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Magnetic Kondo regimes in a frustrated half-filled trimer
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We analyze theoretically the phase diagram of a triangular triple quantum dot with strong on-site repulsion
coupled to ferromagnetic leads. This model includes the competition of magnetic ordering of local or itinerant
magnetic moments, geometric frustration, and Kondo screening. We identify all the phases resulting from this
competition. We find that three Kondo phases—the conventional one, the two-stage underscreened one, and
the one resulting from the ferromagnetic Kondo effect—can be realized at zero temperature, and all are very
susceptible to the proximity of ferromagnetic leads. In particular, we find that the quantum dots are spin polarized
in each of these phases. Further, we discuss the fate of the phases at nonzero temperatures, where a plethora of
competing energy scales gives rise to a complex landscape of crossovers. Each Kondo regime splits into a pair
of phases, one not magnetized and one comprising magnetically polarized quantum dots. We discuss our results
in the context of heavy-fermion physics in frustrated Kondo lattices.
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I. INTRODUCTION

Heavy-fermion systems are magnetic materials where rare-
earth magnetic ions reside on a lattice, and their 4 f electrons
carrying local moments hybridize with the itinerant electrons
of a conduction band [1]. The resulting spin-exchange cou-
pling between local and itinerant moments leads to a Kondo
effect and, hence, a heavy band near the Fermi level [1,2]. The
competition between local spin exchange and nonlocal spin
coupling mediated by the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction [3–5] can induce a quantum phase
transition (QPT) from a paramagnetic Kondo-screened phase
with expanded Fermi volume to a magnetically ordered
phase [1]. However, experiments indicate that in some
heavy-fermion systems the ordered and the Kondo phases
may be separated by a state which is neither long-range
ordered nor completely Kondo screened [6–8]. This suggests
that in the global heavy-fermion phase diagram, magnetic
frustration may play an additional, important role [9–13]. The
latter may be induced by the long-range, oscillatory nature of
the RKKY interaction. Frustration in insulating spin lattices
has been largely treated on the basis of the two-dimensional
Shastry-Sutherland model [14,15]. However, the presence of
a conduction band with potential Kondo singlet formation
introduces another complication. Despite analytical [11,16]
and numerical [17,18] treatments of frustrated Kondo
lattice models, a complete understanding of all the phases
possible by multiple tuning parameters is still lacking. The
problem becomes even more complex in systems where the
local magnetic moments sit on several crystallographically
inequivalent lattice sites [19–24] or where magnetic order
may even coexist with a Kondo-screened phase [25].

In the present paper, to shed more light on the intriguing
interplay of the aforementioned effects, we take a minimal
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quantum impurity model, where frustration, Kondo screening,
and magnetic correlations coexist and compete with each
other. In particular, we consider a quantum-dot (QD) trimer
coupled to a single spin-polarized screening channel in the
geometry depicted in Fig. 1(a). The three QDs, exhibiting
strong on-site Coulomb interactions, are assumed to form
a triangular constellation. The first QD (QD1) is embedded
between two leads made of a ferromagnetic metal. This
dot is coupled to the second (QD2) and third (QD3) QDs,
respectively, via the hopping matrix element t , while QD2
and QD3 are coupled by the frustrating hopping t ′. This
model incorporates the essential features of the interplay of
local Kondo screening, magnetic ordering (magnetic dimer
formation), and geometric frustration, parameterized by the
ratio t ′/t . It also takes into account the inequivalence of Kondo
sites in that only the first dot is coupled to the leads. This is
a simplified, numerically tractable description of a situation
where a spatially varying density of states or exchange cou-
pling may lead to an exponential suppression of the Kondo
temperature on some of the Kondo sites, i.e., an effective
decoupling of some screening channels [26–28]. A possible
coexistence of itinerant magnetic ordering and Kondo screen-
ing can be analyzed by allowing for a magnetic polarization of
the leads. Such a quantum impurity model has such advantage
that, despite its complex physics, it can be reliably analyzed
by the numerical renormalization group (NRG) method [29],
and can be realized in QD experiments where all system pa-
rameters can be continuously tuned, which is usually difficult
in lattice systems. Note also that a quantum impurity model
of this type would emerge in a cluster dynamical mean-field
theory [30,31] of geometrically frustrated Kondo or Anderson
lattice systems.

Nonmagnetic Kondo trimers have been extensively exam-
ined theoretically [32–47], also in the case of few-channel
screening [48–52]. The presence of a QPT separating the
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FIG. 1. (a) Schematic of the considered Kondo trimer, consist-
ing of three quantum dots, denoted as QD1, QD2, QD3, coupled
to ferromagnetic left (L) and right (R) leads with spin-dependent
coupling strengths �L(R)σ . (b)–(e) Illustrative presentation of possible
orientations of the quantum dot spins (illustrated as arrows) and
phases that may arise in the system: (b) the conventional Kondo
(CK) phase with weak interdot hopping t , (c) the underscreened
Kondo (UK) phase, (d) the CK phase for stronger t , and (e) the
ferromagnetic Kondo (FK) phase. S denotes the spin of the indicated
fragment of the trimer system. The semi-transparent shapes represent
schematically the Kondo screening clouds. See Sec. II for more
details.

conventional Kondo (CK) phase [53,54] from the exotic
ferromagnetic Kondo (FK) regime hosting a nonscreened local
magnetic moment and singular dynamics at low tempera-
tures [55,56] is well established [38]. A separation of the
underscreened Kondo (UK) phase [56,57] from the FK one
by zero-temperature crossover has been also analyzed [39]. In
addition, QD trimers have also been widely studied in the con-
text of quantum computing [58–66] and spintronics [67–72].
However, especially the latter remains quite detached from the
studies of strongly correlated Kondo physics. In particular,
a comprehensive analysis of all phases in the presence of
magnetic order seems to be missing. One of the aims of
this paper is therefore to fill this gap. We show that due to
the ferromagnetic proximity effect, all Kondo phases (namely

CK, FK, and UK) turn into their spin-polarized counterparts
(which we denote by CK′, FK′ and UK′, correspondingly) for
arbitrarily small frustrating coupling t ′.

While in the existing literature, the trimer phase diagrams
have been investigated mainly at vanishing temperature, we
show that the T → 0 limit is irrelevant for experiments in
certain parameter regimes. Moreover, even though often the
quantum impurity systems can generally be understood in
terms of a few stable T → 0 phases and the QPTs be-
tween them [28,32,73–78], a number of cases, where con-
tinuous crossovers significantly alter the physics, are also
known [79–82], especially in the context of competition be-
tween the Kondo effect and the spin polarization caused by
ferromagnetic leads [83–85].

We demonstrate that in the presence of frustration, the
Kondo phases are spin polarized in the T → 0 limit and
remain so up to experimentally relevant temperatures even
for very weak frustrating coupling. This means that our re-
sults are actually relevant also for nearly linear trimers with
t ′ interpreted as a weak next-nearest-neighbor hopping; cf.
Fig. 1(a). Additionally, a finite-temperature crossover links
the corresponding spin-polarized and spin-isotropic phases.
As can be expected [86], the UK’ phase is especially fragile
to the presence of magnetic leads, which tangibly differs it
from the FK’ phase, where the spin polarization of relevant
quantum dots is significantly smaller. This is in contrast to
the huge resemblance between the nonmagnetic UK and FK
regimes [39].

