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Density dynamics in the mass-imbalanced Hubbard chain
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We consider two mutually interacting fermionic particle species on a one-dimensional lattice and study how
the mass ratio η between the two species affects the (equilibration) dynamics of the particles. Focusing on
the regime of strong interactions and high temperatures, two well-studied points of reference are given by
(i) the case of equal masses η = 1, i.e., the standard Fermi-Hubbard chain, where initial nonequilibrium density
distributions are known to decay, and (ii) the case of one particle species being infinitely heavy, η = 0, leading to
a localization of the lighter particles in an effective disorder potential. Given these two opposing cases, the
dynamics in the case of intermediate mass ratios 0 < η < 1 is of particular interest. To this end, we study
the real-time dynamics of pure states featuring a sharp initial nonequilibrium density profile. Relying on the
concept of dynamical quantum typicality, the resulting nonequilibrium dynamics can be related to equilibrium
correlation functions. Summarizing our main results, we observe that diffusive transport occurs for moderate
values of the mass imbalance and manifests itself in a Gaussian spreading of real-space density profiles and an
exponential decay of density modes in momentum space. For stronger imbalances, we provide evidence that
transport becomes anomalous on intermediate timescales, and in particular, our results are consistent with the
absence of strict localization in the long-time limit for any η > 0. Based on our numerical analysis, we provide
an estimate for the “lifetime” of the effective localization as a function of η.
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I. INTRODUCTION

Understanding the dynamics of quantum many-body sys-
tems is a central objective of modern physics which has been
reignited by experimental advancements featuring, e.g., cold
atoms or trapped ions [1,2] and has experienced an upsurge
of interest also on the theoretical side [3–7]. In this context,
an intriguing and fundamental direction of research is to
explain if and how thermodynamic behavior can emerge from
the unitary time evolution of isolated quantum systems. One
notable explanation for this occurrence of thermalization is
the eigenstate thermalization hypothesis [8–10], which has
been numerically verified in numerous instances [5].

However, despite thermalization certainly being a rather
common observation, there are also classes of systems which
generically evade reaching thermal equilibrium even at indef-
initely long times. In particular, it was realized early on by
Anderson that noninteracting particles in one or two spatial
dimensions localize for an arbitrarily weak disorder potential
[11,12] (for experimental confirmations see, e.g., [13,14]).
Moreover, it is now widely believed that for sufficiently
strong disorder, localization is also possible in the presence
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of interactions [15,16], which is supported by experimental
results as well [17].

While the majority of studies on many-body localization
(MBL) typically focus on one-dimensional and short-range
models composed of, e.g., spin-1/2 degrees of freedom, there
has been much effort recently to generalize the notion of MBL
to a wider class of models [18]. This includes, e.g., systems
which are weakly coupled to a thermal bath [19], models with
long-range interactions [20] or degrees of freedom with higher
spin S > 1/2 [21,22], and Hubbard models where the disorder
couples only to either the charge or spin degree of freedom
[23,24].

A particularly interesting question is whether MBL can
also occur in systems which are translationally invariant, i.e.,
without any explicit disorder [25–39]. A convenient model
to investigate this question is given by the mass-imbalanced
Hubbard chain [29–31,39–41]. In this model, two mutually
interacting particle species are defined on a one-dimensional
lattice and exhibit different hopping amplitudes. Here, the
imbalance is parametrized by the ratio η between the two
hopping strengths, ranging from η = 0, where the heavy
particles are entirely static, to η = 1, where the hopping
amplitudes are the same. On the one hand, in the balanced
limit η = 1, numerical evidence for diffusive [42–44] (or
superdiffusive [42,45]) charge transport has been found in the
regime of high temperatures and strong interactions. On the
other hand, for η = 0, the static particle species creates an
effective disorder potential which induces localization of the
lighter particles [41,46–49]. In view of these two opposing
cases, it is intriguing to study the dynamics in the regime of in-
termediate imbalances 0 < η < 1. While genuine localization
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(i.e., on indefinite timescales) is most likely absent for any
η > 0 [35,39], e.g., due to slow anomalous diffusion which
ultimately leads to thermalization [35], this does not exclude
the possibility of interesting dynamical properties such as a
“quasi-MBL phase” at short to intermediate times [35].

