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Topological phase transition on the edge of two-dimensional Z2 topological order
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The unified mathematical theory of gapped and gapless edges of two-dimensional (2d) topological orders was
developed by two of the authors. According to this theory, the critical point of a purely edge topological phase
transition of a 2d topological order can be mathematically characterized by an enriched fusion category. In this
work, we provide a physical proof of this fact in a concrete example: the 2d Z2 topological order. In particular,
we construct an enriched fusion category, which describes a gappable nonchiral gapless edge of the 2d Z2

topological order. Then, we use an explicit lattice model construction to realize a topological phase transition
between the two well-known gapped edges of the 2d Z2 topological order, and show that all the ingredients of
the above enriched fusion category can be realized explicitly in this lattice model.
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I. INTRODUCTION

The subject of topological order has attracted a lot of
attention in recent years among physicists. The main reason
is that topological orders are new phases of matter that go
beyond Landau’s paradigm of phases and phase transitions
(see a recent review [1] and references therein). Landau’s
paradigm is based on a symmetry-broken theory. The mathe-
matical theory of symmetry is that of groups. The new phases
of matter challenge us to find radically new mathematical
language and tools to understand topological phases and phase
transitions. In this work, we show that the critical point of a
purely edge topological phase transition between two gapped
edges of the same two-dimensional (2d) topological order
can be precisely described by a mathematical structure called
an enriched fusion category [2,3]. Throughout this work, we
use “nd” to represent the spatial dimension and “(n+1)D” to
represent the space-time dimension.

A gapped edge of a 2d anomaly-free topological order can
be viewed as an anomalous one-dimensional (1d) topological
order. It contains no local observables (such as correlation
functions) in the long-wavelength limit except topological
excitations, which can be fused among themselves and form
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a unitary fusion category (UFC) [4,5]. A topological phase
transition restricted on the 1d edge (without altering the 2d
bulk) will be called a purely edge topological phase transition
(see, for example, [6]). Observe that the gap in a neighborhood
of the edge must be closed at the critical point. Therefore, the
critical point of a purely edge topological phase transition
should be nothing but a gappable nonchiral gapless edge of a
2d anomaly-free topological order. As a consequence, to ask
for a precise mathematical description of the critical points
of purely edge topological phase transitions is equivalent to
ask for that of the gappable nonchiral gapless edges of 2d
anomaly-free topological orders.

Based on a mixture of physical intuition and mathematical
arguments, two of the authors established in [7,8] a unified
mathematical theory of both gapped and gapless edges of
2d anomaly-free topological orders. This theory allows us to
treat gapped, chiral gapless, and (gappable) nonchiral gap-
less edges on an equal footing. More precisely, it says that
all physical observables on a gapped/gapless edge form an
enriched fusion category, whose Drinfeld center is precisely
the unitary modular tensor category (UMTC) of the 2d bulk.
Therefore, the critical point of a purely edge topological phase
transition, or a gappable nonchiral gapless edge, is precisely
described by an enriched fusion category. The complete math-
ematical theory of (gappable) nonchiral gapless edges is given
in [8].

The main goal of this work is to provide a physical and
lattice-model realization of all ingredients of the enriched
fusion category associated to the critical point of the purely
edge phase transition between the two gapped edges of the
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2d Z2 topological order [9,10]. Possible experimental real-
izations of the two types of gapped edges are discussed in
[11]. Therefore, an understanding of the topological transition
between them has both theoretical and experimental interest.
The main result of this work is summarized below.

(1) In Sec. III C, we give an explicit construction of a
gappable nonchiral gapless edge of the 2d Z2 topological
order given by the following triple:

(V ⊗C V , Ising � Ising, (Ising � Ising)A). (1)

(a) V is the Ising chiral algebra or vertex operator
algebra (VOA) of central charge 1

2 and V is the same
VOA but contains only antichiral fields φ(z̄),∀ φ ∈ V , and
V ⊗ V is called a nonchiral symmetry [8].

(b) Ising is the UMTC of V -modules, i.e., Ising =
ModV . It contains three simple objects 1, ψ, σ (with the
fusion rule σ ⊗ σ = 1 ⊕ ψ); Ising is the same tensor
category as Ising but with the braidings defined by the
antibraidings in Ising.

(c) Ising � Ising is nothing but the Drinfeld center of
Ising, i.e.,

Z (Ising) = Ising � Ising.

(d) A = 1 � 1 ⊕ ψ � ψ is a condensable algebra in
Z (Ising) (see Definition 3), and Z (Ising)A denotes the
category of right A-modules in Z (Ising) (see Definition 2).
Moreover, Z (Ising)A is a UFC.
The enriched fusion category is determined by the pair

(Z (Ising), Z (Ising)A) via the standard construction [2]. More
precisely,

(a) the objects in the enriched fusion category are the
same as those in Z (Ising)A;

(b) the space of morphism hom(x, y) is defined by the
internal hom [x, y] = (y ⊗A x∗)∗ in Z (Ising); the internal
hom [x, y] can be interpreted either as the domain wall
between two boundary CFTs with boundary conditions x
and y, respectively, or as the partition function of a CFT
defined on a strip with two boundary conditions x and y
(see Fig. 4).
(2) In Sec. III E, we recall another construction of a

slightly different gappable gapless edge [8]. This edge has a
slightly larger nonchiral symmetry given by A, and all the rest
ingredients are already included in the edge [Eq. (1)].

(3) In Sec. IV, we construct a lattice model to realize the
critical point of the purely edge phase transition between two
gapped edges of the Z2 topological order and, at the same
time, all ingredients [x, y] of the enriched fusion category in
[Eq. (1)].

The significance of this work is twofold: (1) it provides the
first lattice model realization of all ingredients of the enriched
fusion category; (2) it shows that the theory developed in [7,8]
can indeed provide a mathematical theory of all purely edge
topological phase transitions. Since the (enriched) categorical
language is not so familiar to condensed matter physicists
and the lattice model construction might not be so familiar to
mathematical physicists, in order to invite readers from both
communities, we have tried to be self-contained.

Remark 1. We would like to remark on how to read this
paper. Since our main goal is to provide a lattice model
realization of ingredients of the enriched fusion category used

in the mathematical theory of gapless edges of 2d topological
orders, it is reasonable to explain the mathematical theory and
enriched fusion category first (in Secs. II and III) and discuss
the lattice model realization later (in Sec. IV). For physically
oriented readers, if you encounter difficulties in Secs. II and
III, we recommend you to read Sec. IV first and return to Secs.
II and III later. Section IV is completely written in the usual
language in physics.

II. CATEGORICAL PRELIMINARIES

In this section, we review some basic ingredients of a
unitary modular tensor category (UMTC), and give two ex-
amples, and set our notations along the way.

A. Unitary modular tensor categories

It is well known that an anomaly-free 2d topological order
without symmetry is described by a pair (C, c), where C is a
UMTC of topological excitations (or anyons in this case) and
c is the chiral central charge [12]. The category of topological
excitations is not enough to fully characterize a topological
order because there are nontrivial invertible topological orders
that have no topological excitations. A 2d invertible topolog-
ical order is given by a tensor product of the E8 states. The
chiral central charge of the E8 state is 8. Therefore, a 2d
invertible topological order can be uniquely determined by
its chiral central charge, and an anomaly-free 2d topological
order can be determined by a pair (C, c).

We review some important ingredients of a UMTC C. It has
finitely many simple objects (simple anyons). We denoted the
simple objects by i, j, k ∈ Irr(C), where Irr(C) is the finite set
of the equivalence classes of simple objects. A generic object
in C is a direct sum of simple ones, e.g., i ⊕ j ⊕ k, and is
called a composite anyon. For each pair (x, y) of objects, the
hom space homC(x, y) is a finite-dimensional Hilbert space.
It has a tensor product functor ⊗ : C × C → C, i.e., (x, y) 	→
x ⊗ y,∀ x, y ∈ C, such that it is associative, i.e., there exists

an isomorphism x ⊗ (y ⊗ z)
αx,y,z−−→ (x ⊗ y) ⊗ z for all x, y, z ∈

C satisfying necessary coherence conditions (i.e., pentagon
relation). These data can be reduced to the induced linear
isomorphisms homC (i ⊗ ( j ⊗ k), l ) 
 homC ((i ⊗ j) ⊗ k, l )
for i, j, k, l ∈ Irr(C) or, equivalently, to F matrices, which
satisfies pentagon identities. The dimension of hom(i ⊗ j, k),
denoted by Nk

i j , is called the fusion rule. The category C has
a tensor unit 1, which is simple, together with unit isomor-

phisms 1 ⊗ x
lx−→ x

rx←− x ⊗ 1 for all x ∈ C satisfying necessary
coherence conditions (i.e., triangle relation). It has a unitary
structure. More precisely, for each morphism f : x → y, there
is an adjoint morphism f † : y → x such that

(g ⊗ h)† = g† ⊗ h†, ∀ g : v → w, h : x → y, (2)

α†
x,y,z = α−1

x,y,z, l†
x = l−1

x , r†
x = r−1

x . (3)

For each x ∈ C, there is a dual object x∗ (the antiparticle
of x), together with the duality morphisms (the creation and
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annihilation operators) expressed graphically as follows:

x∗ x

= vx : x∗ ⊗ x → 1,
x x∗

= u†
x : x ⊗ x∗ → 1,

x x∗

= ux : 1 → x ⊗ x∗,
x∗ x

= v†x : 1 → x∗ ⊗ x.

(4)
which satisfy necessary coherence properties. The quantum
dimension of an object x is defined by dim x = vx ◦ v†

x =
u†

x ◦ ux, both of which are elements of homC(1, 1) = C. The
quantum dimension of the category is defined by dim C :=∑

i∈Irr(C)(dim i)2. It is known that dim x > 0 for x ∈ C [13,
Theorem 2.3; Corollary 2.10]. In particular, dim C � 1. We
denote the positive square root of dim C by

√
dim C.

It has a braiding structure, which amounts to an isomor-

phism x ⊗ y
bx,y−→ y ⊗ x for all x, y ∈ C satisfying necessary

coherence conditions (i.e., hexagon relations), and we have
b†

x,y = b−1
x,y. The braiding satisfies a nondegenerate condition,

which says that the so-called S matrix

si,j =
1√

dim
ij (5)

is nondegenerate. Each simple object i ∈ Irr(C) has a topolog-
ical spin θi ∈ C, which is also called a twist in mathematics.
In physics, the condition θi = 1 for i ∈ Irr(C) amounts to say
that the simple anyon i is a boson.

Let us fix an orthonormal basis {λk;α
i j }Nk

i j

α=1 in homC(i ⊗ j, k)

and its dual basis {yi j
k;β}Nk

i j

β=1 in homC(k, i ⊗ j), i.e.,

yi j
k;β = (

λ
k;β
i j

)†
,

λk;α
i j ◦ yi j

k;β = δα,β idk,∑
k,β

yi j
k;β ◦ λ

k;β
i j = idi⊗ j . (6)

We denote the basis vectors graphically as follows:

λk;α
ij = α

k

i j

, yij
k;α = α

k

i j

. (7)

If Nk
i j = 1, we abbreviate λk;1

i j by λk
i j and yi j

k;1 by yi j
k . We also

fix

λi
1i = li, λi

i1 = ri ⇒ yi
1i = l−1

i , yi
i1 = r−1

i . (8)

Remark 2. The simplest example of UMTC is the trivial
one H, which is the category of finite-dimensional Hilbert
spaces. It has a unique simple object (i.e., the tensor unit 1)
given by the one-dimensional Hilbert space C. The pair (H, 0)
describes the trivial 2d topological order.

B. Toric code and Ising UMTC’s

In this section, we give two examples of UMTC’s: toric
code UMTC and Ising UMTC, both of which are important to
this work.

Example 1. We denote the toric code UMTC by Toric. We
list some of its ingredients below:

(1) There are only four simple objects 1, e, m, f .
(2) The fusion rules are given by e ⊗ m = f , e ⊗ e = m ⊗

m = f ⊗ f = 1. This implies that e∗ = e, m∗ = m, f ∗ = f
and we have dim 1 = dim e = dim m = dim f = 1.

(3) Topological spins: θx = 1 for x = 1, e, m and θ f =
−1.