It is also important to note that a number of experiments
on triple quantum dot systems have been performed in the
context of quantum computing [87–95] or charge frustra-
tions [65], and to study the triple QD’s Kondo physics [35].
We therefore believe that our results will foster further exper-
imental efforts to examine different competing phenomena in
correlated magnetic nanostructures, especially in coupled QD
systems.

As the study concerns quite a rich model, to increase
its accessibility we describe the results beginning with the
most general features and provide more precise understanding
in subsequent sections. We start by presenting a qualitative
physical picture of the system in Sec. II, setting the stage
for the landscape of phases emerging in the presence of
spin-polarized leads. Then, having presented the details of the
model and methodology in Sec. III, we list and estimate all the
relevant energy scales in Sec. IV. The general structure of the
phase diagram in the space of interdot hopping t , frustrating
hopping t ′, and temperature is outlined in Sec. V. Finally, the
numerical results allowing us to precisely pinpoint the borders
between the phases are presented in Sec. VI, corroborating es-
timations done in Sec. IV. The paper is concluded in Sec. VII.

II. QUALITATIVE PHYSICAL PICTURE

The system depicted in Fig. 1(a) comprises several cou-
plings, each of them driving some kind of spin ordering even
in the absence of lead magnetization. In the present section,
we therefore briefly summarize all known Kondo phases of
such system [38,39], in a form suitable for the comparison
with our results presented in further sections.
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First, the possibility of electron hopping between the first
and other dots, described by hopping amplitude t , tends to
align the spin of the first dot antiparallelly with respect to the
spins of the other dots (QD2 and QD3). On the other hand, the
direct hopping between QD2 and QD3, t ′, frustrates this order
by trying to bind the electrons residing the second and third
dot into a spin singlet. This becomes possible when the QD1
spin gets screened by the leads via the (conventional) Kondo
effect. Such scenario is presented schematically in Fig. 1(b).

The situation is completely different in the case of rela-
tively small t ′. Then the QD2-QD3 direct exchange interaction
is weak and can be overcome by the superexchange mediated
by QD1. The latter is always ferromagnetic in sign [39] and
can bind a QD2-QD3 subsystem into a spin triplet. However,
no matter how small t is, it always causes the antiferromag-
netic exchange coupling of the resulting spin with the Fermi
liquid formed by the Kondo screening at QD1. Therefore,
at sufficiently cryogenic conditions, further Kondo screening
occurs, which, with only one screening channel, results in
the UK effect in the QD2-QD3 subsystem and spin-doublet
ground state for the whole system. This is illustrated in
Fig. 1(c), with CK screening cloud represented as in Fig. 1(b),
and the more transparent shape illustrating the cloud corre-
sponding to partial screening.

The picture presented so far is based on the assumption that
the Kondo coupling of the first dot to the leads is sufficiently
strong such that the interdot interactions do not give rise to
the formation of molecularlike trimer states at temperatures
above the Kondo temperature. However, with increasing t ,
the state depicted in Fig. 1(b) continuously evolves into
the one schematically represented in Fig. 1(d). The latter
no longer contains practically decoupled QD2-QD3 singlet.
Instead, t correlates QD2 and QD3 with QD1, spreading the
spin doublet from QD1 into the whole trimer. Nevertheless,
for strong enough t ′, the tendency of antiparallel alignment
guarantees that the trimer ground state would remain a spin
doublet, which can be efficiently screened at sufficiently low
temperatures by CK correlations.

Finally, for weak frustrating coupling t ′ and strong hopping
t , the trimer acquires a magnetically staggered structure, with
QD1 spin aligned antiparallelly to the spins of QD2 and QD3,
which leaves the trimer in a spin doublet state. However,
unlike for the strong t ′ case, now the coupling of the trimer to
the leads is ferromagnetic, as the trimer spin direction follows
the alignment of spins of QD2 and QD3 and is opposite to the
direction of QD1 spin. In this way the FK system is formed,
as sketched in Fig. 1(e).

As shown in the following, all these phases are vulnerable
to the symmetry breaking introduced by the spin polarizations
of the leads p. At nonzero temperatures, each phase splits into
two regimes, separated by a crossover, with one comprising
partially spin-polarized trimer stable in the low-temperature
limit, and the other comprising nonmagnetized trimer, which
is relevant only at elevated temperatures.

III. MODEL AND METHODS

The trimer coupled to the leads is modeled by a Hamilto-
nian of the general form H = HL + HR + HT + H3QD, where
the left (L) and right (R) leads are described by a single

effective band [96], HL + HR = ∑
σ

∫
ωc†

ωσ cωσ dω, with c†
ωσ

denoting the creation operator for an electron of energy ω

and spin σ in a combination of relevant wave functions
in respective electrodes coupled to the trimer. An effective
hybridization is given by �σ (ω) = �Lσ (ω) + �Rσ (ω) [96], so
the tunneling Hamiltonian reads

HT =
∑

σ

∫ √
�σ (ω)

π
(c†

ωσ d1σ + H.c.)dω, (1)

with d†
iσ creating a spin-σ electron in QDi, i = 1, 2, 3. Note

that only QD1 is coupled to the leads, cf. Fig. 1(a). We
assume constant hybridization functions within the band of
width 2D, �rσ (ω) = �rσ (0) for |ω| < D (ω = 0 at the Fermi
energy), with sharp cutoff at energies ±D. For the subse-
quent calculations, the magnetization of the leads (assumed
parallel in the two leads) is represented by spin-dependent,
left-right symmetric effective couplings, �Lσ = �Rσ = �σ =
(1 + σ p)�/2, with � measuring the coupling strength and
p denoting the effective spin-polarization of the leads [83].
Assuming equal on-site repulsion U on each QD, the trimer
Hamiltonian is written as

H3QD =
∑

iσ

(
−U

2
+ δi

)
niσ +

∑
i

Uni↑ni↓ +
∑
i, j,σ

ti jd
†
iσ d jσ ,

(2)

where the summations run over i, j ∈ {1, 2, 3} but i �= j,
ti j = t ji, and δi denotes the detuning of QDi from local
particle-hole symmetry (PHS) point. The hoppings to two
side-coupled QDs are assumed equal, t12 = t13 = t , while
the frustrating coupling t ′ = t23 is kept independent; see also
Fig. 1(a).

To analyze the properties of this system, we use the NRG
technique [29]. We construct the full density-matrix from
states discarded during the calculation [97–99], and use an
open-access code [100] as a basis for our implementation.
This method allows us to reliably capture the full spectrum
of the discretized Hamiltonian and calculate all the physical
quantities directly from the spectral data, without any need
for artificial broadening [101]. In particular, the linear con-
ductance through the system at temperature T is calculated
from [102]

G = e2

h

∑
σ

∫ [
−∂ f (ω)

∂ω

]
Tσ (ω)dω, (3)

where f (ω) is the Fermi-Dirac distribution, and the spin-
resolved transmission coefficient Tσ (ω) is given in terms of
the retarded Green’s function of the first QD as

Tσ (ω) = −�σ Im〈〈d†
1σ |d1σ 〉〉(ω). (4)

The latter can be obtained in Lehmann representation di-
rectly from the NRG solution. The expectation values of the
operators defined within the trimer subspace are obtained
by taking the trace with the relevant reduced-density matri-
ces [100,103].

