�m + ωn) − �(ωn)

i�m − vq cos θ
. (A1)
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The angular integral can be easily performed by going to the complex variable z = eiθ and integrating on the unit circle,
obtaining

�(�m, q) = kF g2

vN
T

∑
n

�(�m + ωn) − �(ωn)√
(vq)2 + �2

m

= kF g2

vN

|�n|√
�2

n + (vq)2
≈ |�n|

q
. (A2)

This is the result shown in equation (2.9), that is independent of temperature.
The computation of the quantum self-energy �NFL(ω) from expression (2.16) can be recast as

�NFL(ωn) = �1/3(2πT )2/3 1

3

∑
m �=n

sgn(ωm)

|m − n|1/3
(A3)

= �1/3(2πT )2/3 sgn(ωn)

3

( ∞∑
0

1 − δ|n′|,m
|m − |n′||1/3

−
∞∑
0

1

|m + |n′| + 1|1/3

)
,

with |n′| = |n + 1/2| − 1/2. Using the definition of the generalized Riemann zeta function (Hurwitz zeta) ζ (s, a) = ∑∞
0 (m +

a)−s (ζ (s) = ζ (s, 1)), we have

∞∑
m=0

1 − δ|n′|,m
|m − |n′||1/3

=
|n′|−1∑
m=0

1

|m − |n′||1/3
+ ζ (1/3) ,

|n′|−1∑
m=0

1

|m − |n′||1/3
= ζ (1/3) − ζ (1/3, |n′| + 1) .

Putting all together, we finally obtain

�NFL(ωn) = (2πT )2/3�1/3sgn(ωn)
2

3
(ζ (1/3) − ζ (1/3, |n + 1/2| + 1/2)) , (A4)

which is the result shown in Eq. (2.16) in the main text.

APPENDIX B: SELF-CONSISTENT BOSON MASS

In Sec. III B, the self-consistent boson mass was obtained in the effective theory of the static �m = 0 mode, valid up to a
cutoff q3 < 2πM2

DT . Here we rederive this result by working in the full theory that includes higher Matsubara modes.
We introduce a cutoff |�m| < � = (2πT )�′ and subsequently take � → ∞. It is useful to introduce the variable x =

q3(2πT M2
D)−1, obtaining

m2
b = λφT

2π

�′∑
m=−�′

∫ ∞

0

dq q

q2 + m2
b + M2

D
|�m|

q

= λφT

2π

∫ ∞

0

dx

x + ax1/3
+ λφT

π

�′∑
m=1

∫ ∞

0

dx

x + ax1/3 + m
. (B1)

Performing the sum in Matsubara frequencies and subsequently taking the divergent and finite parts as � → ∞, obtains

m2
b ≈ λφT

2π

∫ ∞

0

dx

x + ax1/3
+ λφT

π

∫ ∞

0
dx(ln �′ − ψ (1 + x + ax1/3)) + O(�′−1) , (B2)

where a = m2
b(2πT M2

D)−2/3 and ψ (x) denotes the digamma function.
As the model is tunned to criticality, we need to subtract the T = 0 contribution. As we will see, this is enough to cancel all

divergences. The zero-temperature contribution can be suitably written as

m2
0 = λφ

2π

∫ �

−�

d�

2π

∫ ∞

0

dq q

q2 + M2
D

|�m|
q

≈ λφT

π

∫ ∞

0
ln

(
�′

x

)
. (B3)

Subtracting the zero-temperature contribution, we can safely take �′ → ∞. Finally, in order to verify that the resulting
expression is finite, we split the integration domain between x < 1 and x > 1. In the latter domain, we can neglect the ax1/3

terms, thus having

m2
b − m2

0 = λφT

2π

∫ 1

0

dx

x + ax1/3
+ λφT

π

∫ 1

0
dx(ln(x) − ψ (1 + x + ax1/3)) + λφT

2π

∫ ∞

1
dx

(
2 ln(x) − 2ψ (1 + x) + 1

x

)
. (B4)

By the asymptotics of the digamma function ψ (x) ≈ ln(x) + (2x)−1, we note that the integral in the second line above is indeed
finite and small. Moreover, the second term in the first line can be seen to be suppressed by powers of a ∼ M−4/3

D . Neglecting
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these terms, we end up with

m2
b − m2

0 ≈ λφT

2π

∫ 1

0

dx

x + ax1/3
= λφT

2π

∫
q3<2πT M2

D

dq q

q2 + m2
b

, (B5)

which reproduces the result (3.9).

APPENDIX C: RUNNING BCS COUPLING

In this Appendix, we derive the solutions to (4.13), evaluated on the critical point α = 1/3, and discuss the BKT behavior. As
we are interested in physics near the critical value of N = Nc = 8, let us replace N = 8 + δ and consider both signs for δ. For a
putative value λ0 (which we assume small) of the BCS coupling at the UV cutoff MD, the solution reads

λ(μ) = 2π

3

[
8 + δ −

√
δ(8 + δ)tanh

(
coth−1

(
2π

√
δ(8 + δ)

2π (8 + δ) − 3λ0

)
+ 1

6

√
δ

8 + δ
ln

MD

μ

)]
. (C1)

For δ > 0, the above solution flows to a finite value, corresponding to the fixed point (4.16).
For δ < 0, the solution satisfying the appropriate initial condition now can be written as

λ(μ) = 2π

3

[
8 − |δ| +

√
|δ|(8 − |δ|)tan

(
−cot−1

(
2π

√|δ|(8 − |δ|)
2π (8 − |δ|) − 3λ0

)
+ 1

6

√
|δ|

8 − |δ| ln
MD

μ

)]
. (C2)

Since tan(x) diverges for x = (n + 1/2)π , the effective coupling diverges at a finite value of the energy scale μ. Near the critical
value, i.e. for |δ| → 0, the largest scale at which this occurs is

μ

MD
≈ e− 6π

√
8−|δ|√
δ . (C3)

This scale sets the magnitude of the physical order parameter at the onset of the phase transition, agrees with the correlation
length (4.17), and reveals the BKT scaling.
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