(4) S matrix is given by

S = 1

2

⎛⎜⎝1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎠.

Remark 3. The name of Toric comes from the fact that the
pair (Toric, 0) describes the Z2 2d topological order, whose
first lattice model realization is given by the toric code model
[9]. For readers with a mathematical background, Toric is
nothing but the Drinfeld center Z (Rep(Z2)) of the category
Rep(Z2) of finite-dimensional representations of the group
Z2.

Example 2. We denote the Ising UMTC by Ising. We list
some of its ingredients below:

(1) There are three simple objects 1, ψ, σ all isomor-
phic to their duals, i.e., 1 = 1∗, ψ = ψ∗, and σ = σ ∗. Their
quantum dimensions are given by dim 1 = dim ψ = 1 and
dim σ = √

2.
(2) The fusion rules are defined by ψ ⊗ ψ = 1, ψ ⊗ σ =

σ , σ ⊗ σ = 1 ⊕ ψ .
(3) Associators: we choose a basis such that the associa-

tors can be expressed in terms of F matrices. In addition to
(8), we further require

λ1
ψψ = vψ, yψψ

1 = uψ, λ1
σσ = 1√

2
vσ , yσσ

1 = uσ .

(9)

There exists a choice of remaining basis, which is unique up
to an arbitrary choice of λσ

ψσ (or, equivalently, a choice of λσ
σψ

or λψ
σσ ), realizing the following F matrices:

(ψ ⊗ σ ) ⊗ ψ = σ
−1−→ σ = ψ ⊗ (σ ⊗ ψ ),

(σ ⊗ ψ ) ⊗ σ
λσ

σψ⊗1−−−→ σ ⊗ σ
λ1

σσ ⊕λ
ψ
σσ−−−−→ 1 ⊕ ψ

1 ⊕ −1−−−→ 1 ⊕ ψ
yσσ

1 ⊕yσσ
ψ−−−−→ σ ⊗ σ

1⊗yψσ
σ−−−→ σ ⊗ (ψ ⊗ σ ),

(σ ⊗ σ ) ⊗ σ
∼=−→ (1 ⊗ σ ) ⊕ (ψ ⊗ σ )

(
1√
2

1√
2

1√
2

− 1√
2

)
−−−−−−−−→ (σ ⊗ 1) ⊕ (σ ⊗ ψ )

∼=−→ σ ⊗ (σ ⊗ σ ), (10)
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where we have only spelled out those nontrivial ones.
(4) Braidings:

1 ⊗ x = x
b1,x=1−−−→ x = x ⊗ 1 for x = 1, ψ, σ ;

ψ ⊗ ψ = 1
bψ,ψ=−1−−−−−→ 1 = ψ ⊗ ψ ;

ψ ⊗ σ = σ
bψ,σ =e− π i

2−−−−−→ σ = σ ⊗ ψ ;

σ ⊗ ψ = σ
bσ,ψ=e− π i

2−−−−−→ σ = ψ ⊗ σ ;

σ ⊗ σ = 1 ⊕ ψ
bσ,σ =e− π i

8 ⊕ e
3π i
8−−−−−−−−−→ 1 ⊕ ψ = σ ⊗ σ. (11)

(5) Spins: θ1 = 1, θψ = −1, θσ = e
π i
8 .

(6) S matrix:

S = 1

2

⎛⎝ 1 1
√

2
1 1 −√

2√
2 −√

2 0

⎞⎠.

Remark 4. The UMTC Ising can be realized as the category
of modules over the Ising vertex operator algebra V with
central charge c = 1

2 , i.e., Ising = ModV . In particular, V
has three irreducible V -modules with the lowest conformal
weights given by 0, 1

2 , 1
16 , corresponding to three simple ob-

jects 1, ψ, σ , respectively.
Remark 5. We use Ising to denote the same UFC as Ising

but with the braidings defined by the antibraidings of Ising. It
is called the time reverse of Ising. Both Ising and Ising �
Ising are UMTC’s. The physical meaning of this Deligne
tensor product � is the stacking of the Ising topological order
with its time-reversal topological order. We have Ising �
Ising = Z (Ising), where Z (Ising) is the Drinfeld center of
Ising. We will call Z (Ising) the double Ising UMTC.

III. A GAPPABLE GAPLESS EDGE OF 2+1D Z2

TOPOLOGICAL ORDER

In this section, we construct a gappable nonchiral gapless
edge of the Z2 topological order in three steps: in Sec. III A,
we construct a gappable nonchiral gapless edge of the double
Ising topological order after a brief review of the mathematical
theory of gapless edges established in [3]; in Sec. III B, we
construct a gapped domain wall between the double Ising
topological order and the Z2 topological order; in Sec. III C,
we construct a gapless edge of the Z2 topological order by
fusing the edge in Sec. III A and the wall in Sec. III B.

A. A mathematical theory of gapless edges

In this section, we briefly review the mathematical theory
gapless edges developed in [7,8]. Before we start, we briefly
summarize the idea. It is well known that a gapped edge of
a 2d topological order can be described by a UFC. Since
the spaces of morphisms in a UFC are the finite-dimensional
vector spaces of instantons, a UFC can be viewed as a
category enriched in the category H of finite-dimensional
Hilbert spaces. When the edge is gapless, the only change is
that a space of morphisms becomes an infinite-dimensional
space of boundary-condition changing operators in a rational
conformal field theory (CFT), and can be viewed as an object

t = 0

t = t1

t

a ∈ C
Ax

Ay

Mx,y

A1 = U

x

Ax

Ay

Mx,y

A1 = U

x

(a) (b)

FIG. 1. The picture (a) depicts a 2d topological order (C, c) on a
2-disk, together with a 1d gapless edge, propagating in time. When
a topological bulk excitation a ∈ C is moved to the edge at t = 0, it
creates a topological edge excitation x or a boundary condition Mx for
the OSVOA Ax living on the t > 0 part of the world line. At t = t1 >

0, the topological edge excitation x is changed to another topological
edge excitation y. This change creates a wall Mx,y between Ax and
Ay. The picture (b) depicts the quasi-(1+1)D world sheet obtained
by stretching the picture (a) along the dotted arrow from a to x.

in the UMTC ModV of modules over a rational VOA V . As
a consequence, a gapless edge can be described by a unitary
fusion category enriched in ModV .

In Fig. 1(a), we depict a spatial two-dimensional disk prop-
agating in time. This spatial two-dimensional disk represents
a 2d topological order (C, c), where C is a unitary modular
tensor category of anyons and c is the chiral central charge.
If (C, c) is a chiral topological order, there are topologically
protected gapless chiral edge modes propagating on the edge
of the disk, more precisely, on the (1+1)D world sheet. It is
well known that these modes are states in a chiral CFT. By
the state-field correspondence in a CFT, we can also say that
chiral fields propagate on the (1+1)D world sheet. In order
to be monodromy free, these chiral fields can not contain any
noninteger powers in the operator product expansion (OPE),
thus form a so-called chiral algebra U or, equivalently, a
vertex operator algebra (VOA) in the mathematical language.

The main idea of the mathematical theory of gapless edges
established in [3] comes from the observation that if a bulk
anyon is moved to the edge at t = 0, it creates a “topological
edge excitation” (labeled by x) such that chiral fields living
on the world line {t > 0} supported on x [the blue line
in Fig. 1(a)] are potentially different from those in U . We
denote the space of all chiral fields on this world line by
Ax. These chiral field can have OPE along the line but no
commutativity is required. Moreover, chiral fields in Ax can
have noninteger powers in their OPE. It turns out that chiral
fields in Ax have to form a boundary CFT. This can be seen
from Fig. 1(b), which is obtained by squeezing the solid
cylinder in Fig. 1(a) to a (1+1)D world sheet. That Ax is a
boundary CFT follows from the following “no-go theorem”:
A (1+1)D boundary-bulk conformal field theory realized by a
1d lattice Hamiltonian model with boundaries should satisfy
the mathematical axioms of a boundary-bulk (or open-closed)
CFT of all genera [14,15]. In other words, it should satisfy
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all the modular invariant conditions and Cardy condition, etc.
For this reason, the label x can also be called a boundary
condition.1 We denote the trivial boundary condition by 1. It is
clear that A1 = U . It is not hard to imagine that the boundary
condition x can be change to another one y at some other point,
say t = t1 > 0, on the world line as depicted in Fig. 1(a). The
chiral fields living on the 0D domain wall between Ax and Ay

are the so-called boundary-condition changing operators. We
denote the space of all such boundary-condition changing op-
erators by Mx,y. It is clear that Mx,x = Ax. Boundary-condition
changing operators can also have OPE, which defines a linear
map

My,z ⊗C Mx,y → Mx,z. (12)

It was shown in [3] that U, Ax, Mx,y should satisfy some
compatibility conditions called V -invariant boundary condi-
tion, where V is a sub-VOA of U and will be called the
chiral symmetry of the edge. We assume that V is unitary
and rational, by which we mean that the category ModV

of V -modules is a UMTC [16]. This V -invariant boundary
condition implies that Mx,y is a V -module, and the linear
map in (12) is an intertwining operator of V or, equivalently,
it defines a morphism My,z ⊗V Mx,y → Mx,z in the category
ModV of V -modules, where ⊗V is the tensor product in ModV

[17]. Moreover, there is a canonical injective V -module map
ιx : V ↪→ Ax for each x. Therefore, we obtain a categorical
structure X:

(i) objects of X are topological edge excitations:
x, y, z, . . . ;

(ii) for each pair (x, y) of objects, the hom space
homX (x, y) := Mx,y is an object in ModV ;

(iii) there is an identity morphism ιx : V = 1ModV → Ax in
ModV ;

(iv) there is a composition morphism My,z ⊗V Mx,y →
Mx,z in ModV .

These satisfy some natural conditions such that X is a
category enriched in ModV or an ModV -enriched category.
The notion of an enriched category generalizes that of a
category by replacing hom-sets by hom-objects, which lives
in a different category. For example, the usual notion of a
category becomes a special case of a category enriched in the
category of sets, and a UFC is a category enriched in H.

The last piece of structure is the horizontal fusion of topo-
logical edge excitations as depicted in Fig. 2, denoted by ⊗.
It automatically provides a horizontal fusion between chiral
fields in Mx′,y′ and those in Mx,y on two parallel world lines.
More precisely, fusing a chiral field changing the boundary
condition from x′ to y′ horizontally with a chiral field changing
the boundary condition from x to y produces a chiral field
changing the boundary condition from x′ ⊗ x to y′ ⊗ y. As a
consequence, this horizontal fusion provides

(a) a morphism Mx′,y′ ⊗V Mx,y → Mx′⊗x,y′⊗y in ModV for
objects x, y, x′, y′ in X,

1Actually, the category of topological edge excitations is closely
related to but slightly different from that of boundary conditions (for
boundary CFT’s) in general (see [7]). In the case studied in this work,
two categories coincide.

t = 0

t

Ax

Mx,y

Ay

Mx′,y′

Ax′

Ay′

U

x
x′

⇒

Mx′x,y′y

Ax′x

Ay′y

U

x′x

(a) (b)

FIG. 2. This picture depicts a horizontal fusion of two boundary
conditions, together with a horizontal fusion of Mx,y and Mx′,y′ . For
convenience, we abbreviate x′ ⊗ x to x′x in the picture.

satisfying some natural properties. It upgrades X to an ModV -
enriched monoidal category [2]. We denote this gapless edge
by a pair (V,X).

Theorem 1 ([18]). There is a braided equivalence C 

Z (X), where Z (X) is the monoidal center of X introduced
in [18].

Remark 6. This theorem says that all boundaries, regardless
gapped or gapless, all share the same bulk as their mathemat-
ical centers. By [8], these boundaries are all spatially Morita
equivalent, and their center is precisely the only invariant of
this spatial Morita equivalence class. Ji and Wen proposed that
the UMTC C associated to the bulk should be viewed as a
“categorical symmetry” of all boundaries in [19]. This idea is
further developed in [20].

