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Strong enhancement of magnetic susceptibility induced by spin-nematic fluctuations in an excitonic
insulating system with spin-orbit coupling
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Effects of the spin-orbit coupling (SOC) and magnetic field on excitonic insulating (EI) states are investigated.
We introduce the two-orbital Hubbard model with the crystalline field splitting, which is a minimal model for
discussing the exciton condensation in strongly correlated electron systems, and analyze its effective Hamiltonian
in the strong correlation limit by using the mean-field theory. In the absence of the SOC and magnetic field, the
ground state changes from the nonmagnetic band-insulating state to the EI state by increasing the Hund coupling.
In an applied magnetic field, the magnetic moment appears in the EI state, which is continuously connected to
the forced ferromagnetic state. On the other hand, in the presence of the SOC, they are separated by a phase
boundary. We find that the magnetic susceptibility is strongly enhanced in the EI phase near the boundary with
a small SOC. This peculiar behavior is attributed to the low-energy fluctuation of the spin nematicity inherent
in the high-spin local state stabilized by the Hund coupling. The present study not only reveals the impact of
the SOC for the EI state but also sheds light on the role of quantum fluctuations of the spin nematicity for the
EI state.
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I. INTRODUCTION

Spontaneous hybridization between valence and conduc-
tion bands associated with a symmetry breaking, which is
known as the exciton condensation, has been a long-standing
subject of condensed matter physics for close to half a
century [1–9]. This is understood by a pair condensation
of a particle and a hole, which was proposed as an anal-
ogy of superconductivity. One of the characteristics of the
excitonic states is a deformation of the electronic energy
bands around the Fermi level originating from the sponta-
neous hybridization. This was recently observed in the layered
chalcogenide Ta2NiSe5 using the angle-resolved photoemis-
sion spectroscopy, and therefore, it has been intensively stud-
ied as a candidate material of the excitonic insulator [10–13].
However, unlike the superconducting states exhibiting the
Meissner effect, the excitonic insulating (EI) state remains
elusive as clear experimental signatures offering conclusive
evidence have not been identified yet.

On the other hand, another playground of the EI state was
proposed in cobaltites typified by LaCoO3. These have been
studied for decades to clarify the physics of the spin-state tran-
sition in strongly correlated electron systems [14–19] while
the EI state was originally introduced in the weak coupling
regime. In the cobaltites, due to the competition between the
crystalline electric field and Hund coupling, a magnitude of
the local spin is changed, e.g., by varying temperature and
pressure, between the low-spin (LS) with the total spin S = 0
for the t6

2g configuration, intermediate-spin (IS) with S = 1 for
t5
2ge1

g, and high-spin (HS) states with S = 2 for t4
2ge2

g in the
Co3+ ion. Thus far, the spin-state transition or crossover has
been discussed on the basis of the thermally mixed spin states.

Meanwhile, in the vicinity of the spin-state transition,
distinct local spin states are energetically close to each other,
and therefore, the quantum hybridization between them is
expected to occur spontaneously. When this hybridized state
coherently appears over an entire crystal, it is regarded as
an emergence of the exciton condensation. Indeed, in the
two-orbital Hubbard model, which is the minimal model to
describe the essence of the spin-state transition [20], the
emergence of the exciton condensation was suggested be-
tween the LS band insulator and HS Mott insulator with
the antiferromagnetic (AFM) order due to the interorbital
Coulomb interaction [21]. Beyond the model calculations, the
first-principles calculation study for Pr0.5Ca0.5CoO3, which
exhibits a characteristic phase transition at Ts ∼ 90 K with-
out the change of the space group and the appearance of
a magnetic order [22–24], pointed out a possibility of the
EI state [25–27]. This work and following studies also sug-
gested that the exciton condensation occurs as a kind of
multipole orders in the Co ion [28,29]. These stimulate further
investigations of the EI states in strongly correlated electron
systems [30,31].

The spin-state transition should occur by applying a mag-
netic field, and hence, the field-induced exciton conden-
sation is expected in the cobaltites. Utilizing the modern
high magnetic-field measurement, the magnetic properties in
LaCoO3 were investigated and several new phases were found
under the high magnetic field ∼60 T [32]. As the candidates
of the phases, spin-state orders and EI states are proposed
theoretically [33–35].

The magnetic-field effect causes the large change of the
electronic state due to the strong competition between the
energies of distinct spin states. This is also expected to
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be brought about by the spin-orbit coupling (SOC), which
inevitably exists in transition metal ions with the orbital
degeneracy. The Co3+ ion possesses the t2g orbital degree of
freedom with an effective angular momentum in the cases of
the HS and IS states [36–38]. Indeed, it was pointed out that
the SOC plays a crucial role for a large orbital moment in
LaCoO3 by the soft x-ray absorption spectroscopy and the
magnetic circular dichroism [39,40]. The SOC yields the mix-
ing between the real orbitals split by the crystalline electric
field and will compete or cooperate with the exciton condensa-
tion in the vicinity of the spin-state transition/crossover [41].
However, it remains unclear how the SOC affects the magnetic
properties of the EI state.