To fully understand the nature of different Kondo phases,
we also calculate the trimer contribution to the entropy. It can
be found from

Simp = Stot − S0, (5)
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FIG. 2. The ground state of the isolated trimer for δi = 0 and
different t and t ′. The violet (red) area corresponds to the odd-
parity (even-parity) doublet ground state D− (D+), while the white
area corresponds to the singlet ground state S = 0. In brackets,
the expected phases that emerge in the presence of coupling to the
leads are indicated, with schematic borders between them marked by
dotted and dot-dashed lines. Details are explained in Sec. IV B.

where Stot denotes the entropy of the full system, whereas S0

is the entropy of the system without the trimer. The entropy
is calculated directly from the spectrum of the discretized
Hamiltonian (for a given set of parameters, one additional
calculation is needed to determine S0).

Throughout the paper, we use the band cutoff as the energy
unit, D = 1, and take the on-site repulsion U equal to the
bandwidth, U = D, unless stated otherwise. The temperature
is expressed in units of energy, i.e., the Boltzmann constant
kB ≡ 1. The lead spin polarization is assumed to be p = 0.5,
yet the p = 0 case is also considered for comparison. The
system is assumed to be at the local PHS point, δi = 0;
cf. Eq. (2). In the NRG calculations, we take the coupling
strength to be � = U/10, the discretization parameter � = 3,
and the number of states kept at each iteration is N = 3000.

IV. RELEVANT ENERGY SCALES

The most important low-temperature phases have been
outlined in the discussion of Fig. 1. In the present section, we
elaborate on them further, precisely explaining their origin.
To determine the remaining phases, the phase boundaries
between them and their fate at elevated temperatures, we
discuss the relevant energy scales, in particular the exchange
field 	εex induced by the ferromagnetic leads. The results
presenting the trimer’s ground state and the exchange field as
a function of hoppings t and t ′ are shown in Figs. 2 and 4.
Then, the quantitative phase diagram is discussed in Sec. V
and presented in Fig. 5.

A. Isolated trimer

We begin by considering the trimer decoupled from the
leads. In general, we focus on regimes where the local
Coulomb repulsion U is the largest energy scale. The phase

diagram for such case is shown in Fig. 2. Even though
H3QD can be in principle exactly diagonalized for δi = 0, the
solution involves roots of a general quartic polynomial and is
not very insightful. However, we find it important to note that
for δi = t ′ = 0 the trimer Hamiltonian H3QD, Eq. (2), exhibits
the PHS defined by the simultaneous transformation on all the
QDi’s (i = 1, 2, 3), diσ �→ sid

†
iσ , provided the coefficients si

are all of module 1 and s2 = s3 = −s1. However, even for
δi = 0, the term proportional to t ′ ≡ t23 changes sign upon
this transformation and inevitably destroys this symmetry.
Therefore, despite the assumed local PHS at each site of the
trimer, the global PHS is not preserved, and the trimer may
not even be half filled in the ground state.

Insight into the energy spectrum of the trimer can be
obtained based on the observation that, as long as � = 0, one
can use U −1 as a small expansion parameter. One immediately
sees that there are only eight states of energy of the order of
−3U/2, which are separated from the other states by energy
differences of at least ∼U/2. Therefore, these are the states
important for the low-temperature physics in all the Kondo
regimes. Actually, four of them form a symmetry-preserved
spin quadruplet of energy ES=3/2 = −3U/2 + δ1 + δ2 + δ3.
The remaining states form two S = 1/2 doublets (which are
coupled to other doublets of energy by at least ∼U higher).
The two low-energy eigenstate doublets, denoted by D+ and
D−, are actually always lower in energy than the quadruplet
and have even (D+) or odd (D−) parity with respect to
exchange of QD2 with QD3, respectively. For t ′ = 0, the
ground state is the odd-parity doublet D−. Increasing the
frustration brought about by t ′ causes a level-crossing QPT at
t ′ = t , as illustrated by the colored regions in Fig. 2 (note the
logarithmic scales on both axes and the t ′/t normalization on
the vertical axis). For low values of t < U/10 and t ′ < t/20,
the energy difference E∗ = |E+

S=1/2 − E−
S=1/2| of these two

doublets is of the order of the exchange coupling between the
relevant QDs:

E∗ ≈ 4t2

U
|1 − t ′/t |2. (6)

Thus, one should expect these two phases to become indistin-
guishable for temperatures T � E∗.

Finally, as can be seen in Fig. 2, when the interdot hopping
becomes large in comparison to local Coulomb repulsion,
t, t ′ � U/4, an additional phase is present, labeled S = 0.
This is a spinless state, occupied (for positive t ′) with four
electrons. Its presence is a clear manifestation of the lack of
the global PHS in the model (even in the presence of the
local one), which is caused by the frustrating coupling t ′.
Nevertheless, this singlet is present even without coupling to
the leads. It is, therefore, not a Kondo state and will not be
discussed in detail in the present paper.

B. The Kondo scales

When the trimer is coupled to the leads, the most important
observation concerns the effective exchange coupling of the
two doublets relevant at the lowest temperatures [38]. The
even doublet, D+, is coupled in a conventional antiferromag-
netic manner, with the same strength as the QD1 spin itself,
JCK = 8�/(πρU ), (ρ denotes the normalized density of leads
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states at the Fermi level). This means that no matter how weak
this coupling is, whenever temperature drops below the Kondo
temperature TK , the trimer spin S = 1/2 is fully screened by
the electrodes due to the CK effect. Hence the CK label in
Fig. 2. The relevant value of TK can be estimated on the basis
of the Anderson’s poor man’s scaling method [55], even for
finite lead spin polarization p [104,105], to give

TK =
√

�U

2
exp

[
−π

8

U

�

atanh(p)

p

]
. (7)

For � = U/10 used throughout the paper, one gets TK (p=
0.5) ≈ 0.003U and TK (p=0) ≈ 0.0044U .

Meanwhile, the odd-parity doublet D− is coupled ferro-
magnetically, although with reduced strength. Namely, JFK =
−JCK/3 [38]. Therefore, the FK effect is expected, see Fig. 2,
which leads to asymptotically free spin [55] and singular
dynamics [56] at low temperatures. Due to the fact that the
exchange coupling is inevitably proportional to �, this gives
the characteristic temperature scale T̃K following Eq. (7) with
� replaced by �/3. For � = U/10, this gives T̃K (p=0.5) =
3.09 × 10−7U and T̃K (p=0) = 9.87 × 10−7U . Note, that for
both two cases of p = 0 and p = 0.5, T̃K � TK . Therefore,
one expects that in the temperature regime of T̃K < T < TK

the Kondo effect takes place at QD1 only, despite quite strong
t . This is confirmed by NRG calculations presented in Sec. VI.