In this paper, we scrutinize the impact of a finite mass
imbalance 0 < η < 1 from a different perspective by studying
the real-time dynamics of pure states featuring a sharp initial
nonequilibrium density profile. Relying on the concept of
dynamical quantum typicality, the resulting nonequilibrium
dynamics can be related to equilibrium correlation functions.
Summarizing our main results, we observe that diffusive
transport occurs for moderate values of the mass imbalance
and that it manifests itself in a Gaussian spreading of real-
space density profiles and an exponential decay of density
modes in momentum space. Moreover, for stronger imbal-
ances, we find evidence that on the time and length scales nu-
merically accessible, transport properties become anomalous,
although we cannot rule out that normal diffusion eventually
prevails at even longer times. Furthermore, our results are con-
sistent with the absence of genuine localization for any η > 0.
In particular, we find that for smaller and smaller values of
η > 0, the resulting dynamics resembles the localized η = 0
case for longer and longer timescales. However, we conjecture
that this “lifetime” of effective localization always remains
finite for a finite η.

This paper is structured as follows. After introducing the
model in Sec. II, we give an introduction to the employed
typicality approach and the initial states and observables in
Sec. III. We then present our results in Sec. IV and conclude
with a discussion in Sec. V.

II. MODEL

We study the Hubbard chain describing interacting spin-↑
and -↓ fermions on a one-dimensional lattice. The Hamil-
tonian for L lattice sites with periodic boundary conditions
(L + 1 ≡ 1) reads

H =
L∑

r=1

hr, (1)

with local terms

hr = −
∑

σ=↑,↓
tσ (c†

r,σ cr+1,σ + H.c.)

+ U

(
nr,↑ − 1

2

)(
nr,↓ − 1

2

)
, (2)

where the creation (annihilation) operator c†
r,σ (cr,σ ) creates

(annihilates) a fermion with spin σ at site r and nr,σ = c†
r,σ cr,σ

is the particle number operator. (We omit any additional oper-
ator symbols for the sake of clean notation.) The first term on
the right-hand side of Eq. (2) describes the site-to-site hopping
of each particle species with amplitude tσ . The second term
is the on-site interaction between the particle species with
strength U (see Fig. 1). The imbalance between t↑ and t↓ � t↑
is parametrized by the ratio

η = t↓
t↑

, (3)

ranging from η = 0 for t↓ = 0 to η = 1 in the case of t↓ = t↑.

FIG. 1. Illustration of the imbalanced Fermi-Hubbard chain.
Spin-↑ and -↓ particles with on-site interaction of strength U and
different hopping amplitudes t↑ and t↓. Diffusive broadening of
the initially peaked spin-↑ density profile is sketched as a possible
scenario depending on the imbalance ratio η = t↓/t↑.

While the Hamiltonian H in Eqs. (1) and (2) is integrable
in terms of the Bethe ansatz for η = 1 (i.e., in the case of
the standard Fermi-Hubbard chain; see, e.g., Ref. [50]), this
integrability is broken for any finite imbalance 0 < η < 1.
Moreover, despite its integrability, there has been numeri-
cal evidence that, in the regime of high temperatures and
strong interactions, charge transport in the one-dimensional
Fermi-Hubbard model is diffusive [42–44] (or superdiffusive
[42,45]). In order to have this well-controlled point of refer-
ence for our analysis of finite imbalances η � 1, we here fix
the interaction strength to the large value U/t↑ = 16.