In this paper we study the effects of the SOC and magnetic
field on the EI state with strong electron correlations. From
the two-orbital Hubbard model with the crystalline field, we
derive an effective Hamiltonian in the strong coupling limit
by the perturbation expansion and the effective SOC in the
low-energy subspace to reproduce the SOC in the cobaltites.
By applying the mean-field (MF) approximation, we examine
the effective model in the vicinity of the phase boundary
of the LS and EI phases. In the absence of the SOC, a
phase transition occurs from the LS state to the EI state by
applying the magnetic field. Further increase of the magnetic
field causes the continuous change from the EI state to the
forced ferromagnetic (FM) one. When the SOC is introduced,
these two states are separated by a phase transition. We
find that the SOC enhances the magnetization induced by
an applied magnetic field in the EI state. This leads to the
enhancement of the magnetic susceptibility near the phase
boundary between the LS and EI phases. By analyzing the
wave function in detail, we reveal that the spin nematicity
inherent in the HS S = 1 states plays a crucial role on the en-
hancement of the magnetization. The present results provide
a possible route to identify the EI state in experiments under
the high magnetic field.

This paper is organized as follows. In Sec. II we introduce
the low-energy effective model to address the exciton conden-
sation and SOC on an equal footing. The MF theory applied to
this model is also presented. The numerical calculation results
are shown in Sec. III. First, the results without the SOC is
presented in Sec. III A, and then, results in the presence of the
SOC are shown in Sec. III B. The magnetic susceptibility as a
function of the Hund coupling as well as the temperature are
shown in Sec. III C. The origin of the characteristic behavior
of the susceptibility shown in the above sections is discussed
in Sec. III C. Section IV is devoted to the discussion and
summary.

II. MODEL AND METHOD

In the present study we consider the two orbital Hubbard
model with the energy splitting between the orbitals, where
the average of the electron number per site is fixed to 2,
which corresponds to the half-filling. This is the minimal
model to describe the LS and HS states and the transition
between them. In the following we introduce the Hamiltonian
and the effective model in the strong coupling limit on the
basis of our previous study [28]. We start from the two orbital
Hubbard model HHubbard = Ht +HU , which is given by the

local interaction term

HU = �
∑

iσ

niaσ + U
∑

iη

niη↑niη↓ + U ′ ∑
i

nianib

+ J
∑
iσσ ′

c†
iaσ c†

ibσ ′ciaσ ′cibσ + I
∑
iη �=η′

c†
iη↑c†

iη↓ciη′↓ciη′↑,

(1)

and intersite electron transfer term

Ht = −
∑

〈i j〉ησ

tη(c†
iησ c jησ + H.c.), (2)

where ciησ is the annihilation operator of the electron for
orbital η(= a, b) with spin σ (=↑,↓) at site i and niησ =
c†

iησ ciησ is the number operator. The positive parameters �, U ,
U ′, J , and I represent the crystalline field splitting, the intra-
and interorbital Coulomb interactions, the Hund coupling, and
the pair-hopping interaction, respectively. In Ht , we consider
the transfer integral tη for the orbital η between the nearest
neighbor (NN) sites 〈i j〉.

From the two-orbital Hubbard model in Eq. (1), we derive
the effective Hamiltonian in the strong coupling limit. The
low-energy subspace is composed of the direct products of
the local electronic states occupied by two electrons, which
are the eigenstates of HU . At each site we consider the
following four states: The spin-singlet state |L〉 for the LS
one with S = 0, and three spin-triplet states |�〉 (� = X,Y, Z)
for HS ones with S = 1 [28]. The local wave functions are
explicitly given by

|L〉 = ( f c†
b↑c†

b↓ − gc†
a↑c†

a↓)|0〉, (3)

|X 〉 = 1√
2

(−c†
a↑c†

b↑ + c†
a↓c†

b↓)|0〉, (4)

|Y 〉 = i√
2

(c†
a↑c†

b↑ + c†
a↓c†

b↓)|0〉, (5)

|Z〉 = 1√
2

(c†
a↑c†

b↓ + c†
a↓c†

b↑)|0〉, (6)

where f = [1 + (� − �′)2
/I2]

−1/2
and g =

√
1 − f 2 with

�′ = √
�2 + I2. In the HS states, each orbital is occupied by

one electron. On the other hand, the weight of the two-electron
occupied state in |L〉 exists mostly in the b orbital in the case
of g 
 1 with the small pair-hopping interaction. Note that
the three HS states |X 〉, |Y 〉, and |Z〉 are known as the bases of
the spin-nematic states for spin S = 1 [42–46]. The nematic
state |�〉 is characterized by a rodlike director along the �

axis in the spin space (see Fig. 4).
By applying the second-order perturbation expansion

with respect to Ht , the effective Hamiltonian is obtained
as [26,28,47,48]