Since the ground states corresponding to CK and FK
regimes differ in spin quantum number, they are separated
by the QPT. Nevertheless, it does not occur exactly for t ′ =
t . In fact, since JCK scales up and JFK scales down with
decreasing temperature, it is hardly surprising that the CK
phase takes over the FK phase for t ′ = t and the QPT line
moves to t ′ ≡ t ′

c < t , where t ′
c denotes the transition point

between the CK and FM phases, yet roughly independent of
t . Nevertheless, even for couplings as strong as � = U/10 the
difference between t ′

c and t occurs to be hardly noticeable, cf.
NRG results in Sec. VI.

However, the above considerations contain an implicit
assumption that the molecular trimer orbitals are still well-
defined for � > 0. This seems reasonable if the inter-QD
exchange interactions are large in comparison to TK , J2 ≈
4t2/U � TK . If, on the contrary, t �

√
UTK/2, then at tem-

peratures below TK , yet above some critical value of the
order of J2, single electrons occupying QD2 and QD3 are not
correlated with QD1 due to thermal fluctuations, while QD1
spin is almost fully screened by CK effect, therefore, forming
a Fermi liquid state [54]. The characteristic value of t , around
which the crossover happens, shall be denoted as

tx = 1
2

√
TKU . (8)

The second and third dot (QD2 and QD3) spins may still be
correlated with each other though, if the hopping-induced an-
tiferromagnetic exchange interaction J2

′ ∼ 4(t ′)2/U exceeds
temperature fluctuations. When the temperature falls further,
a superexchange also comes into play, mediated by QD1-and-
leads quasifree pseudoparticles. The latter has a ferromagnetic
sign and a magnitude of the order of JSX ∼ t2/

√
TKU [39].

The interplay between JSX and J ′
2 (which is in fact a com-

petition between t and t ′ again) determines the state of the
QD2-QD3 cluster to be either the spin singlet, depicted in
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t∗(T=10−9U)

T
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FIG. 3. The dependence of the critical hopping t∗ on temperature
based on Eq. (10) calculated for � = 0.1U in the case of nonmag-
netic (p = 0) and magnetic leads (p = 0.5). In the inset, all the
relevant Kondo scales are plotted against the hopping t . More details
are provided in the main text of Sec. IV B.

Fig. 1(b), or S = 1 triplet, cf. Fig. 1(c). The position of the
transition anticipated from J ′

2 = JSX criterion is marked in
Fig. 2 with a dot-dashed line.

The story of the former case is already finished, as this is a
stable low-temperature state, actually a special case of the CK
state discussed so far. Yet, the fate of the triplet state is still not
concluded. In fact, in the case of formation of S = 1 within
the QD2-QD3 cluster, lowering the temperature further gives
rise to another Kondo screening. Indeed, the QD1-and-leads
Fermi liquid screens the QD2-QD3 spin at temperatures of
the order of [106]

T ∗(t ) = αTK exp(−βTKU/4t2), (9)

as the local density of states of QD1, exhibiting the Kondo
peak of the width ∼TK , serves as a band for QD2-QD3 cluster.
The coefficients α and β are of the order of unity and depend
on the system parameters weakly, see also Ref. [106]. The
dependence of T ∗(t ) for � = U/10 and p ∈ {0, 0.5} is plotted
in the inset in Fig. 3; the (t-independent) values of TK and
T̃K are indicated there as well. However, the screening of
S = 1 cannot be complete with only one screening channel,
therefore it is underscreened in the sense of Nozieres-Blandin
Fermi-liquid theory [57]. Hence, we call this regime the UK
regime, see Fig. 2. It seems noteworthy that this phase has
all the quantum numbers identical to the FK phase, discussed
earlier, including the residual S = 1/2 spin in the ground
state. In fact, these phases are continuously connected both
for p = 0 [39] and p > 0; see Sec. VI. The estimation of
the position of the UK/FK crossover based on 4t2/U = TK

criterion for � = U/10 and p = 0.5 is indicated in Fig. 2 with
a dotted line.

Importantly, T ∗ given by Eq. (9) is very low for weak t ′, so
at some temperature T > 0, there exists such a critical value
of t , denoted t∗(T ), that T ∗[t∗(T )] = T . In fact, taking α ≈
β ≈ 1, we find from Eq. (9):

t∗(T ) ≈ 1

2

√
TKU

ln(TK/T )
. (10)
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Estimating the Kondo temperature from Eq. (7), for � = 0.1
and p = 0.5, one can calculate t∗ for experimentally relevant
temperatures and make clear that in practice for t∗ < 0.005U
the non-zero temperature regime is experimentally relevant,
see Fig. 3.

As explained earlier, the transition point between the CK
and FK phases, t ′

c, remains practically independent of t and
close to t ′ = t . However, this is no longer the case in the UK
regime, where the transition is strongly shifted to [39]

t ′
c ≈ t2

√
TKU

, (11)

which is particularly small for weak t . This estimation of
transition point is indicated in Fig. 2 by the dot-dashed line.
Note that due to the dependence of the Kondo temperature on
spin polarization p, the critical value tc is a function of p as
well. Furthermore, due to the fact that the UK and FK phases
are separated by a continuous crossover only, it is sensible to
continue the line to the transition position characteristic of the
FK regime.

C. The exchange field

In general, the coupling between a nanodevice and the
leads gives rise to the renormalization of the energy lev-
els of the nanodevice. In the case of magnetic leads, this
renormalization is usually spin dependent [83]. The part of
its linear contribution proportional to leads magnetization
p is often called the (spintronic) exchange field and will
be denoted 	εex [107]. For single impurity, 	εex is altered
smoothly while lifting impurity energy level, changing sign
at the local PHS point. However, in the trimer case PHS is
broken by the frustration, and 	εex no longer vanishes even
at local PHS, opening the possibility for spin polarization of
the nanostructure in such conditions. It is noteworthy that
at sufficiently small temperatures, even very small value of
frustrating hopping t ′ may result in substantial magnitude of
	εex. In the present section, to obtain certain insight into the
properties of 	εex in the case of a locally PHS trimer, we
performed a perturbative analysis. However, these predictions
will be corroborated further in Sec. VI by accurate NRG
calculations.