Example 3. The well-known Ising 2d topological order
can be described by a pair (Ising, 1

2 ), where Ising denotes
the Ising UMTC and 1

2 is the chiral central charge. It has a
canonical chiral gapless edge described by a pair (V, Ising),
where we note the following:

(a) V is the Ising VOA of the central charge c = 1
2 and

ModV = Ising.
(b) Ising is the Ising-enriched fusion category (i.e., Ising

enriched in itself) defined as follows:
(1) objects in Ising are the same as objects in Ising,

i.e., x = 1, ψ, σ and their direct sums;
(2) for x, y ∈ Ising, we have the hom space defined by

homIsing (x, y) := Mx,y = y ⊗ x∗;

(3) the identity morphism is defined by 1
ux−→ x ⊗ x∗ =

Mx,x;
(4) the composition morphism My,z ⊗ Mx,y

◦−→ Mx,z is

defined by z ⊗ y∗ ⊗ y ⊗ x∗ 1⊗vy⊗1−−−−→ z ⊗ x∗;
(5) a fusion product between two objects is the same

as the one in Ising; the fusion product on hom space is a
morphism Mx′,y′ ⊗ Mx,y → Mx′⊗x,y′⊗y defined by

y′ ⊗ x′∗ ⊗ y ⊗ x∗ 1⊗bx′∗ ,y⊗x∗−−−−−→ (y′ ⊗ y) ⊗ (x′ ⊗ x)∗.
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The enriched monoidal category Ising is a special case
of the standard construction given by Morrison and Penneys
in [2]. We recall this construction only in a special setting.
Let B be a braided fusion category and B its time reversal.
Let M be a fusion category and Z (M) its Drinfeld center. Let
F : B → Z (M) be a braided monoidal functor. Then, we have
a functor � : B × M → M defined by the composition of the
following functors:

B × M
F×idM−−−−→ Z (M) × M

forget×idM−−−−−−→ M × M
⊗−→ M,

where forget : Z (M) → M is the forgetful functor (by forget-
ting the half-braidings). There is a canonical construction of
a B-enriched monoidal category M from the pair (B,M),
where objects in M are objects in M, and for x, y ∈ M,
homM (x, y) is defined by the so-called internal hom [x, y]
in B (or in B). More precisely, [x, y] is uniquely determined
by the following adjunction relation:

homM(b � x, y) 
 homB(b, [x, y]), ∀ b ∈ B. (13)

For convenience, we simply denote M by the pair (B,M).
Such a B-enriched monoidal category will be called a B-
enriched fusion category.

Note that Ising = (Ising, Ising) is an Ising-enriched fu-
sion category, and Mx,y = y ⊗ x∗ is the internal hom [x, y] be-
cause [x, y] = y ⊗ x∗ is clearly a solution to the the adjunction
“equation” (13) when M = B = Ising. Therefore, we denote
(V, Ising) by the triple (V, Ising, Ising).

The mathematical theory of nonchiral gapless edges is
similar. We do not give a review of this theory (see [8]
for more details). Instead, we give an example of gappable
nonchiral gapless edge.

Example 4. By folding an Ising topological order (Ising, 1
2 )

with the canonical chiral gapless edge, we obtain a double
Ising topological order (Ising � Ising, 0) equipped with both
chiral gapless edge modes described by (V, Ising, Ising) and
antichiral gapless edge modes described by (V , Ising, Ising),
where V is the same VOA as V but contains only antichi-
ral fields φ(z̄),∀ φ ∈ V . Altogether, they form a nonchiral
gapless edge of the double Ising topological order (Ising �
Ising, 0) described by the triple

(V ⊗C V , Ising � Ising, Ising � Ising)). (14)

In this nonchiral case, V ⊗C V is called the nonchiral sym-
metry of the edge. It is not a VOA. It contains both the chiral
part and the antichiral part, and is called a full field algebra
in mathematics [21]. This nonchiral gapless edge is clearly
gappable.

Remark 7. We briefly outline the mathematical theory
of gapless edges of 2d topological orders. Intrigued readers
can consult with [7,8] for more details, and for what types
of questions this theory is capable of answering, and for
applications in higher dimensions.

B. A gapped wall between double Ising and toric code

It was first shown by Bais and Slingerland in [22] on a
physical level of rigor that one can obtain the Z2 topological
order from the double Ising via an anyon condensation. In
this section, we will give a complete and rigorous derivation

of this result based on the mathematical theory of anyon
condensation developed in [5]. As a by-product, we construct
a gapped domain wall between the double Ising and the Z2

topological orders.
An anyon condensation from an old topological order

(C, c) to a new phase (D, c) is controlled by a condensable
algebra A in C. We recall this notion below.

Definition 1. Let C be a UMTC. An algebra A in C is a
triple (A, μ, ι), where A is an object in C, μ : A ⊗ A → A and
ι : 1 → A are morphisms satisfying the following conditions:

μ ◦ (μ ⊗ idA) ◦ αA,A,A = μ ◦ (idA ⊗ μ),

μ ◦ (ι ⊗ idA) = idA = μ ◦ (idA ⊗ ι).

The algebra A is called commutative if μ = μ ◦ bA,A, where

A ⊗ A
bA,A−−→ A ⊗ A is the braiding isomorphism.

Definition 2. A right A-module in C is a pair (M, μM ),
where M is an object in C and μM : M ⊗ A → M is such that

μM ◦ (idM ⊗ μ) = μM ◦ (μM ⊗ idA) ◦ αM,A,A,

μM ◦ (idM ⊗ ι) = idM .

We denote the category of right A-modules in C by CA. A right
A-module is called a local A-module if μM ◦ bA,M ◦ bM,A =
μM . We denote the category of local A-modules in C by C0

A,
which is a full subcategory of CA.

Definition 3. An algebra (A, μ, ι) is called separable
if μ : A ⊗ A → A splits as a morphism of A-A-bimodule.
Namely, there is an A-A-bimodule map e : A → A ⊗ A such
that μ ◦ e = idA. A separable algebra is called connected if
dim homC(1, A) = 1. We will call a connected commutative
separable algebra as a condensable algebra. A condensable
algebra A is called Lagrangian if dim(A)2 = dim(C).

If A is condensable, the category CA is a UFC. Its full
subcategory C0

A is a UMTC with the braidings, rigidity, and
spins inherited from those in C. In particular, for a local A-
module M̂ = (M, μM̂ ), the spin (or twist) θA

M̂
in C0

A is defined
by θM in C. Moreover, we have the following identities [23]:

dim(CA) = dim(C)

dim(A)
,

dim(C0
A) = dim(C)

dim(A)2
, (15)

dimA(x) = dim x

dim A
,

where dim x is the quantum dimension of x in C and dimA(x)
is that of x in CA. If, in addition, A is Lagrangian, we have
C0

A = H.
Example 5. There are two condensable algebras in Toric:

Ae = 1 ⊕ e and Am = 1 ⊕ m. Both of them are Lagrangian.
Example 6. Since a condensable algebra A satisfies θA =

idA, the only condensable algebra A in Ising is 1.

Example 7. Let Z (Ising) = Ising � Ising
⊗−→ Ising be the

tensor product functor and let R : Ising → Z (Ising) be its
right adjoint functor.

(1) The following object

R(1) = ⊕i∈Irr(Ising)i
∗ � i = 1 � 1 ⊕ ψ � ψ ⊕ σ � σ (16)
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has the structure of a Lagrangian algebra naturally induced
from the algebraic structure on 1 and, at the same time,
describes a modular invariant closed CFT ([24], Theorem 3.4).
More explicitly, the multiplication map (or the structure
constants of the closed CFT) m : R(1) ⊗ R(1) → R(1) was
defined by (first appeared in [25,26], we take it from ([24],
Eqs. (2.17) and (2.55))

m =
⊕

i,j,k∈Irr(Ising)

∑

α

i∗ j∗

k∗

α �

i j

α

k

,

(17)
where α labels both the basis of homIsing(i ⊗ j, k) and the dual
basis of homIsing(k, i ⊗ j) [recall Eqs. (7) and (6)]. The unit
map is defined by the canonical embedding 1Z (Ising) ↪→ R(1).

(2) We denote the fusion subcategory of Ising consisting
of 1 and ψ by A. Then, A�A is a fusion subcategory of
Z (Ising). We have a subalgebra A of R(1) defined by

A := R(1) ∩ (A�A) = 1 � 1 ⊕ ψ � ψ (18)

which is also a condensable algebra in A�A. More ex-
plicitly, using the right unit isomorphisms r1 : 1 ⊗ 1 
 1, rψ :
ψ ⊗ 1 
 ψ and the duality map vψ [recall (4)], we can rewrite
the multiplication map m in (17) as follows:

m = (1 ⊗ 1
r1−→ 1) � (1 ⊗ 1

r1−→ 1)

⊕ (1 ⊗ ψ
rψ−→ ψ ) � (1 ⊗ ψ

rψ−→ ψ )

⊕ (ψ ⊗ 1
rψ−→ ψ ) � (ψ ⊗ 1

rψ−→ ψ )

⊕ (ψ ⊗ ψ
−vψ−−→ 1) � (ψ ⊗ ψ

vψ−→ 1).

Note that dim A = 2.
According to the anyon condensation theory [5], by

condensing the condensable algebra A in the initial phase
(Z (Ising), 0), we obtain

(1) a new 2d topological order (Z (Ising)0
A, 0), where

Z (Ising)0
A denotes the category of local A-modules in Z (Ising)

(recall Definition 2).
(2) and a 1d gapped domain wall described by the UFC

Z (Ising)A, where Z (Ising)A denotes the category of right A-
modules in Z (Ising) (recall Definition 2).

Our goal is to work out these two categories Z (Ising)A

and Z (Ising)0
A explicitly and prove that Z (Ising)0

A 
 Toric as
UMTC’s. Before we do that, we first collect a few relevant
results.

(1) Notice that we have

dim Z (Ising)A = Z (Ising)

dim A
= 8,

dim Z (Ising)0
A = Z (Ising)

(dim A)2
= 16

22
= 4. (19)

(2) A is clearly a simple right A-module and a local A-
module.

(3) Another obvious simple right A-module is (σ � σ )
because the following splitting

R(1) = A ⊕ (σ � σ )

is a splitting of A-A-bimodules because A is separable. The
right A-module structure on (σ � σ ) (recall Definition 2) can
be explicitly defined by [recall Eq. (7)]

μσ�σ := (σ ⊗ 1
rσ−→ σ ) � (σ ⊗ 1

rσ−→ σ )

⊕
(

σ ⊗ ψ
λσ

σψ−−→ σ

)
�

(
σ ⊗ ψ

λσ
σψ−−→ σ

)
. (20)

Using Eq. (11), it is easy to see that σ � σ is a local A-module.
(4) The condensable algebra A has a nontrivial algebraic

automorphism defined by

δ : A = (1 � 1) ⊕ (ψ � ψ )
1⊕−1−−−→ (1 � 1) ⊕ (ψ � ψ ) = A.

And δ is an involution, i.e., δ2 = idA.
(5) We can use δ to twist the A-action on a right A-module

M = (M, μM ) and obtain a new right A-module structure,
denoted by M tw, with a new action defined by

M ⊗ A
idM⊗δ−−−→ M ⊗ A

μM−→ M.

(a) If M = x ⊗ A for x ∈ C with the right A-action
defined

x ⊗ A ⊗ A
1⊗μ−−→ x ⊗ A, (21)

then we have (x ⊗ A) 
 (x ⊗ A)tw as right A-modules with

the isomorphism given by x ⊗ A
idx⊗δ−−−→ x ⊗ A.

(b) For M = (σ � σ ), we obtain a new local A-module
(σ � σ )tw defined by [recall Eq. (7)]

μ(σ�σ )tw := (σ ⊗ 1
rσ−→ σ ) � (σ ⊗ 1

rσ−→ σ )

⊕
(

σ ⊗ ψ
−λσ

σψ−−−→ σ

)
�

(
σ ⊗ ψ

λσ
σψ−−→ σ

)
.