Heff
el = −�̃

∑
i

τ z
i + Jz

∑
〈i j〉

τ z
i τ

z
j + Js

∑
〈i j〉

Si · S j

− Jx

∑
〈i j〉�

τ x
i�τ x

i� − Jy

∑
〈i j〉�

τ
y
i�τ

y
j�, (7)

where the constant terms are omitted. In addition to the
spin operators {SX

i , SY
i , SZ

i } for the S = 1 triplet states, we
introduce the pseudospin (PS) operators τ x

� , τ
y
� , and τ z, which
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are given as the matrix elements between the LS and HS
states:

τ x
� = |L〉〈�| + |�〉〈L|, (8)

τ
y
� = i|L〉〈�| − i|�〉〈L|, (9)

τ z =
∑

�

(|�〉〈�| − |L〉〈L|). (10)

In this representation, the x and y components of the PS give
the local mixing between the LS and HS states and these
characterize the EI state. The z component is the difference
of the HS and LS densities. Therefore, the first and second
terms in Eq. (7) represent the local energy splitting between
them and the Ising-type NN interaction leading to LS/HS
staggered order in the case of Jz > 0, respectively. On the
other hand, the last two terms in Eq. (7) yield the coherent
quantum mixing between the LS and HS states and induce the
excitonic order. Note that, in the spin-nematic bases, the spin
operators in Eq. (7) are given by

S� = i|�′′〉〈�′| − i|�′〉〈�′′|, (11)

with (�,�′, �′′) = (X,Y, Z ) and its cyclic permutations, in-
dicating that the spin operators mix two spin-nematic states.
The parameters in Eq. (7) are explicitly given in the Appendix
in Ref. [28]. It is worth noting that the exchange interactions
between S = 1 spins are antiferromagnetic (Js > 0) and those
for PSs satisfy |Jx| > |Jy| originating from I > 0. Signs of
both Jx and Jy are positive in the case of tb/ta > 0, in which
the noninteracting energy band in Eq. (2) exhibits a direct gap.
Hereafter we consider this case.

Next, we introduce the SOC. To take into account of the
d-orbital character of the SOC within the two-orbital model,
we assume that the a and b orbitals represent one of the two
eg orbitals and that of the three t2g orbitals, respectively; for
simplicity, the a and b orbitals are identified as the dx2−y2

and dxy orbitals, respectively, and we consider the SOC in
these orbitals. It has been confirmed in the previous studies
taking account of the five d orbitals that these two orbitals
give dominant contributions to the EI order [25,26]. Since the
dx2−y2 and dxy orbitals are given by the linear combinations
of the states with the angular momentum lz = ±2, l± vanish
between these two states. Therefore, the Hamiltonian for the
SOC within these orbitals is represented as

HSO = − λ̃√
2

∑
iησ

(lz )ηη′ (sz )σσ ′c†
iησ ciη′σ ′ , (12)

where lz is the l = 2 angular momentum matrix in the basis of
the dx2−y2 and dxy orbitals and sz is the s = 1/2 spin operator.
These are given by

lz = 2

( a b

0 −i

i 0

)
, sz = 1

2

( ↑ ↓

1 0

0 −1

)
. (13)

When the pair-hopping interaction is negligibly small, the LS
state can be treated as the doubly occupied state in the b orbital
[see Eq. (3)]. In this case, the PS operator τ

y
Z is approximately

written as

τ
y
iZ ∼ i√

2
(−c†

ia↑cib↑ + c†
ia↓cib↓ + c†

ib↑cia↑ − c†
ib↓cia↓). (14)

Thus, in the low-energy subspace of Heff
el , the effective form

of the SOC Hamiltonian is given by

HSO ∼ Heff
SO = −λ

∑
i

τ
y
iZ , (15)

where λ is given as λ = λ̃( f − g). We note that λ is equal to
λ̃ in the case without the pair-hopping interaction.

We also consider the Zeeman term caused by the magnetic
field. The total Hamiltonian is given by

Heff = Heff
el +Heff

SO −
∑

i

h · Si, (16)

where h = (hX , hY , hZ ) is the applied magnetic field. We note
that, in the present SOC, the SO(3) rotational symmetry in
the triplet spin space is lost and only the rotational symmetry
around the SZ axis is present even in the absence of the mag-
netic field. This is because the a and b orbitals are identified as
the dxy and dx2−y2 orbitals, respectively, in the present model.
This point will be discussed in Sec. IV.