For each eigenstate of the isolated trimer |ei〉, the shift of its
energy Ei due to interaction with ferromagnetic leads is linear
in p in the leading (second) order of perturbation theory in the
hopping matrix elements between the trimer and the leads.
Within the wide-band limit discussed in Sec. III, the exchange
field in that state is, therefore, defined as [107]

	εi
ex =

∑
jσ

σ p�

π〈ei|Ŝz|ei〉
ln

∣∣∣∣ Ej − Ei

D + (Ej − Ei )

∣∣∣∣
×(|〈e j |d†

1σ |ei〉|2 + |〈e j |d1σ |ei〉|2
)
, (12)

where the spin index σ is understood as ±1 when factoring
numbers and Ŝz denotes the operator of zth component of
trimer spin. This is a proper definition for 〈ei|Ŝz|ei〉 �= 0, yet
for spinless states the right-hand side of the equation vanishes
anyway and 	εi

ex can be set arbitrarily. The convenient choice
is to put it to the mean over the values within the multiplet
for S > 0 states and to 0 for S = Sz = 0. In fact, the structure

Δε+
ex/ ΔΓ ε−ex/Γ

t
/
t

t/U
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Δ
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T
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10−3 10−2 10−1 100 101

−0.3−0.2−0.1 0 0.1 0.2 0.3

(b)

Δ

=
10

U

Δε
=T

FIG. 4. (a) The exchange field in the even-parity doublet state
D+, calculated within perturbation theory for U = D and p = 0.5.
(b) Similar plot of the exchange field in the odd-parity doublet state
D−. Note the logarithmic scales on both axes in all plots. More
details are provided in the main text of Sec. IV C.

of the low-energy spectrum presented in Sec. IV A, i.e., spin
quadruplet and two spin doublets, is preserved within this
definition, namely, 	εi

ex is the same for all states within each
multiplet (but differs between multiplets).

The exchange fields in the two relevant doublet states,
D+ and D−, denoted correspondingly 	ε+

ex and 	ε−
ex, are

presented in Figs. 4(a) and 4(b) for a trimer at the local PHS
point in a wide range of t and t ′. This wide range of hopping
constants allows for making predictions for different possible
realization of the trimer, including molecules as well as QD
systems. Note in particular, that the smallest used value of
t ′, t ′/t = 10−7, is already a value one can expect for a next-
nearest-neighbor interaction strength in a linear molecule.

The dashed and dot-dashed lines shown in Figs. 4(a)
and 4(b) are the same as those in Fig. 2 and indicate the
positions of the QPTs. The first observation is that in the
regimes where the scale comparison suggests the CK ground
state, i.e., where D+ is the most relevant state, 	ε+

ex > 0.
Similarly, wherever the UK or FK ground state is expected,
	ε−

ex > 0, while the exchange field in the spinless ground
state obviously vanishes, 	εS=0

ex = 0. Therefore, one expects
that at local PHS (assumed for the calculation) the exchange
field in the states relevant at low T is non-negative, 	εex � 0.
This is in agreement with transport properties calculated with
NRG in Sec. VI. Moreover, one also expects that whenever
the ground state of the system is not a spin singlet, 	εex

would split the ground state spin degeneracy and lead to
states comprising a spin polarized trimer. This should be
expected in particular in the FK and UK phases, which from
now on will be denoted as FK′ and UK′, when the doublet
degeneracy is lifted. Furthermore, 	εex > TK may split the
Kondo resonance in the CK phase [83,105]. In the following,
this resulting regime will be denoted as CK′. In other words,
the different regimes in the case of magnetic leads will be
denoted with a prime.

One easily notes that 	εex is in general quite small, ex-
cept for the regions where two relevant states are close to
degeneracy, since then the denominator in Eq. (12) blows
up. However, as this is only a perturbative expression, one
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FIG. 5. Schematic phase diagram of the considered system for
T � TK and for magnetic leads with spin polarization p = 0.5 calcu-
lated vs the following parameters: the hopping t (in units of Coulomb
repulsion U ), the frustrating coupling t ′ (normalized by t), and the
temperature T (scaled by TK ). Note the logarithmic scale of all the
axes. The respective phases are described in the main text of Sec. V.

should take that result with a lot of caution. Even though
some enhancement of trimer energy levels renormalization is
expected there, one does not, in general, expect them to be
divergent, even in the T → 0 limit. Indeed, note that NRG
results presented in Sec. VI indicate regular behavior of the
trimer magnetization.

Finally, from Figs. 4(a) and 4(b), it is evident that the
exchange field in the ground state, 	εGS

ex , apparently has quite
a small absolute value. To make it even more clear, we added
dotted lines in both figures to indicate where the exchange
field is equal to the conventional Kondo scale, 	εGS

ex = TK ,
and where it equals 10−9U . The latter is intended to mimic
the zero-temperature regime. Clearly, even at such a small T ,
not all of the considered parameters |	εGS

ex | > T are expected.
This is an important feature for the phases of trimer in
all temperature regimes. In particular, one can expect that
the phases FK′ and UK′ are possible only when T < 	εex,
while at elevated temperatures the nonmagnetized FK and UK
regimes should be expected.

V. THE OVERVIEW OF THE PHASE DIAGRAM

The three-dimensional phase diagram of the trimer, fea-
turing t , t ′, and T as parameters, is presented in Fig. 5.
Already, the first sight of it allows us to realize that it is
fairly complicated, however, the analysis of energy scales
performed in the preceding section shall allow us to identify
and understand all the phases.

We start the discussion from the QPT lines introduced as
dashed or dot-dashed lines in Fig. 2. They are presented as

solid vertical walls, without any broadening for elevated tem-
peratures for the sake of clarity of the figure. Their positions
are based on the exact positions of ground-state changes for
the isolated trimer for t >

√
TKU and given by Eq. (11) for

smaller t . The transparent vertical wall is used to indicate
the position of the crossover between UK and FK phases,
which is quite arbitrarily defined to be at t = tx, fulfilling
Eq. (8).

In turn, we move to the discussion of nonzero T properties
of the UK phase. As explained in Sec. IV B, the second Kondo
temperature is indeed cryogenic for small t . The approximate
position of the crossover between partially screened and un-
screened S = 1 QD2-QD3 cluster is indicated in Fig. 5 by
the dark opaque leaning surface, based on Eq. (10). Even
though the bottom of the figure corresponds to T = 10−9U <

10−6TK , the uttermost left part of the figure still corresponds to
the T > T ∗ regime, which vanishes only in the purely math-
ematical T → 0 limit. On the other hand, further increase of
T inevitably leads to the next crossover, occurring when the
thermal energy reaches the excitation energy between the two
relevant eigenstate doublets, T = E∗. Above this threshold,
the states at two sides of the transition are similarly probable
and the physical properties are expected to be a mean of the
properties of each of them. In particular, the S = 1 state is
not fully formed within the QD2-QD3 cluster. Additionally,
note that E∗ is estimated by Eq. (6), however, one needs
to remember that this formula does not take into account
the shift of the UK/CK QPT away from t ′ = t , therefore it
overestimates E∗ very close to that transition. Nevertheless,
this estimation is sufficient for qualitative understanding of the
phases of the system and is used to plot the crossover position
as a skewed surface in the phase diagram in Fig. 5.

It is noteworthy to point out that all phases discussed so
far exist also for p = 0. However, some changes in position of
borders occur then, because of the difference between (lower)
TK (p=0.5) and (higher) TK (p=0), cf. Eq. (7). Therefore, for
example, t ′

c is somewhat smaller for p = 0, as follows from
Eq. (11). Similarly, t∗ is larger for p = 0, cf. Fig. 3.