It is clear that (σ � σ )tw is not isomorphic to (σ � σ ) as
local A-modules.
We need to find all right A-modules. We use the fact that

all simple objects in Z (Ising)A can be realized by a direct
summand of x ⊗ A for x ∈ Irr(Z (Ising)) with the right A-
action defined by (21) because x 
 x ⊗A A and A is sepa-
rable. Therefore, we obtain a complete list of simple right
A-modules as follows:

(1) (1 � 1) ⊗ A = A.
(2) (ψ � 1) ⊗ A = ψ � 1 ⊕ 1 � ψ is clearly a simple lo-

cal A-module. It is useful to write the right A-action on
ψ � 1 ⊕ 1 � ψ explicitly as follows:

(rψ � r1) ⊕ (vψ � lψ ) ⊕ (r1 � rψ ) ⊕ (−lψ � vψ ). (22)

(3) (1 � ψ ) ⊗ A = ψ � 1 ⊕ 1 � ψ is a simple local A-
module. It is useful to write the right A-action on ψ � 1 ⊕
1 � ψ explicitly as follows:

(rψ � r1) ⊕ (−vψ � lψ ) ⊕ (r1 � rψ ) ⊕ (lψ � vψ ). (23)

Using the explicit right A-actions given in Eqs. (22) and (23),
it is obvious to see that

(1 � ψ ) ⊗ A = ((ψ � 1) ⊗ A)tw 
 (ψ � 1) ⊗ A

as right A-modules.
(4) (ψ � ψ ) ⊗ A is a simple local A-module. By writing

out the right A-action on 1 � 1 ⊕ ψ � ψ in basis explicitly
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and comparing it with Eq. (20), we see that (ψ � ψ ) ⊗ A =
Atw 
 A.

(5) (σ � σ ) ⊗ A is a local A-module but not simple. By
checking the right A-action in basis, we obtain that

(σ � σ ) ⊗ A 
 (σ � σ ) ⊕ (σ � σ )tw

as local A-modules.
(6) (σ � 1) ⊗ A = (σ � 1) ⊕ (σ � ψ ) is a simple right A-

module but not local.
(7) (σ � ψ ) ⊗ A = (σ � 1) ⊕ (σ � ψ ) is a simple right

A-module but not local. By writing out the right A-action on
(σ � 1) ⊕ (σ � ψ ) in basis explicitly for both cases 6 and 7,
one see that (σ � ψ ) ⊗ A = ((σ � 1) ⊗ A)tw 
 (σ � 1) ⊗ A.

(8) (1 � σ ) ⊗ A = (1 � σ ) ⊕ (ψ � σ ) is a simple right A-
module but not local.

(9) (ψ � σ ) ⊗ A = (1 � σ ) ⊕ (ψ � σ ) is a simple right
A-module but not local. By writing out the right A-action
on (1 � σ ) ⊕ (ψ � σ ) in basis explicitly for both cases 8
and 9, one can see that (ψ � σ ) ⊗ A = ((1 � σ ) ⊗ A)tw 

(σ � 1) ⊗ A).

To summarize, we have found all simple objects in
Z (Ising)A:

(i) Four simple local A-modules with new and shorter
notations

1 := A = (1 � 1) ⊕ (ψ � ψ ), e := (σ � σ ),

m := (σ � σ )tw,

f := (ψ � 1) ⊗ A = ψ � 1 ⊕ 1 � ψ (24)

with quantum dimensions in Z (Ising)A all given by 1.
(ii) Two simple nonlocal right A-modules with new and

shorter notations

χ+ := (1 � σ ) ⊗ A = (1 � σ ) ⊕ (ψ � σ ),

χ− := (σ � 1) ⊗ A = (σ � 1) ⊕ (σ � ψ ) (25)

with quantum dimensions in Z (Ising)A both given by
√

2.
Remark 8. One can also check directly from the sum of

quantum dimensions and Eq. (19) to see that we have found
all simple right A-modules and all simple local A-modules.

Now, we work out the fusion rules of Z (Ising)0
A. Note that

the fusion product in Z (Ising)0
A is given by the relative tensor

product ⊗A. In order to see how Z (Ising)0
A can be identified

with the UMTC Toric as an abstract tensor category. We adopt
the new convention of notation as illustrated by the following
examples:

e � m := (σ � σ ) ⊗A (σ � σ )tw,

χ+ � f := [(1 � σ ) ⊗ A] ⊗A [(ψ � 1) ⊗ A],

where we have also replaced the tensor product ⊗A in
Z (Ising)A by �.

(1) The right A-module structure on (σ � σ ) gives a left
A-module structure on (σ � σ )∗ = (σ � σ ). One can check
that it coincides with the left A-module structure on (σ � σ )
defined by

A ⊗ (σ � σ )
bA,σ�σ−−−→ (σ � σ ) ⊗ A → A.

As a consequence, the dual of (σ � σ ) in Z (Ising)0
A is pre-

cisely (σ � σ ). In other words, we must have (σ � σ ) ⊗A

(σ � σ ) 
 A as right A-modules.
(2) Similarly, we have (σ � σ )tw ⊗A (σ � σ )tw 
 A as

right A-modules.
(3) On the one hand, we have

[(σ � σ ) ⊗ A] ⊗A (σ � σ )


 [(σ � σ ) ⊕ (σ � σ )tw] ⊗A (σ � σ ).

On the other hand, we have

[(σ � σ ) ⊗ A] ⊗A (σ � σ ) 
 (σ � σ ) ⊗ (σ � σ )


 (1 ⊕ ψ ) � (1 ⊕ ψ )


 A ⊕ [(ψ � 1) ⊕ (1 � ψ )].

Therefore, we obtain (σ � σ )tw ⊗A (σ � σ ) 
 (ψ � 1) ⊗ A
as right A-modules.

As a consequence, we obtain the following fusion rules of
Z (Ising)0

A:

1 � x = x, e � e = m � m = f � f = 1, e � m = f , (26)

where x = 1, e, m, f .
Note that this fusion rule coincides with that of Toric.

According to [27], there are exactly two modular tensor
categories that share these fusion rules. They are Toric and
Spin(8)1, the spins of which are given by (1, 1, 1,−1) and
(1,−1,−1,−1), respectively. In our case, we have

θA
e = θA

m = θσ θ−1
σ = 1, θA

f = θψ = −1,

where θA
− denotes the spins in Z (Ising)0

A. Therefore, we have
proved the following result.

Theorem 2. Z (Ising)0
A 
 Toric as UMTC’s.

It is useful to work out the remaining fusion rules in
Z (Ising)A as follows:

χ± � χ± = 1 ⊕ f , χ± � χ∓ = e ⊕ m,

e � χ± = χ± � e = m � χ± = χ± � m = χ∓. (27)

We give a proof below:
(1) χ+ � χ+ = [(1 � σ ) ⊗ A] ⊗A [(1 � σ ) ⊗ A] 
 (1 �

σ ) ⊗ (1 � σ ) ⊗ A 
 A ⊕ (1 � ψ ) ⊗ A = 1 ⊕ f .
(2) χ− � χ− = [(σ � 1) ⊗ A] ⊗A [(σ �

1) ⊗ A] 
 (σ � 1) ⊗ (σ � 1) ⊗ A 
 A ⊕ (ψ �
1) ⊗ A = 1 ⊕ f .

(3) χ+ � χ− = [(1 � σ ) ⊗ A] ⊗A [(σ � 1) ⊗ A] 
 (σ �
σ ) ⊗ A = e ⊕ m = χ− � χ+.

(4) e � χ+ 
 χ+ � e = [(1 � σ ) ⊗ A] ⊗A (σ � σ ) 
 σ �
(1 ⊕ ψ ) = χ−.

(5) e � χ− 
 χ− � e = [(σ � 1) ⊗ A] ⊗A (σ � σ ) 
 (1 ⊕
ψ ) � σ = χ+.

(6) m � χ+ 
 χ+ � m = [(1 � σ ) ⊗ A] ⊗A (σ � σ )tw 

χ−.

(7) m � χ− 
 χ− � m = [(σ � 1) ⊗ A] ⊗A (σ � σ )tw 

χ+.

Remark 9. From the above identities, one can see that x =
x∗ and x � y = y � x as objects for all x ∈ Z (Ising)A.

In summary, by condensing A in the double Ising topologi-
cal order (Z (Ising), 0), we obtain the 2d Z2 topological order
and a gapped domain wall given by the UFC Z (Ising)A, which
consists of six simple wall excitations 1, e, m, f , χ±.
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(V ⊗C V , Z(Ising), Z(Ising))

Z(Ising)

Toric

(C,H, Z(Ising)A)

a gapless edge a gapped wall

FIG. 3. This picture depicts a gapped domain wall between the
double Ising and the Z2 topological order, and a gapless edge of the
double Ising topological order.

C. First gappable nonchiral gapless edge

In this section, we combine results in Secs. III A and III B
to construct a gappable nonchiral gapless edge of the Z2 topo-
logical order. In Example 4, we have constructed a gappable
nonchiral gapless edge of the double Ising topological order.

It can be expressed by a triple

(V ⊗C V , Z (Ising), Z (Ising)). (28)

In Sec. III B, we have constructed a gapped domain wall
Z (Ising)A between the double Ising and the Z2 topological or-
ders. Using the notion of enriched fusion category introduced
in Sec. III A, the UFC Z (Ising)A can also be viewed as an en-
riched fusion category determined by the pair (H, Z (Ising)A).
Therefore, this gapped domain wall can also be expressed as
a triple

(C, H, Z (Ising)A), (29)

where the complex numbers C should be viewed as the trivial
VOA of central charge 0.

By fusing the gapless edge (28) and the gapped domain
wall (29) as depicted in Fig. 3, we obtain a nonchiral gapless
edge of the Z2 topological order. Using the fusion product
defined in ([3], Eq. (5.2)), this gapless edge is given by the
following triples:

(V ⊗C V , Z (Ising), Z (Ising)) �(Z (Ising),0) (C, H, Z (Ising)A) = (V ⊗C V ⊗C C, Z (Ising) � H, Z (Ising) �Z (Ising) Z (Ising)A)

= (V ⊗C V , Z (Ising), Z (Ising)A). (30)

The validity of this fusion formula is explained in details in
[7]. We can describe the observables on this gapless edge
(V ⊗C V , Z (Ising), Z (Ising)A) explicitly as follows:

(i) V ⊗C V is the nonchiral symmetry.
(ii) Topological edge excitations (or boundary conditions)

on this gapless edge are objects in Z (Ising)A. In particular,
there are exactly six simple ones: 1, e, m, f , χ±. They can be
fused horizontally according to the fusion rules in Z (Ising)A

[see Eqs. (26) and (27)].
(iii) Boundary CFT’s and walls between them Mx,y are

given by internal homs [x, y] = (x ⊗A y∗)∗ [28]. We want to
work out each [x, y] as objects in order to compare them with
the partition functions obtained in lattice model realizations in
Sec. IV. Recall that x∗ = x for x ∈ Z (Ising)A. Moreover, for
x, y = 1, e, m, f , χ±, we obtain

Mx,y = [x, y] = [1, x ⊗A y] = x ⊗A y, as objects. (31)

Each x is defined by objects in Z (Ising) by Eqs. (24) and (25).
This nonchiral gapless edge is clearly gappable.

D. Partition functions of Mx,y in the first edge

Recall that the 2d Z2 topological order has two gapped
edges. One is obtained by condensing m particles and the
other by condensing e particles [10]. Both gapped edges
can be described by the same UFC Rep(Z2) but equipped
with two different bulk-to-edge functors Toric → Rep(Z2),
corresponding to different condensations. The bulk-edge cor-
respondence says that the Drinfeld center of Rep(Z2) gives
the bulk, i.e., bulk = the center of the edge. A purely edge
topological phase transition between these two gapped edges
closes the gap and produces a gappable gapless edge at
the critical point. Since the bulk-edge correspondence holds

before and after the transition, we expect that it holds at the
critical point as well.

In Sec. III C, we have constructed a gappable gapless edge
(V ⊗C V , Z (Ising), Z (Ising)A) of the 2d Z2 topological or-
der. It shares the same bulk with the two gapped edges.
Mathematically, it is because the enriched fusion category
(Z (Ising), Z (Ising)A) and the UFC Rep(Z2) share the same
Drinfeld center [18] or, equivalently, they are spatially Morita
equivalent as enriched fusion categories [8,29]. Physically, it
is because one can construct a gapless 0d domain walls be-
tween this gappable gapless edge and each of the two gapped
edges. The physical reason is equivalent to the mathematical
one. More details about this are given in [7,8].