We apply the MF approximation to analyze the Hamilto-
nian in Eq. (16). In the numerical calculations, the model is
defined on a two-dimensional square lattice, where the coor-
dination number z = 4, and the parameter values in HHubbard

are taken to tb/ta = 0.4, I = J , U/J = 6, and U ′/J = 4. In the
numerical calculations, the spatially uniform spin and orbital
states are obtained as the MF solutions.

III. RESULT

A. Phase diagram without SOC

In this section we consider the the electronic states without
the SOC. We focus on the vicinity of the phase boundary
between the LS and EI phases without magnetic orders. This
nonmagnetic EI state corresponds to the spin-triplet excitonic
one, which is termed EIQ in the previous paper [28]. The
ground-state phase diagram under the magnetic field without
the SOC is shown in Fig. 1(a). In the absence of the magnetic
field, the phase transition from the LS to EI state occurs at J =
Jc � 1.698ta with increasing J . By introducing the magnetic
field, the LS state is suppressed and the EI state continuously
changes into the forced FM state. This is consistent with the
previous work in Refs. [34,35]. Note that the phase diagram
does not depend on the direction of the magnetic field because
the SO(3) symmetry in the spin space exists in the absence of
the magnetic field.

To discuss the field dependence of the electronic state
in detail, we calculate the expectation values of the local
spin moments 〈S�〉 and those of the PS moments 〈τ x

�〉 and
〈τ y

�〉. As mentioned before, in the present calculations, spa-
tially uniform solutions are only obtained as the MF solu-
tion, and therefore, the site index is omitted. Figures 2(a)–
2(c) show these moments as functions of hX at J/ta = 1.69.
When hX is small, 〈S〉 = 〈τ x

�〉 = 〈τ y
�〉 = 0, indicating the LS

phase (〈τ z〉 = −3 is also confirmed). Above hX
c /ta � 0.04,

the X component of the spin moment becomes nonzero with
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FIG. 1. Ground-state phase diagrams on the plane of the mag-
netic field hX and Hund coupling J at (a) λ = 0 and (b) λ/ta = 0.005.
The vertical dashed and dashed-dotted lines indicate the parameters
for Figs. 2 and 3, respectively.

FIG. 2. Magnetic-field dependences of (a) the spin moment 〈S�〉,
(b) PS moments 〈τ x

�〉, and (c) 〈τ y
�〉 at J/ta = 1.69 and λ/ta = 0. (d)–

(f) Corresponding figures at λ/ta = 0.005.

FIG. 3. Magnetic-field dependences of (a) the spin moment 〈S�〉,
(b) PS moments 〈τ x

�〉, and (c) 〈τ y
�〉 at J/ta = 1.7 and λ/ta = 0. (d)–(f)

Corresponding figures at λ/ta = 0.005.

accompanying the appearance of the PS moments; in the case
of Fig 2, 〈τ x

Y 〉 and 〈τ y
Z〉 become nonzero, which is consistent

with the previous study [49]. This is due to the fact that the
spin and PS operators are not independent of each other. For
example, the X component of the spin moment is described
as SX = −τ x

Y τ
y
Z − τ

y
Zτ x

Y , which implies 〈τ x
Y 〉 is negative when

〈τ y
Z〉 is positive under the positive magnetic field [50]. We find

that the spin moment 〈SX 〉 is proportional to (hX − hX
c ) in

the low-field regime, while the PS moments is to
√

hX − hX
c ,

being similar to the conventional order parameters in the MF
theory. This indicates that the primary order parameter of the
phase transition is the PS moment.

Figures 3(a)–3(c) show the expectation values of the spin
and PS as functions of the magnetic field at J/ta = 1.7. In
the absence of the magnetic field, the EI state is realized
with nonzero PS moment of 〈τ x

Y 〉. With increasing hX , 〈SX 〉
and 〈τ y

Z〉 linearly increase, and the EI state at hX = 0 is
continuously connected to the forced FM state at J/ta = 1.7.
This result corresponds to the fact that there is no phase
transition between the EI and forced FM in the phase diagram
shown in Fig. 1(a). Further increase of the magnetic field leads
to the fully spin-polarized phase composed only of the HS
states, which is not included in Fig. 1.

Here we discuss the origin of the continuous connection
between the EI and forced FM states by the magnetic field hX .
At hX = 0, the wave function of the LS state is given by∣∣ψλ=0

LS

〉 = |L〉, (17)

where the original SO(3) symmetry in the Hamiltonian is
preserved. By increasing the Hund coupling J , a uniform
EI order is brought about with accompanying the reduction
of the symmetry to U(1). In the case of Fig. 3(b), 〈τ x

Y 〉 is
nonzero and the resultant U(1) symmetry is around the SY
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FIG. 4. Schematic figures of the directors of the spin-nematic
states on the SY -SZ plane for (a) Eq. (18), (b) Eq. (19), (c) Eq. (20),
(d) Eq. (21), (e) Eq. (22), and (f) Eq. (23). The orange and blue
spindles represent the real and imaginary parts of the spin-nematic
states when the coefficient of the LS state is taken to be unity. The
upper panels show the states without the magnetic field and the lower
ones with a small magnetic field hX .