Another way to obtain interesting spintronic properties is
to exploit the unique features present only for p > 0. They are
in general caused by the presence of the exchange field in the
ground state, 	εGS

ex �= 0. First, the exchange field suppresses
the CK effect if 	εex � TK and splits the Kondo peak in QD1
spectral density for 	εex ≈ TK . In both cases, one expects
QD1 to become spin polarized, even though at local PHS
(as considered here) the global PHS is broken actually only
by the t ′ hopping between QD2 and QD3. Therefore, one
can see the coupling to the QD2-QD3 cluster as a kind
of functionalization of QD1-based device. These magnetic
phases are separated from basically nonmagnetic states for
	εGS

ex � TK by a continuous crossover, as is for the case of
a single QD outside of the PHS point [83,105], indicated in
Fig. 5 with a curved vertical wall, with magnetic phase labeled
as CK′ and the nonmagnetic simply by CK on the top face of
the diagram.

Furthermore, one can predict an even more pronounced
effect of the exchange field at the FK side of the transition.
There, not only is the relevant Kondo scale much smaller, but
also the ground state comprises an asymptotically free spin
doublet, so at sufficiently low temperatures the exchange field
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always overcomes the ferromagnetic coupling to the leads.
Therefore, in the T → 0 limit only the phase with nonzero dot
magnetization, denoted FK′, is stable. However, as discussed
in Sec. IV C, the magnitude of the exchange field is actually
very small for small t and t ′, so at finite temperatures the
region where the thermal fluctuations do not overcome 	εGS

ex
is finite, compare dashed lines in Figs. 2 and 4. This gives
rise to the crossover between the magnetic phase FK′ and the
nonmagnetic FK phase at T = 	εGS

ex , which is indicated in
Fig. 5 with a striped domelike surface. Note also that dotted
lines labeled as 	ε−

ex = 10−9U in Fig. 4(b) signify in fact
the footprint of the FK′ phase on the “floor” of the diagram,
corresponding to T = 10−9U .

Both FK and FK′ phases continue through the described
earlier crossover toward the UK (and correspondingly the
magnetic UK′) phase, where, additionally, an effective S =
1 state is formed within the QD2-QD3 cluster. This is a
particularly interesting state, as here QD1 in fact experiences
CK, yet still in partially screened QD2-QD3, the magnetic
order is imposed, with S = 1 almost fully aligned with lead
minority spins for temperatures both below T ∗ and above it.
This is the case as long as the temperature does not overcome
the effective ferromagnetic coupling between the second and
third QDs.

VI. NUMERICAL RESULTS

In this section, we present the results of NRG calcula-
tions concerning the physical properties representative for
each Kondo regime of the system. These include the linear
conductance G and the expectation value of the trimer spin S ,
the trimer’s spin polarization, as well as the trimer’s entropy.
The studied quantities clearly confirm the predictions of the
qualitative analysis performed in Secs. IV and V.

A. Conductance

The unitary conductance through the device is possibly the
most well-known hallmark of the CK state for nonmagnetic
leads, G = G0 = 2e2/h. The conductance possesses this value
in the CK regime and in the T > T ∗ part of the UK regime,
see Fig. 6(a). On the contrary, it abruptly changes at the QPT
between the CK and FK phases, while changing continuously
with increasing t from the UK to the FK phase. In agreement
with earlier predictions, at the CK side of the transition,
the conductance remains maximal while increasing t up to
the transition point to the S = 0 phase, where it ultimately
vanishes. Notably, for p = 0, there is hardly any t ′ dependence
of the conductance for t ′ < t ′

c.
The latter is no longer true for p > 0. It is clearly visible in

Fig. 6(b) that in the FM′ region [whose border is indicated
with a dashed line, similarly to Figs. 4(a) and 4(b)], the
conductance depends on t ′, and is in particular larger than
for p = 0. This trend persists also at higher T , cf. Fig. 6(c).
However, for sufficiently large temperatures, the FM′ region
is practically not present; see Fig. 6(d). Meanwhile in the CK
regime for p = 0.5, G = G0 and is reduced after crossover to
the CK′ phase driven by increasing t . This remains true as
long as T � TK , as visible in Figs. 6(b) and 6(c). However,
since T = 10−3U is already close to TK , the conductance in

G/G0
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FIG. 6. Conductance as a function of t and t ′ for � = 0.1U , δi =
0, and for (a) T = 10−9U and p = 0 (b)–(d) finite spin polarization
p = 0.5 and different temperatures indicated in the figure. Dashed
lines correspond to boundaries of phases from Figs. 2 and 5. Arrows
indicate t = t∗ points on vertical axes according to Eq. (10). Note the
logarithmic color scale.

the CK phase drops in this case below G0 and decreases even
further in the CK′ regime.

B. Spin expectation value

In the behavior of the conductance, it is not possible to see
the difference between the CK and UK phases in the regime
of t < t∗. Therefore, we now analyze the expectation value of
the trimer spin, defined as such a scalar S that the expectation
value of the operator of trimer squared spin, Ŝ2

3QD, fulfills

S (S + 1) = 〈
Ŝ2

3QD

〉
. (13)

This definition allows us to talk about trimer spin as a contin-
uous quantity, in principle having values in the range {0 �
S � 3/2}. Note that Kondo screening of the local moment
does not lead to screening of the spin in terms of the definition
given by Eq. (13). This is because the leads states (also these
screening local spins) are averaged out when calculating the
expectation value. Therefore, S quantifies the magnitude of
the spin screened in the Kondo phase, rather than the degree
of screening.

1. Conventional Kondo (CK) regime at low temperatures

Keeping that in mind, for low temperatures, one expects
in particular S ≈ 1/2 in the CK phase. However, as one can
see in Figs. 7(a) and 7(b), the CK phase value of S is in fact
somewhat smaller than 1/2 and close to S = 0.45. This is
because for large t ′, the QD2-QD3 effective exchange has
an antiferromagnetic nature and the charge fluctuations are
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FIG. 7. The expectation value of the trimer spin S as a function
of t and t ′. The parameters are the same as in Fig. 6. The points
marked with symbols indicate t and t ′ for which Fig. 8 is pre-
pared. Small vertical arrows (dotted lines) indicate t∗ (tx) positions,
correspondingly.

more likely to cause the S = 0 state to be an intermediate
state [with empty QD1 and QD2-QD3 in a singlet state,
cf. Fig. 1(b)] than the S = 1 state [cf. Fig. 1(c)]. This is
indeed confirmed in Fig. 7(a) for p = 0 and in Fig. 7(b) for
p = 0.5, see in particular the points indicated by the square
and the upturned triangle in the latter. Apparently, except for
very small changes in the positions of phase boundaries, the
degree of spin polarization p is pretty much irrelevant for the
spin expectation values (this is obviously not true for Sz, see
Sec. VI C).