In addition to η = 1, another important point in parameter
space is the so-called Falicov-Kimball limit η = 0 [51,52]. In
this limit, the spin-↓ particles become completely immobile
(t↓ = 0), implying that the local occupation numbers nr,↓
become strictly conserved quantities, i.e.,

[H, nr,↓] = [nr,↓, nr,↑] = 0. (4)

Using this symmetry, the Hamiltonian (1) can be decou-
pled into 2L independent subspaces, effectively describing
noninteracting spin-↑ particles on a one-dimensional lattice
with random (binary) on-site potentials ± (U/2)(nr,↑ − 1/2),
which implies the onset of Anderson localization [11].

It is worth mentioning that by means of a Jordan-Wigner
transformation, the fermionic model in Eqs. (1) and (2) can be
mapped to a spin-1/2 model with ladder geometry [35]. This
spin model is described by the local terms

hr = −
∑

k=1,2

2Jk
(
sx

r,ksx
r+1,k + sy

r,ksy
r+1,k

) + J⊥ sz
r,1sz

r,2, (5)

with J1 = t↑, J2 = t↓, and J⊥ = U . Here, the different particle
species ↑ and ↓ are represented as local magnetizations on
the two separate legs k = 1, 2 of the ladder. The hopping
term and the interaction term in the Hubbard formulation
correspond to the XY interaction along the legs and the
Ising interaction on the rungs of the ladder, respectively.
The particle number conservation Nσ = ∑

r nr,σ = const for
both particle types translates into magnetization conservation
Mk = ∑

r sz
r,k = const on each leg.
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III. SETUP AND NUMERICAL METHOD

A. Initial states and observables

We investigate the real-time dynamics of local particle
densities given by the expectation values

pr,σ (t ) = Tr[ nr,σ ρ(t ) ], (6)

with the density matrix

ρ(t ) = e−iHt |ψ (0)〉 〈ψ (0)| eiHt (7)

for pure initial states |ψ (0)〉, such that

Tr[ nr,σ ρ(t ) ] = 〈ψ (t )| nr,σ |ψ (t )〉 . (8)

In order to realize inhomogeneous particle densities, we pre-
pare the initial states via the projection

|ψ (0)〉 ∝ nL/2,↑ |φ〉 . (9)

The reference pure state |φ〉 is constructed as a random
superposition,

|φ〉 =
d∑

k=1

ck |ϕk〉 , (10)

where |ϕk〉 denotes the common eigenbasis of the local oc-
cupation number operators nr,σ and the sum runs over the full
Hilbert space with finite dimension d = 4L. (In spin language,
this simply is the Ising basis.) Moreover, the complex coef-
ficients ck are randomly drawn from a distribution which is
invariant under all unitary transformations in the Hilbert space
(Haar measure) [53,54]; that is, the real and imaginary parts
of these coefficients are normally distributed with zero mean.
As a consequence, the initial density profile exhibits a sharp δ

peak for the spin-↑ particles in the middle of the chain on top
of a homogeneous many-particle background [44,55],

pr,σ (0)

{=1 r = L/2, σ = ↑,

≈1/2 = peq. otherwise. (11)

Rather than taking the full Hilbert space into account, one
could also consider the half-filling sector (respectively, the
zero-magnetization sector).

B. Dynamical quantum typicality

Given the specific construction of the pure state |φ〉 in
Eq. (10), the concept of dynamical quantum typicality (DQT)
provides a direct connection between the nonequilibrium ex-
pectation value pr,↑(t ) and an equilibrium correlation function
(see Ref. [44] and also Appendix A),

pr,↑(t ) − peq. = 2 〈(nL/2,↑ − peq.)[nr,↑(t ) − peq.]〉 + ε, (12)

where the thermodynamic average 〈·〉 = Tr[ · ]/d is carried
out at a formally infinite temperature. As a consequence, the
dynamics of the nonequilibrium expectation value pr,↑(t ) can
be used to study transport properties within the framework of
linear response theory.