axis, as schematically illustrated in Fig. 4(a). We call this SY

the “principal axis” of the EI state. The local wave function of
the EI state is given by∣∣ψλ=0

EI

〉 = |L〉 + αEI|Y 〉, (18)

where αEI is a nonzero real number. The hybridization of the
LS state |L〉 and HS nematic state |Y 〉 results in the nonzero
PS moment for 〈τ x

Y 〉.
By introducing the magnetic field hX , 〈τ y

Z〉 increases pro-
portionally to hX in the EI state similar to 〈SX 〉, as shown in
Figs. 3(a) and 3(c). In this case, the wave function is given by
[see a schematic illustration in Fig. 4(b)]∣∣ψλ=0

FF

〉 = |L〉 + αEI|Y 〉 + iβh|Z〉, (19)

where βh is real and proportional to the magnetic field in the
weak-field regime. The coexistence of |Y 〉 and i|Z〉 yields the
appearance of the spin moment 〈SX 〉. This indicates that the
EI order whose principal axis is parallel to SX is unstable
under the magnetic field hX and the principal axis is selected
so as to be perpendicular to SX . Therefore, the U(1) symmetry
around the SX axis is absent in the presence of the EI order.
Note that, since the EI phase is originally characterized by the
symmetry breaking in terms of the relative phase of the LS
and HS states, the twofold degeneracy exists for ±(αEI, βh)
in Eq. (19). This degeneracy disappears in the fully spin-
polarized phase in the high-field regime, where the U(1)
symmetry around the SX is recovered.

On the other hand, in the LS state, the magnetic field does
not induce the magnetic moment up to the critical magnitude
of the magnetic field because of the spin gap. This indicates
the presence of the phase transition between the LS and forced
FM states at the critical field hX

c , above which 〈SX 〉 becomes
nonzero as shown in Figs. 2(b) and 2(c). Since the appearance
of the spin moment 〈SX 〉 requires the mixing of |Y 〉 and i|Z〉
in the wave function, the nominal form of the wave function
is the same as Eq. (19). Thus, the high-field phase above hX

c

is continuously connected to the EI and forced FM phases as
shown in Fig. 1(a). Note that the relative phase between the
LS and HS states is spontaneously selected above hX

c in which
a magnetic moment appears.

B. Phase diagram with SOC

Next, we investigate the electronic states under the SOC.
In the presence of the SOC in Eq. (16), the SO(3) symmetry
in the spin space is lowered to the U(1) symmetry around
the SZ axis. This is attributed to the fact that the a and b
orbitals in the present model are identified as the dx2−y2 and
dxy orbitals, respectively. Thus we have the following com-
mutation relations: [Heff

SO, SX
total] �= 0, [Heff

SO, SY
total] �= 0, and

[Heff
SO, SZ

total] = 0, where S�
total = ∑

i S�
i . Before showing the

numerical results, we mention how the magnetic anisotropy
appears by the SOC. From the expression of the SOC in
Eq. (15), this stabilizes the |Z〉 (SZ = 0) state among the three
HS states. This is naively expected from the fact that the
original SOC is diagonal for the z component of spin [see
Eq. (12)]. To acquire the energy gain in the SOC, the mixing
between the HS and LS states (i.e., the dx2−y2 and dxy orbitals)
is needed, where the mixed HS state is of SZ = 0 as the LS
is the state with SZ = 0. This indicates that Heff

SO causes the
in-plane magnetic anisotropy on the SX -SY plane. From now
on, the direction of the magnetic field is chosen as hX inside
of the magnetic easy plane.

In the present study we consider the effect of the SOC in
this system, particularly for λ/ta = 0.005 (the sign of λ does
not change the phase diagram). This is a realistic value of the
magnitude of the SOC in 3d electron systems such as the
cobaltites where ta ∼ 1 eV. Although the relative value of λ

is significantly small, the physical properties are drastically
changed by the introduction of the SOC as shown below.
Figure 1(b) shows the phase diagram for λ/ta = 0.005. The
phase boundary between the EI and forced FM states is
qualitatively different from that in the case without the SOC;
the EI phase is suppressed by the magnetic field, while the LS
state is continuously connected to the forced FM state without
any phase transitions in contrast to the result for λ = 0.