2. Conventional Kondo phase at higher temperature

The temperature dependence of S for t and t ′ correspond-
ing to these two points is presented in Fig. 8 with dashed lines
and adequate symbols. One clearly sees that for t = 0.1U and
t ′ = 3t (square) S (T ) remains constant up to T ∼ �, while
for t = 0.003U and t ′ = 0.1t (up-turned triangle) the spin-
expectation value already rises for T ∼ 10−5 TK . The latter is
caused by the fact that internal trimer exchange couplings and
the excitation energy E∗ are all very small for weak t and t ′,
cf. Eq. (6) and the discussion following Eq. (8). Therefore,
for T > E∗, the magnetic correlations between the individual
QDs become irrelevant and all the states comprising singly oc-
cupied dots are almost equally probable. There are eight such
states, forming two S = 1/2 doublets and a single S = 3/2
quadruplet, thus for E∗ � T � U we have 〈Ŝ2

3QD〉 = 9/4 and
hence the universal middle-temperature value for small values
of t and t ′ is S = √

5/2 − 1/2 ≈ 1.08. As seen in Fig. 8, in
reality it is somewhat smaller due to the residual correlations,
nevertheless Figs. 7(c)–7(d) show how wide the range of
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FIG. 8. The trimer spin expectation value S as a function of
T for values of t and t ′ indicated in Figs. 7(b) and 7(d) with
corresponding symbols. The other parameters are the same as in
Fig. 7. See Sec. VI B for details.

parameters is where this formula holds. Note, however, that
while QDs are not correlated among themselves, QD1 may
still be Kondo screened by the leads.

3. Underscreened Kondo (UK) phase

Clearly, the S ≈ √
5/2 − 1/2 region includes states also

belonging to the UK phase at temperatures above E∗, i.e.,
when the effective S = 1 state is not yet formed in the QD2-
QD3 cluster; see the lines denoted by a down-turned triangle
and a pentagon in Fig. 8 and their positions in Figs. 7(b)–
7(d). However, at low temperatures S approaches another
quite universal value, S ≈ √

3 − 1/2 ≈ 1.23. Again, the true
maximum is slightly smaller, see the corresponding lines in
Fig. 8, but the increase from below S ≈ √

5/2 − 1/2 is clearly
visible. This value can also be understood as characterizing
the trimer comprising QD2 and QD3 forming a spin triplet
and QD1 forming a spin-doublet state. Averaging over pos-
sible zth component configurations gives 〈Ŝ2

3QD〉 = 11/4, i.e.,

S = √
3 − 1/2. Therefore, this value (slightly decreased by

remaining correlations) is characteristic of the UK phase.

4. Ferromagnetic Kondo (FK) phase

Since the UK phase is separated from the FK phase only by
the crossover, the value of S decreases continuously toward
S = 1/2 with increasing t . However, opposite to the CK
phase, the residual QD2-QD3 correlations are ferromagnetic
in this regime, therefore, the final value S � 1/2, as can be
seen in Fig. 8 for the curves marked with a pentagon, cross,
and a circle.

5. Summary of the section

In summary, the spin expectation value S defined in
Eq. (13) is an excellent marker of the phases, capable of
differentiating between all the relevant regimes, especially
these having similar transport properties. It reaches the highest
values S �

√
3 − 1/2 in the UK phase (both below and above

T ∗). It is reduced below S ≈ √
5/2 − 1/2 in the regime of

almost independent, but singly occupied QDs and decreases
continuously toward S � 1/2 in the FK phase. The QPT
between the FK and CK regions is marked by an abrupt jump
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FIG. 9. The z component of spin of respective quantum dots as
functions of t and t ′. Parameters are the same as in Fig. 6 with p =
0.5. Dotted lines indicate where the condition 	εGS

ex = T (in the UK
or FK phase) or 	εGS

ex = TK (in the CK regime) is fulfilled. Symbols
have the same positions as in Fig. 7.

of S to some value S � 1/2 on the CK side of the transition.
Finally, the spinless trimer phase, scarcely discussed here, is
characterized by S = 0. S does not change due to the Kondo
screening, yet its presence or absence in each phase can be
recognized from the value of the conductance, as explained
in the preceding section and visible in Fig. 6. The nature
of different phases is further confirmed in Sec. VI D by the
calculations of the trimer’s entropy. However, the spin expec-
tation value does not allow for distinguishing the polarized
phases from their nonpolarized counterparts, i.e., CK from
CK′, FK from FK′, and UK from UK′. Therefore, there is
one additional quantity one needs to pinpoint all the phases
within NRG framework, namely, the trimer spin polarization.
The related results are presented in Sec. VI C.

C. Trimer spin polarization

An important consequence of the existence of the exchange
field is the spin polarization of the trimer, quantified by the
expectation value of the spin of respective QDs, denoted Szi

for QDi. As can be seen in the left column of Fig. 9, Sz1 �= 0 in
the UK and FM phases, as long as the condition T < 	εGS

ex is
fulfilled. It seems noteworthy that |Sz1| does not reach ±1/2,
yet the values are typically of the order of 1/10, even for
very small values of frustrating coupling t ′; cf. Fig. 10. In
fact, in the T → 0 limit Sz1 �= 0, in the whole UK and FK
regimes for any nonzero t ′. This is in contrast to the case of
a single QD slightly detuned from the PHS. Then, the QD
spin polarization is proportional to the symmetry-breaking
detuning. It also means that the ground state always belongs to
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FIG. 10. The z component of spin of respective quantum dots
as function of T for values of t and t ′ indicated in Fig. 9 with
corresponding symbols. The other parameters are the same as in
Fig. 9. See Sec. VI C for details.

the spin-polarized phase (CK′, FK′, or UK′), unless the system
is tuned into the spinless S = 0 phase, cf. Fig. 2 and Fig. 5.

Remarkably, in the CK and CK′ phases Sz1 � 0, i.e., it has
a tendency to align antiparallelly to the leads’ majority spins.
The QD1 spin polarization is strong in the CK′ phase, while
it almost vanishes for the CK one. On the contrary, in the
FK/FK′ regime the exchange coupling to the leads changes
sign, hence Sz1 � 0. Again, in the FK′ phase the absolute
value of Sz1 is reasonably large and does not vanish even for
very small values of frustrating coupling t ′, while in the FK
state it is exponentially suppressed by nonzero temperature.

Similarly to the other regimes, in the UK′ phase |Sz1| �
0, while in the UK phase Sz1 almost vanishes. However,
somewhat counterintuitively, Sz1 � 0 in the UK/UK′ phase
also (that is, the sign is opposite to the one in the CK phase),
even though at elevated T > T ∗ the CK screening takes place
there. This is a consequence of the fact that the sign of the
exchange field is related to detuning from the PHS. In the
model considered in the present paper, the PHS is broken only
by t ′. Therefore, the formation of the exchange field (also at
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QD1) is governed by the molecular trimer states and the sign
of t ′. As noted in Sec. IV C, for t ′ > 0, in the ground state,
	εGS

ex > 0, therefore, the total trimer spin z component, Sz, is
always negative. What changes between the phases is that in
the CK/CK′ phase the trimer spin consists almost exclusively
of QD1 spin, Sz ≈ Sz1, while in the FK/FK′ and UK/UK′

phases QD2 and QD3 form triplet instead of singlet states
and Sz ≈ Sz2 + Sz3 − Sz1. Consequently, the sign of the QD1
spin z component flips at the transition. Notice that should
the t ′ sign happen to change, the exchange field and all the
polarizations would change the sign as well (as long as the
trimer is at local PHS point).