Importantly, the variance of the statistical error ε = ε(|φ〉)
of Eq. (12) is bounded from above by

Var(ε) < O

(
1

d

)
= O(4−L ); (13)

that is, the accuracy of the typicality approximation improves
exponentially upon increasing the size of the system. In
principle, this error can be further reduced by averaging
over multiple realizations of the random state |φ〉 [56,57].
However, for the system sizes studied here, the DQT approach
is already very accurate, and this additional sampling becomes
unnecessary [58]. More details on the concept of dynamical
quantum typicality (and on error bounds) can be found in
Refs. [58–73].

C. Time evolution via pure-state propagation

For the time evolution of the pure state

|ψ (t )〉 = e−iHt |ψ (0)〉 , (14)

we can bypass the exact diagonalization of the Hamiltonian
and, rather, solve the time-dependent Schrödinger equation di-
rectly via iterative forward propagation in small time steps δt .
Aside from the many numerical methods such as Trotter de-
compositions [74,75], Chebyshev polynomials [76–78], and
Krylov-space methods [79], the action of the time-evolution
operator in each step can be calculated by a fourth-order
Runge-Kutta scheme [68,69],

|ψ (t + δt )〉 = e−iHδt |ψ (t )〉

≈
4∑

k=0

(−iHδt )k

k!
|ψ (t )〉 . (15)

Crucially, the matrix-vector multiplications in Eq. (15) can be
implemented very memory efficiently due to the sparse matrix
representation of the given Hamiltonian. While the action
of H on |ψ〉 can also be calculated on the fly, we save the
sparse Hamiltonian matrix for the sake of run time. Moreover,
symmetries of the system can be exploited in order to split the
problem into smaller subproblems and to further reduce the
computational effort [80]. In this paper, we exploit the particle
number (magnetization) conservation for both particle species
(legs) separately. As a consequence, the maximum memory
consumption for the largest symmetry sector in a system of
length L = 15, with full Hilbert-space dimension d ∼ 109,
amounts to about 20 GB (using double-precision complex
numbers). While L = 14 and L = 15 are already compara-
tively large (especially in view of the extensive parameter
screening and the long simulation times considered here), let
us note that even larger system sizes can be treated by the
usage of large-scale supercomputing (see, e.g., Refs. [41,44]).
The time step used in all calculations, if not stated otherwise,
is δt t↑ = 0.005.

D. Diffusion on a lattice

1. Real space

The dynamics of the densities pr,↑(t ) is diffusive if it fulfills
the lattice diffusion equation [81]

d

dt
pr,↑(t ) = D[pr−1,↑(t ) − 2pr,↑(t ) + pr+1,↑(t )], (16)

with the diffusion constant D. For the δ-peak initial conditions
(11), the solution of Eq. (16) can be well approximated by the
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Gaussian function

pr,↑(t ) − peq. = 1

2
√

2π�(t )
exp

[
− (r − L/2)2

2�2(t )

]
, (17)

where the spatial variance scales as �2(t ) = 2Dt and is given
by

�2(t ) =
L∑

r=1

r2δpr,↑(t ) −
[

L∑
r=1

rδpr,↑(t )

]2

, (18)

with δpr,↑(t ) ∝ pr,↑(t ) − peq. fulfilling
∑

r δpr,↑(t ) = 1 for
all times t . More generally, a scaling of the variance ac-
cording to �(t ) ∝ tα is called ballistic for α = 1, superdiffu-
sive for 1/2 < α < 1, diffusive for α = 1/2, subdiffusive for
0 < α < 1/2, and localized for α = 0. Moreover, away from
the case α = 1/2, the density profiles pr,↑(t ) are not expected
to take on a Gaussian shape.