To see the magnetic-field effect in detail, we show the
magnetic-field dependences of the spin and PS moments in
Figs. 2(d)–2(f) at J/ta = 1.69 and λ/ta = 0.005. At hX = 0,
〈τ y

Z〉 is nonzero due to the presence of the SOC but the spin
moments 〈S�〉 and PS moments 〈τ x

�〉 are zero. This indicates
that the ground state without the magnetic field is regarded
as the LS state at λ/ta = 0.005 without any spontaneous
symmetry breakings. The wave function is given by [see a
schematic illustration in Fig. 4(c)]∣∣ψλ �=0

LS

〉 = |L〉 + iαSO|Z〉, (20)

where αSO is a nonzero real number at λ �= 0, which results
in a finite value of 〈τ y

Z〉. When hX is introduced, 〈SX 〉 in-
creases linearly in contrast to the case with λ = 0 shown in
Fig. 2(a). This is also understood from the finite value of
the zero-temperature susceptibility due to the SOC as shown
in Fig. 5, which is discussed in Sec. III C. In the presence
of the magnetic field, the state |Y 〉 is mixed to Eq. (20) so
as to induce the magnetic moment 〈SX 〉, and the resultant
wave function is represented as [see a schematic illustration
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FIG. 5. Magnetic susceptibilities at zero temperature χ0 as func-
tions of the Hund coupling J .

in Fig. 4(d)] ∣∣ψλ �=0
FF

〉 = |L〉 + iαSO|Z〉 + β̃h|Y 〉, (21)

where β̃h is a real number. We find this wave function has the
same form as Eq. (19). However, the relative phase between
the LS and HS states in Eq. (21) is fixed by λ, which is
not ascribed to a spontaneous symmetry breaking, while the
relative phase in Eq. (19) is determined spontaneously by the
EI order.

Next, we focus on the magnetic-field effect on the EI state
at J/ta = 1.7 and λ/ta = 0.005. The magnetization curves are
presented in Fig. 3(d). The magnetization is proportional to
the magnetic field hX and the magnetization curve shows a
kink at hX = hX

c � 0.0015. We find that the slope below hX
c

is substantially larger than that above hX
c and that at λ = 0

shown in Fig. 3(a). Figures 3(e) and 3(f) show the magnetic-
field dependences of the PS moments. In the absence of the
magnetic field, 〈τ x

Z 〉 is nonzero (〈τ y
Z〉 is also nonzero due to

the SOC). With increasing the magnetic field, 〈τ x
Z 〉 decreases

and vanishes at hX = hX
c , indicating that 〈τ x

Z 〉 characterizes the
EI state. Therefore, the large slope of the magnetization curve
is attributed to the EI state.

Here we discuss the reason that the EI state with nonzero
〈τ x

Z 〉 is stabilized in the presence of the SOC. In the absence
of the magnetic field, although the SO(3) symmetry in the
spin space does not exist due to the SOC, the U(1) symmetry
around the SZ axis is retained. This indicates that the uniform
EI ordered state with nonzero 〈τ x

Z 〉 is distinguished from
the uniform EI state characterized by nonzero 〈τ x

X 〉 and/or
〈τ x

Y 〉. If the latter is realized in the absence of the magnetic
field, the local wave function in the ground state is given
by |ψ〉 ∝ |L〉 + c1|X 〉 + c2|Y 〉 + c3|Z〉, where c1 and c2 are
real and c3 is pure imaginary due to the SOC. In this wave
function, from Eq. (11), a FM order with nonzero 〈SX 〉 and/or
〈SY 〉 appears without the magnetic field. This is unfavorable
to the AFM interaction in the Hamiltonian Eq. (7). On the
other hand, in the case of the uniform EI state with 〈τ x

Z 〉 �= 0
and 〈τ x

X 〉 = 〈τ x
Y 〉 = 0, the local wave function is given by a

linear combination of |L〉 and |Z〉. In this case, local spin
moments do not appear, and therefore, the uniform EI state is
selected in the absence of the magnetic field. From the above

considerations, the wave function is uniquely given by [see a
schematic illustration in Fig. 4(e)]∣∣ψλ �=0,hX =0

EI

〉 = |L〉 + (αEI + iαSO)|Z〉, (22)

where the twofold degeneracy exists for ±αEI.
By introducing hX , 〈τ x

Y 〉 is changed proportionally to hX ,
and 〈τ x

Z 〉 vanishes at hX
c as shown in Fig. 3(e). We identity

the region with nonzero 〈τ x
Z 〉 as the EI phase. In this region,

the wave function is given by [see a schematic illustration in
Fig. 4(f)]∣∣ψλ �=0,hX �=0

EI

〉 = |L〉 + (αEI + iαSO)|Z〉 + β̃h|Y 〉, (23)

where β̃h is a real number. The sign of β̃h which is uniquely
determined under the magnetic field does not depend on that
of αEI. Thus, the twofold degeneracy originating from the
EI order exists only for ±αEI. In the case of hX > hX

c , 〈τ x
Z 〉

vanishes, and the direction of the PS moment is fixed to 〈τ x
Y 〉,

where αEI = 0 in Eq. (23), which is the same as Eq. (21).
Therefore, the phase transition from the EI to forced FM phase
is understood from the flopping of the PS moment from 〈τ x

Z 〉
to 〈τ x

Y 〉 by applying hX , as shown in Fig. 3(e).