Furthermore, the side-coupled QDs, QD2 and QD3, are
actually even stronger polarized, see Fig. 9 and compare
Fig. 10(a) with Fig. 10(b). In fact, in the UK phase and for
T < 	εGS

ex they are completely polarized with Sz2 = Sz3 =
−1/2 (Sz2 = Sz3 is a consequence of symmetry and further
we only discuss Sz2). The value in the FK phase is, on the
other hand, Sz2 ≈ −1/3 and decreases slowly with increasing
t to obtain Sz2 = 1/4 for t � U , which is still significantly
larger than for QD1 and causes significant net trimer polar-
ization, Sz ≈ −1/2. This kind of magnetic ordering is quite
surprising in the Kondo regime, especially at the local PHS
point and for very weak values of frustrating coupling t ′.
Moreover, it is also intriguing whether the realization of a
similar state may be possible in correlated, frustrated lattices.

D. Trimer entropy

As a confirmation of the interpretations derived in the pre-
ceding sections, in the following we present the results con-
cerning the trimer entropy Simp, defined in Eq. (5). The simple
intuition is that Simp/kB is a logarithm of the ground-state de-
generacy at T = 0, and it is increased by the number of trimer
states available by thermal fluctuations at elevated tempera-
tures. In Fig. 11(a), we present the results for p = 0, which
extend the range of validity of earlier results by Mitchell
et al. [38,39]. In the CK phase, where the ground state is the
CK singlet, Simp practically equals 0. More precisely, it has a
small value Simp ≈ 0.01kB due to finite temperature used for
calculations, T = 10−9U . It is even more strongly suppressed
in the S = 0 regime, where no small energy scale (such as TK )
is relevant. Then, on the other side of QPT, where the ground
state is the spin doublet, the trimer entropy Simp/kB = ln(2),
as should be expected. Moreover, exactly at the transition, the
degeneracy between the singlet and triplet states gives rise to
Simp/kB = ln(3) (at nonzero temperatures this remains true
within a small vicinity of the transition).

Due to finite temperature, this result is also valid in the
UK phase for t < t∗, when the spin triplet formed within
the QD2-QD3 subsystem is not yet screened; compare the
position of the crossover between the values of kB ln(2) and
kB ln(3) marked with the vertical arrow corresponding to t =
t∗ in Fig. 11(a). Obviously, at the transition point between this
phase and the CK phase, one finds Simp/kB = ln(4). However,
since in the FK phase the ground-state degeneracy equals that
of the UK phase for t > t∗, the FK/UK crossover (its position
is indicated in the figure with a dashed line) does not give rise
to any signature in the value of Simp, as opposed to the spin
expectation value; cf. Fig. 7(a).
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FIG. 11. The entropy of the trimer Simp as a function of t and
t ′. Note that the white regions correspond to Simp � 0.01kB. The
parameters are the same as in Fig. 6. The points marked with symbols
indicate the values of t and t ′ for which Fig. 8 is prepared. Small ver-
tical arrows (dotted lines) indicate t∗ (tx) positions, correspondingly.

The landscape changes significantly when the lead
magnetization is taken into account. Then, the effective
exchange field induced in the trimer, 	εex, splits the spin
multiplets, lifting degeneracy of the ground state. Therefore,
whenever 	εex > kBT , the trimer entropy drops to zero,
manifesting the crossover from a magnetic to nonmagnetic
state. This is clearly visible in the FK and FK’ phases in
Fig. 11(b), as well as for the UK and UK’ phases therein.
Similarly, while in the nonmagnetic CK phase Simp ≈ 0.01kB,
in the case of magnetic leads and the corresponding CK’
regime, the Kondo effect is suppressed when 	εex > T and
so is the trimer’s entropy; cf. Fig. 11(b). Nevertheless, this
makes the value of Simp the same in all magnetic phases and
the QPT is visible only as a peak of height kB ln(2) in the
region of QPT-related degeneracy.

All the above results remain generally correct for higher
temperatures, see Figs. 11(c)–11(d), however, phase borders
are slightly shifted and regions corresponding to degeneracy
at QPT are broadened. Moreover, for sufficiently small values
of t and t ′, the excited states become available, which results
in an increase of the trimer’s entropy.

E. Other quantities

We found the set of quantities analyzed in previous sec-
tions, namely, the linear conductance G, the trimer spin,
and its z-component expectation values, S and Sz, and the
trimer entropy Simp sufficient for complete determination of
all the relevant phases. However, in general, the analysis
of other physical quantities may also be helpful to pinpoint
all the regimes in complex systems. In particular, some of
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the magnetic regimes of the system studied here may be
recognized in the maps of tunneling magnetoresistance or
current spin polarization. However, the characteristic features
are restricted to a few of many regimes of the phase diagram
and lack some general explanations allowing us to hope that
similar features may be relevant for different structures. On
the other hand, thermoelectric quantities, such as the See-
beck coefficient, can help determine the phases in strongly
particle-hole asymmetric systems, where they tend to have
large values and alternating signs in different regimes [108].
The dynamical spin-spin susceptibilities occur to be espe-
cially useful for analysis of spin-symmetric non-Fermi-liquid
phases [109]. The exceptional usefulness of the quantities
chosen here, in particular S and Sz, stems from the fact that
they characterize equally well nonmagnetic as well as fully or
partially magnetized structures, which is crucial for determi-
nation of the local magnetic texture. This feature may prove
important for theoretical characterization of the bulk materials
possessing the same correlations as the system described here,
in particular frustrated heavy-fermion materials.

VII. CONCLUSIONS

We have determined and analyzed the properties of
strongly correlated frustrated QD trimer coupled to ferromag-
netic leads. The considerations have been performed by using
the NRG method, which was used to calculate the conduc-
tance, spin expectation values and the entropy of the analyzed
nanostructure. This allowed us to construct the full phase
diagram of the system as a function of hoppings between
the dots and the temperature, together with the corresponding
phase boundaries. We showed that as the hoppings are tuned,

at T = 0 and for nonmagnetic leads, the system can reveal
different phases: the CK phase, the UK phase, the FK phase
as well as the non-Kondo spinless phase. These phases are
present at finite temperatures, but are not stable in the limit
of vanishing temperature in the presence of arbitrarily weak
frustrating coupling. We then determined the fate of different
Kondo phases in the case of ferromagnetic leads, when the
spin splitting of states occurs due to an exchange field. Inter-
estingly, such an exchange field can be generated even at the
local PHS point of each dot if the frustrating hopping, which
breaks the global PHS, is finite. We showed that the spin polar-
ization of the trimer in the Kondo regime may persist up to siz-
able temperatures even when the frustrating coupling is very
small. This allowed us to extend our conclusions to molec-
ular trimers effectively coupled to one conduction channel,
where the frustration is introduced by next-nearest-neighbor
hopping. Potentially, these results may be also of relevance for
frustrated correlated lattices, where the Kondo screening may
coexist with magnetic ordering if some of the local moments
are coupled to the electronic bath only indirectly.
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