Therefore, it is reasonable to ask if this gappable gapless
edge describes the critical point of a purely edge topological
phase transition between two gapped edges. The main goal
of this work is to prove that this is indeed true. We will
achieve this goal in Sec. IV by recovering the chiral symmetry
V and all the ingredients of the enriched fusion category
(Z (Ising), Z (Ising)A), i.e., Mx,y, from a lattice model con-
struction.

It is enough to just recover V and the partition function
of Mx,y. In physics, the partition function of Mx,y can be
computed by the path integral over an annulus obtained by
compactifying the time axis, and fixing the two boundary
conditions to be x and y as shown in Fig. 4. The pictures
in Fig. 4 also show that the partition function of Mx,y is the
same as that of M1,x�y. This is also obvious by the fact that
Mx,y = M1,x�y as objects in Z (Ising). We denote the partition
function of M1,x = x by Zx(τ ) for x = 1, e, m, f , χ±, where τ

is the moduli of torus.
Since all x = 1, e, m, f , χ± are obtained from double Ising

topological order via an anyon condensation, they can all be
viewed as objects in ModV � ModV as shown in Eqs. (24) and
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(a) (b)

FIG. 4. Calculation of the partition function of Mx,y via path
integrals.

(25). Therefore, the partition function Zx(τ ) can be expressed
in terms of the characters of 1, ψ, σ in the Ising CFT, which
are denoted by χ0(τ ), χ 1

2
(τ ), χ 1

16
(τ ), respectively. Notice

that 0, 1
2 , 1

16 are the lowest conformal weights of 1, ψ, σ ,
respectively. By Eqs. (24) and (25), we obtain six partition
functions Zx(τ ) for x = 1, e, m, f , χ±:

χ1(τ ) = |χ0(τ )|2 + ∣∣χ 1
2
(τ )

∣∣2
, χe = χm = ∣∣χ 1

16
(τ )

∣∣2
,

χ f = χ 1
2
(τ )χ0(τ )∗ + χ0(τ )χ 1

2
(τ )∗, (32)

χχ+ (τ ) = χ0(τ )χ 1
16

(τ )∗ + χ 1
2
(τ )χ 1

16
(τ )∗,

χχ− (τ ) = χ 1
16

(τ )χ0(τ )∗ + χ 1
16

(τ )χ 1
2
(τ )∗. (33)

We will show in Sec. IV explicitly how to recover these six
partition functions Zx(τ ) (as summarized in Table I). The
partition functions of Mx,y are automatically recovered for
exactly the same reason (as illustrated in Fig. 4), which is also
manifest in the lattice model construction.

E. Second gappable gapless edge

In this section, we recall another gappable gapless edge of
the 2d Z2 topological order [8]. This edge is closely related
to the edge (30). Intrigued readers should consult [8] for more

TABLE I. Relation between the excitations in the bulk and the
partition function of the CFT on the edge [recall Eqs. (32) and
(33)].

(−)� (−)F Partition function

1 +1 +1 Z1 = |χ0(τ )|2 + |χ 1
2
(τ )|2

e −1 +1 Ze = |χ 1
16

(τ )|2
m −1 −1 Zm = |χ 1

16
(τ )|2

f +1 −1 Zf = χ0(τ )∗χ 1
2
(τ ) + χ 1

2
(τ )∗χ0(τ )

χ+ +1 Zχ+ = χ 1
16

(τ )∗χ0(τ ) + χ 1
16

(τ )∗χ 1
2
(τ )

χ− −1 Zχ− = χ0(τ )∗χ 1
16

(τ ) + χ 1
2
(τ )∗χ 1

16
(τ )

gappable gapless edges of the 2d Z2 topological order. First,
note that V ⊗C V ↪→ A, and A is a full field algebra extension
of V ⊗C V . Therefore, A can also be a nonchiral symmetry.
There is a natural notion of ModA defined by the category
of local A-module in ModV � ModV . In other words, ModA

is again a UMTC and is equivalent to Toric containing four
simple objects 1, e, m, f as defined in (24).

Second, we enhance the nonchiral symmetry of the edge
(30) from V ⊗C V to A. As a consequence, the simple edge
excitations that preserve this enhanced nonchiral symmetry
are reduced to 1, e, m, f (see (8], Sec. 5.2)). We obtain a new
gappable gapless edge defined by the following triple:

(A, ModA, Toric). (34)

The associated four partition functions are given in (32). If we
insert the remaining two χ± to the edge (34), it will break the
nonchiral symmetry from A to V ⊗C V . According to [8], this
triple defines a new gappable gapless edge different from the
one defined in (30). In this case, Mx,y is the same as those in
the edge (30) [recall (31)] except that x, y are restricted to only
1, e, m, f and their direct sums. Therefore, there are only four
relevant partition functions as listed in (32).

IV. A LATTICE MODEL REALIZATION

In this section, we give a lattice model realization of the
critical point of the purely edge phase transition between
two different gapped edges of the 2d Z2 topological order,
and recover all the ingredients of the gappable gapless edge
constructed in Sec. III C. We choose the Wen plaquette model
to be the lattice realization of the 2d Z2 topological order. For
the convenience of readers in mathematical background, we
review the Wen plaquette model in details.

A. Wen plaquette model

The Wen plaquette model is defined on a square lattice
with a two-dimensional local Hilbert space on each site, or
one qubit per site. The Hamiltonian of this model is given by

Hwp = −
∑

p

Op, (35)

where p labels the plaquettes on the square lattice, as shown
in Fig. 5(a). The operator Op associated to the plaquette
p acts on the four sites located at the four corners of the
plaquette as

Op =
1 2

34
p = σz

1σx
2σz

3σx
4 . (36)

where σ x
i and σ z

i are the qubit operators (represented as Pauli
matrices) and the subscript i labels the site where these qubit
operators are acting on. Here, we have adopted the diagram-
matic representation introduced in [30], where each operator
acting on a site is represented by a string going through

that site, i.e., . They anticommute
with each other on the same site σ x

i σ z
i = −σ z

i σ x
i , which can

be diagrammatically represented as (the operator
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Bf

Av

Op

Op

x

y

a1a2

Toric CodeWen Plaquette

FIG. 5. Wen plaquette model on the square lattice (left) and its
connection to the toric code model (right). The plaquette operator Op

maps to either the vertex operator Av or the plaquette (face) operator
Bf via local basis transformations of σ x ↔ σ z on the hollow sites.

that acts later will be stacked above). In Fig. 5, the lattice is
partitioned into red and blue plaquettes, but the operators Op

are defined identically for both types of plaquettes. This model
Hwp is exactly solvable because for any pairs of plaquettes p
and p′, the operators Op and Op′ commute with each other,
i.e.,

[Op, Op′ ] = 0. (37)

Every state |GS〉 in the ground-state Hilbert space of this
model should satisfy

Op|GS〉 = |GS〉, ∀ p. (38)

So, Op are also called the stabilizers that stabilize the ground
state. In fact, every eigenstate of Hwp is a simultaneous eigen-
state of Op for all plaquettes p. By definition in Eq. (36), the
eigenvalues of Op are ±1. Excited states of Hwp are labeled
by a set of Op eigenvalues containing −1. If an excited state
carries a −1 eigenvalue of Op for a given plaquette p, we say
the excited state contains an excitation at the plaquette p.

The Wen plaquette model is in fact equivalent to the
standard toric code model. To see this equivalence, we first
reidentify the sites in the original square lattice (spanned by
x̂, ŷ) as the centers of the links in a new square lattice (spanned
by â1, â2) which is 45◦ tilted from the original one as in
shown in Fig. 5. A red plaquette of the original lattice will
be associated to the sites in the new square lattice while a
blue plaquette of the original lattice will be associated to the
plaquette (face) of the new square lattice. We can transform
the Wen plaquette model on the original lattice to the standard
toric code model on the new tilted lattice. To do this, we
perform a change of the basis on all the hollow sites (shown in
Fig. 5) such that the role of σ x and σ z interchanges on those
sites, i.e., σ x ↔ σ z. After this change of basis, the plaquette
terms Op on the blue plaquettes become the standard plaquette
term B f = ∏

l∈∂ f σ x
l of the toric code model on the orange

lattice. In the new basis, the plaquette terms Op on the red
plaquettes become the standard vertex term Av = ∏

l∈dv σ z
l

of the toric code mode. The Hamiltonian in Eq. (35) then
becomes H = −∑

v Av − ∑
f B f on the new lattice, which

is the toric code model Hamiltonian.
In the toric code model, the Av (or B f ) excitation is called

the e (or m) particle. Following this convention, in the Wen
plaquette model, the red (or blue) plaquette excitation should

be labeled as e (or m) correspondingly. The bound state of e
and m particles will be denoted as f , which is a fermion. These
excitations can be created in pairs by string operators. The dia-
grammatic representation allows us to define string operators
conveniently, simply by collecting the qubit operators along
the string [see Fig. 6(a) for example]. Together with the trivial
particle 1 (representing a local excitation), 1, e, m, f form the
set of simple objects in the toric code UMTC Toric.

Aside from these intrinsic excitations, the Wen plaquette
model also admits extrinsic excitations such as lattice disloca-
tions [4,31,32]. By an extrinsic excitation, we mean that the
lattice dislocation is not an excited state in the spectrum of
Hwp but rather a defect introduced to the system by modifying
the Hamiltonian. The lattice dislocations are also created
in pairs by removing a string of lattice sites, leaving two
dislocation plaquettes at each end of the string, as shown in
Fig. 6(b). The sites can be effectively removed by applying
a strong external field to pin the qubits along the dislocation
string, which amounts to adding the Hdis = g

∑
i∈string σ x

i term
to the Wen plaquette model Hwp [32]. The plaquette operator
around the dislocation will be extended to the following five-
qubit operator:

Op = i

1 2

34

5 p = −σz
1σx

2σz
3σx

4σy
5 , (39)

such that the local degeneracy around the dislocation can be
lifted. The form of this dislocation plaquette operator can
be derived from the 1/g perturbative expansion in the limit
of strong pinning field g → ∞ [32]. The introduction of the
dislocation does not break the exact solvability of the model
as the extended plaquette operator Op (around the dislocation)
still commutes with all the rest of the plaquette operators.
So, all the eigenstates are still labeled by the eigenvalues of
Op operators. In particular, around a dislocation plaquette p,
Op = +1 stabilizes a trivial dislocation denoted as χ+, while
Op = −1 indicates an excited dislocation denoted as χ−. Both
dislocation defects χ± implement the e-m duality in the Wen
plaquette model, as the lattice is distorted by the dislocation
in such a way that there is no longer a global definition for red
(e) and blue (m) plaquettes. If an e particle goes around one
dislocation χ±, it will transmute into an m particle, and vice
versa. Taking the dislocations χ± into account, the six objects
1, e, m, f , χ± are the simple objects in the UFC Z (Ising)A

[recall Eqs. (24) and (25)]. The following fusion rules are
evident by drawing diagrams of strings/dislocations:

e � e = m � m = f � f = 1, e � m = f ,

χ± � χ± = 1 ⊕ f , χ± � χ∓ = e ⊕ m,

e � χ± = χ± � e = m � χ± = χ± � m = χ∓. (40)

For example, Figs. 6(b) and 6(c) show how χ+ becomes χ− by
fusing with e or m (if we read the picture from left to right).
They also illustrate χ± � χ∓ = e ⊕ m (if we read the picture
from top down or bottom up).
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e e

m m

f f

a

e

Χ Χ

b

m

Χ Χ

c

FIG. 6. (a) Intrinsic excitations are created in pairs by applying string operators to the ground state. Here, the red string operator creates
a pair of e excitations, the blue string operator creates a pair of m excitations, and the intertwined red and blue strings create a pair of f
excitations. (b), (c) Extrinsic excitations involve modifying the lattice. Here, we show a pair of dislocations: one plain dislocation χ+ and
one excited dislocation χ−. χ− can be obtained from χ+ adding an excitation of either e or m (they are indistinguishable in the presence of
dislocation).