C. Magnetic susceptibility

The notable phenomenon caused by this PS flop is the
enhancement of the slope of the magnetization in the low-
field region as shown in Fig. 3(d). In order to show this
phenomenon clearly, we calculate the magnetic susceptibility
χ = 〈SX 〉/hx. We use this expression for finite-temperature
calculations. In the case of T = 0, the calculation using
〈SX 〉/hx is unstable in the vicinity of the phase boundary
because the EI state is fragile under the weak magnetic field
[see Figs. 3(d)–(f)]. Instead of this approach, we compute
the susceptibility at zero temperature χ0 from the dynamical
spin correlation function at hX = 0, which is obtained by
using the spin-wave theory (see Ref. [28] in detail). We have
confirmed the coincidence between the results obtained from
this approach and original definition except for the vicinity
of the phase boundary. Figure 5 shows the J dependence of
χ0. At λ = 0, χ0 vanishes below Jc(∼ 1.698ta) because of the
spin gap in the LS state. In the EI state realized above Jc, χ0

increases from zero at Jc with increasing J . In the presence of
the SOC, χ0 changes continuously but is strongly enhanced at
around Jc as shown in Fig. 5 for λ/ta = 0.005.

This enhancement is also observed in the results for the
temperature dependence. Figures 6(a) and 6(b) show the
finite-temperature susceptibility χ = 〈SX 〉/hx|hX →0 calculated
by the MF approximation at λ/ta = 0 and 0.005, respectively.
First, we focus on the case at λ/ta = 0. In high temperatures,
the nonzero susceptibility is observed since the HS states are
thermally excited. In the case of J/ta = 1.65, the LS ground
state is continuously connected to the high-temperature para-
magnetic state. On the other hand, above Jc, we find the phase
transition at a certain temperature to the low-temperature
EI phase, which is accompanied by the enhancement of the
susceptibility. This behavior is also consistent with the pre-
vious work [25]. Next, we discuss the results in the case of
the nonzero SOC at λ/ta = 0.005. As shown in Fig. 6(b), the
phase transition is observed with the saturation of the suscep-
tibility at J/ta = 1.70, 1.75, and 1.80 but is not at J/ta = 1.65.
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FIG. 6. Magnetic susceptibilities as functions of temperature at
(a) λ/ta = 0 and (b) λ/ta = 0.005 for the several values of the Hund
coupling.

While the finite-temperature phase transition occurs in the
same manner with the zero SOC case, the strong enhancement
is observed slightly above the transition temperature. Below
the transition temperature, χ is almost constant as a function
of temperature. This behavior is in contrast to the case at λ =
0, where χ continues to change with decreasing temperature
from the critical temperature.

D. Origin of enhancement of susceptibility

Here we discuss the origin of the enhancement of the
susceptibility in the presence of the SOC. The susceptibility
is the response of 〈SX 〉 to hX . In this case, the magnetic field
yields the HS state |Y 〉 with the coefficient β̃h as discussed
in Eq. (23). In the EI phase, the coefficient of |Z〉, i.e., αEI,
is also nonzero, and therefore, we expect the presence of the
fluctuation between the spin-nematic states |Y 〉 and |Z〉. To
examine the nematic fluctuation, we calculate the adiabatic
energy in the plane of αEI and β̃h. The adiabatic energy is
defined by the expectation value of the MF Hamiltonian for
the wave function where these coefficients are regarded as
variables under the fixed MFs giving the ground-state MF
solution. Figure 7 shows the adiabatic energy plane in the
vicinity of Jc at λ/ta = 0.005 in the presence of the weak
magnetic field hX /ta = 0.001. While only one minimum ex-
ists below Jc, two minima at nonzero αEI are found above Jc as
a consequence of the EI order associated with the spontaneous
Z2 symmetry breaking. A notable point is that the arc-shape

FIG. 7. Adiabatic energy planes as functions of the parame-
ters αEI and β̃h in the wave function Eq. (23) for (a) J/ta =
1.697, (b) J/ta = 1.698, (c) J/ta = 1.699, and (d) J/ta = 1.7 with
(λ, hX )/ta = (0.005, 0.001). Blue points correspond to the MF
solutions.

low-energy region exists between these minima. This suggests
the presence of the nematic fluctuation between |Y 〉 and |Z〉
caused by the rotational mode. Owing to this fluctuation, β̃h is
easily changed by the magnetic field hX , and, as the result, the
large susceptibility is observed in the EI state in the presence
of the SOC.

On the other hand, in the case of λ = 0, the wave function
in the presence of hX is given in Eq. (19), where βh is the
imaginary part of the coefficient for |Z〉. The adiabatic energy
planes are shown in Fig. 8. In the LS phase [Figs. 8(a)
and 8(b)] the minimum is unique at (αEI, βh) = (0, 0), cor-
responding to |L〉. In the EI phase, two minima are found
at ±(αEI, βh) because of the Z2 degeneracy in the symmetry
broken states. The minima are apart from each other, and
therefore, the nematic fluctuation is weaker than that at λ �= 0.

IV. DISCUSSION AND SUMMARY

First, we discuss the validity of the MF approximation.
As shown in Fig. 3(e), the order parameter 〈τ x〉 of the
EI phase in Fig. 1(b) takes ∼0.1 in the limit of hX → 0
and monotonically decreases with increasing the magnetic
field. We expect that the EI phase survives at hX → 0 but
phase boundary is pushed down to the lower hX side, if
fluctuations beyond the MF approximation are taken into
account. On the other hand, the enhancement of the suscep-
tibility is observed in the LS phase close to the boundary of
the EI phase as a precursor phenomenon [see Figs. 5 and 6(b)].
Therefore this behavior is expected to survive even when the
approximation is improved.

Here we discuss the relevance to real materials such as
cobaltites. In the present study we address the two-orbital
model, where the dx2−y2 and dxy orbitals are taken into
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FIG. 8. Adiabatic energy planes as functions of the parame-
ters αEI and βh in the wave function Eq. (19) for (a) J/ta =
1.691, (b) J/ta = 1.694, (c) J/ta = 1.697, and (d) J/ta = 1.7 with
(λ, hX )/ta = (0, 0.02). Blue points correspond to the MF solutions.
Note that βh is the imaginary part of the coefficient for |Z〉 in Eq. (19).

account. The selection of dx2−y2 and dxy orbitals among the
five d orbitals gives rise to the symmetry lowering in the real
space, namely, the z axis is inequivalent to the other axes.
This suggests that a structural transition or an enhancement
of structural distortion should occur with the phase transition
to the EI phase. Indeed, the increase of the distortion of
CoO6 octahedra has been found by the neutron diffraction
measurement at TS ∼ 90 K in Pr0.5Ca0.5CoO3 [22,23,51],
which supports the selection of the two orbitals, in addition
to the first-principles calculations [25,26,52]. The dx2−y2 and
dxy orbitals are composed of the lz = ±2 states, indicating
that the large SOC is expected for the EI state composed
of the two orbitals. Thus, we expect that an abrupt change
of the magnetization is induced by the magnetic field. This
corresponds to a large magnetic susceptibility, which will
provide another piece of evidence for the EI state in cobaltites.

In general, the SOC is expected to mix the spin-triplet
and spin-singlet states [3]; the latter is given as |singlet〉 =

1√
2
(c†

a↑c†
b↓ − c†

a↓c†
b↑)|0〉. The presence of the mixing is deter-

mined by the choice of the orbital basis. In the case of the

dx2−y2 and dxy orbitals, it is shown that the SOC does not mix
the spin-triplet excitonic order with spin-singlet one, and the
expression of Heff

SO in Eq. (15) is not changed even in the ex-
tended subspace including the spin-singlet state. On the other
hand, in this subspace, the Z component of the orbital moment
LZ has the matrix elements between |L〉 and |singlet〉, namely,
LZ = 2

√
2i( f + g)(|L〉〈singlet| − |singlet〉〈L|), but LX and

LY vanish. In the present work we only examine the case
where the magnetic field is applied along the X axis because
of the in-plane anisotropy. Therefore, the present results are
not changed when the spin-singlet excitonic state is taken
into account. While the contribution of the spin-singlet state
is expected to be weaker than the other states, we should
take account of this state when considering the magnetic field
along the Z axis.

Moreover, the collective excitations from the EI state have
been theoretically proposed [28,52,53] and should be ob-
served by the inelastic neutron scattering. In the present study
we find the enhancement of the low-energy fluctuations of the
spin-nematic states in the vicinity of the phase transition to the
EI phase. We expect that the fluctuations appear as a gapped
mode due to the SOC. Indeed, a low-energy gapped excitation
has been observed by the inelastic neutron scattering [54].
This might correspond to the fluctuation of the spin nematicity
of the HS or IS states but the detailed relationship remains
a future issue. Furthermore, optical measurements is also a
promising route to reveal the low-energy fluctuations of spin
nematicity in the EI state [55–58].

In summary, we have investigated the effect of the SOC on
the EI state by analyzing the low-energy effective Hamilto-
nian. We find that magnetic susceptibility is strongly enhanced
in the vicinity of the phase transition from the LS to EI
states in the presence of the SOC. This originates from the
fluctuation of the spin nematicity intrinsic in the S = 1 HS
states. The present study not only offers the way to identify the
EI state through the significant change of the experimentally
accessible quantity but also will stimulate further investiga-
tions for clarifying the role of the spin nematicity in the
EI state.
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