B. Majorana representation

The Wen plaquette model also admits an alternative so-
lution in terms of Majorana fermions. In this approach,
the two-dimensional local Hilbert space C2 of a qubit on
each site i is first lifted to a four-dimensional super vector
space C2|2, equipped with four Majorana fermion operators
γ 0

i , γ 1
i , γ 2

i , γ 3
i . The Majorana operators are Hermitian γ

a†
i =

γ a
i and satisfy the anticommutation relations {γ a

i , γ b
j } =

2δi jδ
ab. We then use the onsite projections C2|2 → C2 spec-

ified by γ 0
i γ 1

i γ 2
i γ 3

i = 1 to restrict the fermion Hilbert space
to the physical (qubit) Hilbert space, which corresponds to
the even-fermion-parity sector on each site. This construc-
tion amounts to first fractionalize the qubit into Majorana
fermions and then impose the projective constraint to remove
the gauge redundancy introduced in the fractionalization
procedure.

Under the constraint γ 0
i γ 1

i γ 2
i γ 3

i = 1, each qubit operator
σ a

i (a = x, y, z) can be represented as Majorana fermion bi-
linear operators in two seemingly different (but equivalent)
ways:

σ a
i = iγ 0

i γ a
i = −iεabcγ b

i γ c
i , (41)

where a, b, c are used to label x, y, z or 1,2,3 interchangeably.
It will be more intuitive to use the following diagrammatic
representations:

=
0

1
2

3 =
0

1
2

3

≡ ≡ ≡

σz
i iγ0

i γ3
i iγ2

i γ1
i

,
=

0
1

2
3 =

0
1

2
3

≡ ≡ ≡

σx
i iγ0

i γ1
i iγ3

i γ2
i

.

(42)

The four Majorana operators on each site are represented by
small circles, and a string going through the site can pair up
the fermion operators along the string in two different ways.
The ordering of fermion operators is indicated by the arrow
according to the following rules:

i
a

j
b

≡ iγa
i γb

j = −iγb
jγ

a
i ≡ − i

a
j
b

. (43)

Using the Majorana representation, the plaquette operator Op

can be written as

Op =
i j

kl

p =

i j

kl

p ≡ (iγ2
i γ1

i )(iγ3
j γ2

j )(iγ0
kγ3

k)(iγ0
l γ1

l )

=

i j

kl

p ≡ (iγ1
i γ3

j )(iγ2
j γ0

k)(iγ1
l γ3

k)(iγ2
i γ0

l ).

(44)
It will be convenient to introduce the link operators (as Majo-
rana fermion bilinear terms across each link)

τ̂i,i+x̂ = iγ 1
i γ 3

i+x̂, τ̂i,i+ŷ = iγ 2
i γ 0

i+ŷ, (45)

such that the plaquette operator Op = ∏
〈i j〉∈∂ p τ̂i j is simply a

product of link operators around the plaquette. By definition,
one can show that τ̂

†
i j = τ̂i j and τ̂ 2

i j = 1, therefore, τ̂i j only
have two possible eigenvalues τi j = ±1. Moreover, the link
operators τ̂i j commute with each other, so their eigenvalues
τi j can be treated as independent Z2 variables. In the common
eigenbasis of τ̂i j , the Wen plaquette model is diagonalized
Hwp = −∑

p

∏
〈i j〉∈∂ p τi j . If we identify the link variable τi j

as a Z2 gauge connection along 〈i j〉, Hwp will describe a Z2

gauge theory, which is invariant under the gauge transforma-
tion τi j → siτi j s j (induced by any configuration of si = ±1).
The plaquette operator Op = ±1 measures the Z2 gauge flux
through each plaquette p (Op = 1: no flux, Op = −1: with
flux). The Hamiltonian Hwp = −∑

p Op energetically favors
the Z2 gauge flux to be trivial (Op = 1) everywhere for the
ground state.

Assuming periodic boundary conditions of the square lat-
tice along both x̂ and ŷ directions, there will be four gauge-
inequivalent configurations of τi j that solve the Op = 1 con-
straints (see Fig. 7), which correspond to the four degenerated
ground states of the Wen plaquette model on a torus. Each
configuration of τi j specifies a unique fermion state |�[τi j]〉 in
the fermion Hilbert space, s.t. τ̂i j |�[τi j]〉 = τi j |�[τi j]〉, where
all Majorana fermions are dimerized in pairs and fully gapped.
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FIG. 7. Four gauge-inequivalent configurations of τi j that satisfy Op = 1 for all plaquettes on a square lattice with periodic boundary
condition in both directions. Link directions i → j to make τi j = +1 are indicated by arrows, which point toward (against) x̂ or ŷ directions
on the gray (red) links. These configurations are related to each other by applying string operators along noncontractible loops.

The physical ground state can be constructed by projection

|GS〉 =
∏

i

1 + γ 0
i γ 1

i γ 2
i γ 3

i

2
|�[τi j]〉 =

∑
[si]

|�[siτi j s j]〉. (46)

Imposing the constraint γ 0
i γ 1

i γ 2
i γ 3

i = 1 by projection is
equivalent to summing over all gauge-related |�[siτi j s j]〉
states (parametrized by [si] that induces the gauge transform).
Therefore, the four gauge-inequivalent sectors of the Op = 1
subspace eventually result in the four physical ground states.
The ground states are related to each other by string operators
as shown in Fig. 7. In the Majorana representation, the string
operator is proportional to the product of all Majorana oper-
ators covered by the string. Applying the string operator will
change all γ a

i → −γ a
i along the string, and hence all τi j →

−τi j if the link 〈i j〉 has an odd intersection with the string,
thereby changing the state from one gauge sector to another.

C. Edge theory and partition functions

Now, we consider placing the Wen plaquette model on a
square lattice with open boundaries. The Majorana fermions
in the bulk still pair up and remain gapped, however, the
dangling Majorana fermions along the edges of the system
can become gapless. In general, any term that commutes
with the plaquette terms Op in the bulk can appear on the
boundary, which will lift most of the edge degeneracy from
the dangling Majorana modes and stabilize the edge theory.
To the lowest order, the following edge terms will act on the
links along the edge:

south edge: σz
i σx

j =
ij

=
ij

=
ij

= iτ̂jiγ
0
i γ0

j ,

west edge: σx
i σz

j =
i

j
=

i

j

=
i

j

= iτ̂ijγ
3
i γ3

j ,

north edge: σz
i σx

j =
i j

=

i j

=

i j

= iτ̂ijγ
2
i γ2

j ,

east edge: σx
i σz

j =
i

j
=

i

j

=

i

j

= iτ̂jiγ
1
i γ1

j .

(47)

They describe the dangling Majorana fermions hopping on
the edge and coupling to the gauge connection τ̂i j = −τ̂ ji on
the edge link. Moreover, the four corner sites of the square
lattice allows the following corner terms:

south-west corner: σz
i = i =

i
=

i
= iγ0

i γ3
i ,

north-west corner: σx
i = i =

i
=

i
= iγ3

i γ2
i ,

north-east corner: σz
i = i =

i
=

i
= iγ2

i γ1
i ,

south-east corner: σx
i = i =

i
=

i
= iγ0

i γ1
i .

(48)
They describe how the Majorana fermion turns around at the
corners. Gathering all these terms together and relabeling the
dangling Majorana modes as ξi (see Fig. 8), the boundary
of Wen plaquette model realizes a closed Majorana chain
coupled to a Z2 gauge field (originated from the bulk), which

123

L�1

L

FIG. 8. The Majorana representation of the Wen plaquette model
with open boundary. The dangling Majorana modes along the edge
are marked as green dots. They are connected by the edge terms to
form a Majorana chain coupled to the Z2 gauge theory in the bulk.
The red plaquettes are even (e) plaquettes and the blue plaquettes are
odd (m) plaquettes.
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is described by the following edge Hamiltonian:

Hbdy = −
L−1∑
i=1

iti,i+1ξiξi+1 − itL,1ξLξ1, (49)

where the total number of Majorana modes is L = 2(Lx + Ly)
on a Lx × Ly lattice. The gauge connection ti j in Hbdy is tied
to the gauge connection τi j along the edge link according to
Eq. (47) as

ti j =
{
τi j 〈i j〉 on the west and north edges,
τ ji = −τi j 〈i j〉 on the east and south edges. (50)

For the corners, ti j are fixed by Eq. (48) to be tL1 = −1 on the
southeast corner and ti,i+1 = +1 on the rest of the corners (as
illustrated in Fig. 8).

First of all, the edge is gapless. For any configuration
of the gauge field ti j , we can show that there always exist
gauge-invariant excitations in the spectrum of Hbdy whose
excitation energy �E lies below 4π/L. Because along the
one-dimensional edge, we can always gauge away the nontriv-
ial gauge connection to the boundary condition, i.e., any con-
figuration of ti j can be related to ti,i+1 = 1 (i = 1, 2, . . . , L −
1) and tL1 = ±1 by gauge transformation. Then, Fourier
transforming to the momentum space ξk = L−1/2 ∑L

i=1 ξie−iki,
the boundary Hamiltonian in Eq. (49) can be diagonalized
as Hbdy = ∑

0<k<π εkξ−kξk , where εk = 2 sin k describes the
single-particle excitation energy εk as a function of the mo-
mentum k. Note that for Majorana fermions ξ−k = ξ

†
k , so

ξk at k = 0, π (if realizable) are Majorana operators (zero
modes) and ξk with 0 < k < π are annihilation operators of
fermion excitations. The excitation spectrum of Hbdy can be
labeled by fermion occupation numbers nk = ξ−kξk = 0, 1
(for 0 < k < π ) subject to the condition that the fermions
can only be excited in pairs to maintain gauge invariance.
Consider two-fermion excitations, the excitation energies are
given by �E(k1,k2 ) = εk1 + εk2 and labeled by two momenta
k1 and k2. The boundary condition tL1 = ±1 only affects
the momentum quantization between k = 2πn/L (for n =
0, . . . , L/2) or k = 2π (n + 1/2)/L (for n = 0, . . . , L/2 − 1).
For tL1 = +1 (or tL1 = −1), we can explicitly construct
the gauge-invariant excitation of �E(0,2π/L) = 2 sin 2π/L (or
�E(π/L,π/L) = 4 sin π/L). In either case, the minimal excita-
tion energy is bounded by �E � 4π/L at least. So, the edge
excitations gap vanishes (as ∼1/L) in the L → ∞ thermody-
namic limit.

Moreover, the edge is anomalous, in correspondence to the
Z2 topological order in the bulk. This is manifest from the fact
that the edge Hamiltonian Hbdy in Eq. (49) is not a standalone
one-dimensional model but has to involve the Z2 gauge field
from the bulk. To further expose the edge anomaly, we study
how the edge partition function responses to different bulk
excitations (including both intrinsic and extrinsic excitations).
This in turn establishes a bulk-edge correspondence between
the Z2 topological order Toric in the bulk and its gapless edge.

The same conclusion can be obtained on the field-theory
level [11] by connecting the mutual Chern-Simons theory
description of the bulk Z2 topological order to the Luttinger-
liquid description of the edge Ising criticality. The result is
also supported by the analysis of effective edge Hamiltonian
based on the tensor network representation of Z2 topological

ordered state [33]. Here, we provide a lattice derivation of
the bulk-edge correspondence based on the Majorana repre-
sentation, which enables us to further discuss the effect of
bulk excitations (especially extrinsic excitations) on the edge
theory.

We start from intrinsic excitations 1, e, m, f . To facilitate
our discussion, we define the total Z2 flux operator (−)� and
the edge fermion parity operator (−)F as

(−)� = −tL1

L−1∏
i=1

ti,i+1, (−)F =
L/2∏
r=1

it2r−1,2rξ2r−1ξ2r . (51)

Both of them are invariant under gauge transformations ξi →
siξi and ti j → siti js j (for any si = ±1). To make their physical
meaning more explicit, we can use the gauge freedom to fix
ti,i+1 = 1 for i = 1, 2, . . . , L − 1 and push all the nontrivial
gauge connection to the boundary condition tL1 = ±1. Af-
ter gauge fixing, (−)� = −tL1 measures the total Z2 gauge
flux enclosed by the Majorana chain, such that (−)� = 1
[or (−)� = −1] corresponds to the no-flux (or π -flux) case,
which also corresponds to the Neveu-Schwarz (or Ramond)
boundary condition for the Majorana fermion ξi. Also, with
this gauge choice, (−)F = ∏L/2

r=1 iξ2r−1ξ2r becomes the prod-
uct of all dangling Majorana fermions ξi, which matches
the definition of fermion parity in a purely one-dimensional
Majorana chain. In conclusion, Eq. (51) provides a gauge-
independent definition of the Z2 flux (−)� and edge fermion
parity (−)F operators, which allows us to make connection to
the plaquette operators in the bulk. Using the relation between
ti j and τi j in Eq. (50) and using the fact that the total fermion
parity of the system is even, it can be shown that

(−)� =
∏

p

Op, (−)F =
∏

p∈odd

Op. (52)

The even and odd plaquettes are assigned such that the pla-
quette on the southeast corner (the corner of ξ1 and ξL) is
always defined to be even, and the rest of the plaquettes can
be labeled odd or even following the checkerboard pattern (see
Fig. 8). We will follow the convention to call the excitation in
the even (odd) plaquette as the e (m) excitation, and treat f as
the bound state of e and m. Then, according to Eq. (52), (−)�

counts the parity of e and m particles and (−)F counts the
parity of m and f particles in the bulk. Therefore, pushing the
bulk particle to the edge can change the Z2 flux and fermion
parity of the Majorana chain, which is reflected in the change
of the partition function of the edge theory. The results are
summarized in Table I and will be explained later in details.

To calculate these partition functions, we work with
the ti,i+1 = 1 gauge (for i = 1, 2, . . . , L − 1). The Majorana
chain can be described by a free-fermion CFT at low energy.
As we discussed, the edge fermion dispersion relation is given
by εk = 2 sin k. Hence, the low-energy fermions are described
by the fermion modes with momenta k = 0 + kL and k =
π + kR for small kL and kR. As we will see, the fermion modes
with small kL and kR correspond to the left-moving and right-
moving fermion modes in terms of the (1+1)D free-fermion
CFT. By linearizing the dispersion for small kL and kR, we
can write the Hamiltonian H and the total momentum P in the
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momentum space:

H =
∑

kL

vF kLnkL +
∑

kR

−vF kRnkR ,

P =
∑

kL

kLnkL +
∑

kR

kRnkR ,
(53)

where the Fermi velocity happens to be vF = 2 for the lat-
tice model in Eq. (49). nkL = 0, 1 and nkR = 0, 1 denote the
fermion occupation number of the momentum k = 0 + kL and
k = π + kR modes. We notice that both the Hamiltonian H
and the total momentum P receive contributions separately
from the left- and right-moving fermion modes.

Without a Z2 flux in the bulk (−)� = −tL1 = +1, the
fermion sees an antiperiodic boundary condition (as tL1 =
−1) on the lattice and and its momentum is quantized to k =
2π (n + 1/2)/L (for n ∈ Z). Since L is even, the quantization
of kL and kR is consequently given by kL = 2π (n′ + 1/2)/L
and kR = 2π (n′′ + 1/2)/L with n′, n′′ ∈ Z. This quantization
of kL and kR implies that the left- and right-moving fermions
are both subject to the Neveu-Schwarz (NS) boundary condi-
tion, namely, the antiperiodic boundary condition in the CFT
sense, in the spatial direction. Here, the boundary conditions
for the left- and right-moving fermion modes are the same and
are identical to the boundary condition defined on the lattice.
However, one always needs to be cautious that these boundary
conditions are not necessarily equal. We will encounter such
cases in the presence of the dislocations χ±.

The partition function on a space-time torus with modular
parameter τ = (α + iβvF )/L for both even and odd fermion
parity will be given by

Z1(τ ) = TrNS
1 + (−)F

2
e−βH+iαP,

Z f (τ ) = TrNS
1 − (−)F

2
e−βH+iαP,

(54)

where TrNS represents the trace over the left- and right-moving
fermion modes with the kL and kR quantization discussed
above. These partition functions can be calculated by cal-
culating the two terms TrNSe−βH+iαP and TrNS(−)F e−βH+iαP

separately. The form of the Hamiltonian H and the total
momentum P given in Eq. (53), together with the fact that
the total fermion parity operator (−)F is a product of the left-
and right-fermion parities, ensures that each of TrNSe−βH+iαP

and TrNS(−)F e−βH+iαP factorizes into a product of the left-
moving-fermion contribution and the right-moving-fermion
contribution:

TrNS e−βH+iαP = |d−−(τ )|2,
TrNS (−)F e−βH+iαP = |d−+(τ )|2,

(55)

where d−∓(τ ) = q− 1
48

∏∞
n=0(1 ± qn+1/2) with q = e2π iτ are

the contributions from the left-moving fermions. The contri-
butions from the right-moving fermions are given by d−∓(τ )∗.
Details of d−∓(τ ) can be found in Chapter 6.4 and Chap-
ter 10.3 in [34]. The two subscripts of d−±(τ ) represent
the spatial and temporal boundary conditions (in the CFT
sense) respectively: “−” represents the antiperiodic (Neveu-
Schwarz) boundary condition and “+” represents the peri-
odic (Ramond) boundary condition. Here, the trace TrNS has

already set the spatial boundary condition for both of the left-
and right-moving modes to be antiperiodic (Neveu-Schwarz).
The temporal boundary condition is periodic (Ramond) if
there is a fermion parity operator (−)F in the trace TrNS. It
is antiperiodic (Neveu-Schwarz) if without. Putting the results
together, we have

Z1(τ ) = TrNS
1 + (−)F

2
e−βH+iαP = |d−−(τ )|2 + |d−+(τ )|2

2
,

Z f (τ ) = TrNS
1 − (−)F

2
e−βH+iαP = |d−−(τ )|2 − |d−+(τ )|2

2
.

(56)

With a Z2 flux in the bulk (−)� = −tL1 = −1, the fermion
sees a periodic boundary condition (as tL1 = +1) on the lattice
and its momentum is quantized to k = 2πn/L (for n ∈ Z).
Given that L is even, the momenta of left- and right-moving
fermion modes are then correspondingly quantized to kL =
2πn′/L and kR = 2πn′′/L with n′, n′′ ∈ Z. This quantization
of kL and kR implies that the left- and right-moving fermions
are both subject to the Ramond (R) boundary condition,
namely, the periodic boundary condition in the CFT sense, in
the spatial direction. Notice that this spatial periodic boundary
condition allows for fermion zero modes at kL = 0 and at
kR = 0. In this case, the partition function in both fermion
parity sectors will be given by

Ze(τ ) = TrR
1 + (−)F

2
e−βH+iαP = |d+−(τ )|2 + |d++(τ )|2

2
,

Zm(τ ) = TrR
1 − (−)F

2
e−βH+iαP = |d+−(τ )|2 − |d++(τ )|2

2
,

(57)

where d+∓(τ ) = 1√
2
q

1
24

∏∞
n=0(1 ± qn) with q = e2π iτ . Here,

TrR represents the trace over the left- and right-moving
fermion modes with the kL and kR quantization given above.
The 1√

2
factor takes care of the state counting in the presence

of the zero mode. Here, the two subscripts of d+∓(τ ) again
labels the spatial and temporal boundary conditions, respec-
tively. These results are obtained in a similar fashion as Z1(τ )
and Z f (τ ). Details of d+∓(τ ) can also be found in Chap.s 6.4
and 10.3 in [34]. Interestingly, we notice that d++(τ ) = 0 due
to the n = 0 contributions. Hence,

Ze(τ ) = Zm(τ ). (58)

The characters d±±(τ ) are in fact the partitions of the
(1+1)D free-fermion CFT on the torus with different bound-
ary conditions (or equivalently different spin structures). It is
a classic result that the free-fermion characters d±±(τ ) can
be directly related to the characters χ0, χ 1

16
, χ 1

2
of the Ising

CFT (see, for instance, Chap. 10.3 of [34] for reference) in
the following way:

χ0(τ ) = d−−(τ ) + d−+(τ )

2
,

χ 1
16

(τ ) = d+−(τ )√
2

,

χ 1
2
(τ ) = d−−(τ ) − d−+(τ )

2
. (59)
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Therefore, we can rewrite the partition functions Z1, Ze(τ ),
Zm(τ ), and Z f (τ ) as

Z1 = |χ0(τ )|2 + ∣∣χ 1
2
(τ )

∣∣2
,

Z f = χ0(τ )∗χ 1
2
(τ ) + χ 1

2
(τ )∗χ0(τ ),

Ze(τ ) = Zm(τ ) = ∣∣χ 1
16

(τ )
∣∣2

. (60)

In this way, we have provided an explicit lattice model real-
ization of all partition functions [recall Eq. (32)] on the gap-
pable nonchiral gapless edges defined in (34). If we impose
the nonchiral symmetry A [recall (18)] at the critical point,
these are the only partition functions preserving the nonchiral
symmetry A (see ([8], Sec. 5.2)).

In fact, some more interpretation of the partition functions
is in order. In defining Z1, Ze(τ ), Zm(τ ), and Z f (τ ), we only
consider the low-energy edge degrees of freedom in the traces
“TrNS” and “TrR.” However, these partition functions can still
be interpreted as the partition functions for whole system
(including the edge and the bulk degrees of freedom) with
the bulk in the “infinite-gap limit.” The bulk energy gap is
set by the energy scale of the bulk Hamiltonian Hwp while

the edge energy scale is set independently by Hbdy. For a
finite-size system, if we take the bulk energy gap to be infinite
without changing the edge energy scale, the whole system
will be automatically in the sector with (−)� = (−)F = 1 at
low energy. The partition function of the whole system then
receives contributions only from the gapless edge states in
the corresponding sector and becomes Z1(τ ) in this limit. To
obtain Zm(τ ) as the partition function of the whole system,
we need to change the bulk Hamiltonian Hwp on a single
odd plaquette p. By changing the sign of the coupling for
the operator Op on the given (odd) plaquette p, we obtain a
new Hamiltonian H ′

wp whose infinite-gap limit automatically
favors the sector with (−)� = −1 and (−)F = −1 at low
energy. In this limit, the partition function of the whole system
receives contributions only from the gapless edge states in the
corresponding sector and becomes Zm(τ ). Ze(τ ) and Z f (τ )
can be obtained in a similar way as the partition functions of
the whole system.

In the following, we discuss the behavior of these partition
functions Z1(τ ), Z f (τ ), Ze(τ ), and Zm(τ ) under modular
transformations. The characters d±±(τ ) have simple modular
transformation properties:

S transformation τ → −1/τ :

⎧⎪⎨⎪⎩
d++(−1/τ ) = d++(τ ) = 0,

d+−(−1/τ ) = d−+(τ ),
d−+(−1/τ ) = d+−(τ ),
d−−(−1/τ ) = d−−(τ ),

(61)

T transformation τ → τ + 1 :

⎧⎪⎪⎨⎪⎪⎩
d++(τ + 1) = d++(τ ) = 0,

d+−(τ + 1) = ei2π/24d+−(τ ),
d−+(τ + 1) = e−i2π/48d−−(τ ),
d−−(τ + 1) = e−i2π/48d−+(τ ).

(62)

These transformations induce the modular transformations of Z1(τ ), Z f (τ ), Ze(τ ), and Zm(τ ):⎛⎜⎝Z1(−1/τ )
Ze(−1/τ )
Zm(−1/τ )
Z f (−1/τ )

⎞⎟⎠ = S

⎛⎜⎝Z1(τ )
Ze(τ )
Zm(τ )
Z f (τ )

⎞⎟⎠,

⎛⎜⎝Z1(τ + 1)
Ze(τ + 1)
Zm(τ + 1)
Z f (τ + 1)

⎞⎟⎠ = T

⎛⎜⎝Z1(τ )
Ze(τ )
Zm(τ )
Z f (τ )

⎞⎟⎠, (63)

where the matrices S and T are given by

S = 1

2

⎛⎜⎝1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎠, T =

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎠.

(64)

In fact, Eq. (63) does NOT uniquely determine S and T .
However, the S and T matrices given above match exactly the
modular S and T matrices of the Z2 topological order. This is
not surprising because of Eq. (24). That the partition functions
on the gapless edge transform covariantly according to the
S and T matrices associated to the bulk 2d phase is true for
all the so-called canonical chiral or nonchiral gapless edges
almost tautologically according to the general theory in ([7,8],
Theoremph 5.16).2

2Ji and Wen amplified this fact in [35] and promoted it to a general
principle even in higher dimensions. For general chiral or nonchiral

Another observation is that Z1 + Zm (or Z1 + Ze) matches
exactly the Ising CFT partition function on a torus
which is modular invariant. This is not surprising because
of (24).

If we are allowed to break the nonchiral symmetry from A
to 1 � 1 = V ⊗C V ⊂ A [recall (18)] at the critical point by
adding the extrinsic excitations χ± (see ([8], Sec. 5.2)), we
can obtain a lattice realization of the gapless edge defined
by (V ⊗C V , Z (Ising), Z (Ising)A) [recall Eq. (30)]. The
extrinsic excitations χ± correspond to lattice dislocations in
the bulk. If we create a pair of lattice dislocations and push
one of them through the edge, the number of lattice sites
along the edge will be effectively reduced by one, resulting
in an odd number of dangling fermions on the edge, as shown

gapless edges, this statement is true in many cases. But, there are
counterexamples (see ([8], Example 5.17)). We believe that this
fact can be generalized even to higher dimensions but under certain
unknown conditions.
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FIG. 9. The Majorana representation of the Wen plaquette model
in the presence of a dislocation χ+. Green dots mark out the dangling
Majorana modes along the edge as well as the Majorana zero mode
trapped by the dislocation inside the bulk. The number of Majorana
modes on the edge becomes odd. The even(e)/odd(m) plaquette can
no longer be globally defined (the inconsistent plaquettes are colored
in purple).

in Fig. 9. To compensate the missing Majorana mode on the
edge, one Majorana zero mode will appear at the dislocation
inside the bulk. In this case, the edge fermion parity operator
can no longer be defined (as there are only an odd number of
fermion modes on the edge). This is also manifest from the
bulk that the plaquettes can not be consistently assigned as
even/odd in the presence of the dislocation. Therefore, (−)F

in Eq. (52) no longer makes sense. Nevertheless, the total Z2

flux (−)� is still well defined as (−)� = −tL1
∏L−1

i=1 ti,i+1 =∏
p Op as long as the plaquette operator is extended around the

dislocation according to Eq. (39). Therefore, in the absence
of excitations in the regular (nondislocation) plaquettes, the
trivial χ+ and excited χ− dislocations in the bulk will lead
to different boundary conditions for the boundary Majorana
chain. Namely, (−)� = ±1 corresponds to χ±.

Interestingly, the presence of a single dislocation in the
bulk renders the length L of the edge Majorana chain odd.
In this case, the boundary condition defined on the lattice
for the edge Majorana chain is translated in the nontrivial
way into the boundary condition (in the CFT sense) for
the left- and right-moving fermion modes. Let us start with
the dislocation χ+ which leads to (−)� = +1. The edge
fermion modes experience an antiperiodic boundary condition
on the lattice. Hence, their momenta are quantized to k =
2π (n + 1/2)/L with n ∈ Z. At low energy, we focus on the
left- and right-moving fermion modes with momenta k =
0 + kL and kR = π + kR. When L is odd, the quantization
k = 2π (n + 1/2)/L leads to the quantization kL = 2π (n′ +
1/2)/L and kR = 2πn′′/L with n′, n′′ ∈ Z for the left- and
right-moving fermions. We notice that kL and kR are now
quantized differently. These quantizations suggest that the
left-moving fermion modes are subject to an antiperiodic
(Neveu-Schwarz) boundary condition in a CFT sense, while

the right-moving fermions are subject to a periodic (Ramond)
boundary condition in a CFT sense. Therefore, the partition
function is given by

Zχ+ (τ ) = 1√
2

d+−(τ )∗d−−(τ ), (65)

where d−−(τ ) and d+−(τ )∗ are the contributions from the
left- and right-moving fermions. They are both subject to
an antiperiodic boundary condition in the temporal direction.
That is because there is no edge fermion parity projection
needed and, hence, no edge fermion parity operator involved
in obtaining Zχ+ (τ ). d−−(τ ) and d+−(τ )∗ have the opposite
spatial boundary conditions because the momentum quantiza-
tion of kL and kR explained above. The reason that there is an
extra factor of 1√

2
in Zχ+ (τ ) is a bit tricky. First of all, the edge

Majorana chain with an odd length does not, strictly speaking,
have a well-defined Hilbert space. One natural solution to
it is to consider the total Hilbert space defined by both the
edge fermion modes and the Majorana zero mode localized
on the dislocation (even though the latter is decoupled from
the former). This Majorana zero mode on the dislocation
should contribute a

√
2 factor based on its quantum dimen-

sion. However, we need to ensure that the global fermion
parity (including the edge and dislocation Majorana modes)
is even (so that the states involved in the partition sum can
be projected back to the “bosonic” Hilbert space with just
bosonic spin operators acting on it). The global fermion parity
projection eliminates half of the states in the fermionic Hilbert
space (associated to the Majorana modes) and hence leads to
an extra factor of 1

2 . Therefore, the quantum dimension of the
dislocation Majorana zero mode and the global fermion parity
projection in total contribute to a factor of

√
2

2 to the partition
function. Including the Majorana zero mode on the dislocation
and implementing the global fermion parity projection are
also natural if we consider Zχ+ (τ ) as the partition function
of the whole system (including the bulk and the edge) in
the infinite-gap limit. That is because the Majorana zero
mode localized on the dislocation has zero energy even when
the bulk is in the infinite-gap limit. Furthermore, the global
fermion parity projection is always needed to ensure the states
summed over in the partition function live in a bosonic Hilbert
space.

We can analyze the case with a χ− dislocation in a similar
way. The dislocation χ− which leads to (−)� = −1. Hence,
the edge fermion modes experience a periodic boundary
condition on the lattice. Their momenta are therefore quan-
tized to k = 2πn/L with n ∈ Z. At low energy, we focus
on the left- and right-moving fermion modes with momenta
k = 0 + kL and kR = π + kR. When L is odd, the quantiza-
tion k = 2πn/L leads to the quantization kL = 2πn′/L and
kR = 2π (n′′ + 1/2)/L with n′, n′′ ∈ Z for the left- and right-
moving fermions. Again, kL and kR are quantized differently.
In the CFT sense, the left-moving fermion modes are now
subject to a periodic (Ramond) boundary condition, while
the right-moving fermions are subject to an antiperiodic
(Neveu-Schwarz) boundary condition. Therefore, the partition
function is given by

Zχ− (τ ) = 1√
2

d−−(τ )∗d+−(τ ). (66)
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In terms of the Ising CFT characters, we can write

Zχ+ (τ ) = χ 1
16

(τ )∗χ0(τ ) + χ 1
16

(τ )∗χ 1
2
(τ ),

Zχ− (τ ) = χ0(τ )∗χ 1
16

(τ ) + χ 1
2
(τ )∗χ 1

16
(τ ). (67)

We see immediately that we have achieved the lattice model
realization of the last two partition functions (33) in the
enriched fusion category of the gapless edge defined by the
triple (V ⊗C V , Z (Ising), Z (Ising)A) [recall Eq. (30)]. All
the partition functions Z1, Ze, Zm, Z f , Zχ+ , and Zχ− are
summarized in Table I.

We have recovered the partition functions of M1,x for
x = 1, e, m, f , χ± on the edge (30) directly from the lattice
model of the gapless edge. More general partition function
of Mx,y coincides with that of M1,x⊗y. This is obvious from
our lattice model construction. Therefore, the gapless edge
defined by Eq. (49), which is coupled to the bulk, realizes
physically the gapless edge defined by the triple (V ⊗C

V , Z (Ising), Z (Ising)A).
The partition functions Z1, Ze, Zm, Z f , Zχ+ obtained using

a Hamiltonian formalism in this section are closely related to
the results of [36] where the Ising CFT partition functions
in the presence of topological line defects are studied using
a two-dimensional statistical mechanical model. The two-
dimensional statistical mechanical model proposed in [36]
can be viewed as the discretized Euclidean path integral of
the edge Hamiltonian studied in this section. The topological
defect lines of the statistical mechanical can be identified
as the world line of the objects x = 1, e, m, f , χ± in our
Hamiltonian formalism.

D. Purely edge phase transition

In this section, we provide an interpretation of this gapless
edge theory given by Eq. (49) as the critical point between
two types of topologically distinct gapped edges of the Z2

topological order. In the following, we only work with the
Wen plaquette model with an open boundary and without
any dislocations. The labeling of the edge Majorana modes
follows that of Fig. 8. We use the same convention as above
that the plaquette on the southeast corner is defined to be even.
We consider a generalized edge Hamiltonian

H ′
bdy = −

L−1∑
i=1

[1 + (−)iλ]iti,i+1ξiξi+1 − [1 + (−)Lλ]itL,1ξLξ1,

(68)

where λ is a tuning parameter. When λ = 0, H ′
bdy reduces

back to the Hamiltonian Hbdy in Eq. (49) which gives rise to
the gapless edge theory. A nonzero λ results in an alternating
pattern of the hopping strength in the edge Majorana chain.
From now on, we define the links along the edge between the
edge Majorana modes ξ2r−1 and ξ2r with r = 1, 2, . . . , L/2 as
the e links, and the links between the edge Majorana modes
ξ2r and ξ2r+1 with r = 1, 2, . . . , L/2 − 1, as well as the link
between ξL and ξ1, as the m links. In the generalized edge
model H ′

bdy, the hopping strength along the e links is given by
1 − λ, while the hopping strength along the m links is given by
1 + λ. One should always remember that each of the fermion

hopping terms can be written in terms of the bosonic operators
in Eqs. (47) and (48). Therefore, H ′

bdy can be expressed using
the Pauli matrices on the sites on edge.

For the simplicity of discussion, we can focus on the
sector such that the edge Majorana chain has an antiperiodic
boundary condition, i.e., (−)� = 1. In this case, we can gauge
fix such that ti,i+1 = tL,1 = 1 for all i = 1, 2, . . . , L − 1. H ′

bdy
then becomes the standard 1d Majorana chain. When λ �= 0,
the dispersion of the edge fermions is gapped and, hence, the
Hamiltonian H ′

bdy is gapped as well. It is well known that
the phases with λ > 0 and λ < 0 are two distinct symmetry-
protected-topological (SPT) phases of the 1d Majorana chain.
The states with λ > 0 (or λ < 0) are all adiabatically con-
nected. The two SPT phases each have a simple limit at λ = 1
and −1, respectively. With λ = 1, the hopping along the e
links is completely switched off and the edge Majorana modes
dimerize on the m links. With λ = −1, the hopping along the
m links is completely switched off and the edge Majorana
modes dimerize on the e links instead. One can easily see
that the two SPT phases can be mapped into each other by
exchanging the roles of the e links and the m links. Therefore,
if we enforce a symmetry between e links and the m links in
the edge model (which consequently requires λ = 0 in H ′

bdy),
the edge theory has to be at the critical point between the two
SPT phases.

The two SPT phases on the edge and the critical point
between them can be reinterpreted in connection to the Z2

topological order in the bulk. For the phase with λ > 0, we
can take the case with λ = 1 as a representative. When λ = 1,
the only terms left in H ′

bdy are the hopping terms on the m
links which are exactly the edge terms [shown in Eq. (47)]
that are adjacent to the odd plaquettes of the bulk.3 Remember
that we have associated the m particle to the odd plaquette in
the bulk. Only turning on the edge terms adjacent to the odd
plaquettes in fact enforces the m-condensing (gapped) edge of
the toric topological order. Hence, the gapped edge phase with
λ > 0 should be associated to the m-condensing edge of the
Z2 topological order. Following a similar line of reasoning, we
can conclude that the gapped edge phase with λ < 0 should
be associated to the e-condensing edge of the Z2 topological
order. The gapless point at λ = 0 is in fact the critical point
between the two types of gapped edges of the Z2 topological
order. Generically, the edge of Z2 topological order does not
need to be at the critical point. However, if we enforce the e-m
duality as a “symmetry” of the whole system, there will be a
“symmetry” between the e links and the m links on the edge.
It enforces a gapless edge that is the critical point between the
two types of gapped edges.
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