2. Connection to current-current correlation functions

Due to the typicality relation (12), the spatial variance in
Eq. (18) can be related to the dynamics of current-current
correlation functions via [82]

d

dt
�2(t ) = 2D(t ), (19)

where the time-dependent diffusion coefficient D(t ) is given
by

D(t ) = 4

L

∫ t

0
〈 j↑(t ′) j↑〉 dt ′ (20)

and j↑ denotes the total current operator of the spin-↑ parti-
cles,

j↑ = −t↑
∑

r

(ic†
r,↑cr+1,↑ + H.c.). (21)

(Note that relation (19) requires δpr,↑(t ) to vanish at the
boundaries of the chain [82].) We therefore can compare the
spatial variance of density profiles calculated according to
Eq. (18) to the one already obtained from current-current
correlation functions [43,82,83],

�2(t ) = 2
∫ t

0
D(t ′)dt ′. (22)

A detailed analysis of transport in the mass-imbalanced Hub-
bard chain extracted from current-current correlation func-
tions can be found in Ref. [41].

3. Momentum space

In addition to the real-space perspective, it is also instruc-
tive to look at momentum-space observables as given by the
lattice Fourier transform of the density profiles,

pq,↑(t ) = 1√
L

L∑
r=1

eiqr pr,↑(t ), (23)

with the momentum q = 2πk/L and wave numbers
k = 0, 1, . . . , L − 1. In particular, the Fourier transformation
of the diffusion equation (16) yields the corresponding

7r

(L = 14)

pr,↑(t)

(a) η = 1

0 5 10
t t↑

7r

0.5

1

(b) η = 0

FIG. 2. Real-time broadening of the nonequilibrium density pro-
file for limiting imbalance ratios (a) η = 1 and (b) η = 0. System
size L = 14, and interaction strength U/t↑ = 16. The initial density
peak in the center of the chain spreads rather quickly over the system
for η = 1, whereas it appears to be frozen for η = 0.

diffusion equation for pq,↑(t ),

d

dt
pq,↑(t ) = −q̃2D pq,↑(t ), (24)

with q̃2 = 2(1 − cos q). From Eq. (24), it becomes clear that
diffusion manifests itself in momentum space by exponen-
tially decaying modes

pq,↑(t ) ∝ e−q̃2Dt . (25)

IV. RESULTS

We now turn to our numerical results. To begin with, the
two limiting cases η = 1 and η = 0 are presented in Sec. IV A.
Intermediate imbalances 0 < η < 1 are discussed in
Secs. IV B and IV C.

A. Limiting cases

In order to mark out the two completely different behaviors
of the density dynamics in the limiting cases of the model,
we first discuss the limit of equal particle masses (η = 1) and
contrast it with the limit of infinite mass imbalance (η = 0).
Recall that the interaction strength is set to U/t↑ = 16 in the
following.

First, Fig. 2 shows the real-time broadening of the initially
peaked density profiles pr,↑(t ) for both limits in a time-space
density plot. While the particle density for η = 1 [Fig. 2(a)]
is found to spread over all sites of the chain, pr,↑(t ) for η = 0
[Fig. 2(b)] appears to be essentially frozen at the central lattice
sites, as expected in the Anderson insulating limit.

For a more detailed analysis, the spatial dependence of the
profiles pr,↑(t ) − peq. is shown in Fig. 3 for fixed times t in
a semilogarithmic plot. Remarkably, the profiles for η = 1
in Fig. 3(a) can be very well described by Gaussians [see
Eq. (17)] over three orders of magnitude. These Gaussian
profiles indicate that charge transport in the integrable Fermi-
Hubbard chain is diffusive [42–44], at least in this parameter
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10−3

10−2

10−1

t t↑ = 1, 2, 4

10−3

10−2

10−1

1 7 13

t t↑ = 20, 40, 120

p
r
,↑

(t
)
−

p
e
q
. (a) η = 1

p
r,
↑(

t)
−

p
e
q
.

r

(b) η = 0

FIG. 3. Density profiles pr,↑(t ) at fixed times for (a) η = 1 and
(b) η = 0. In the case with η = 1, the profiles can be very well
described via Gaussians (parabola in the semilogarithmic plot),
indicating clean diffusion for the timescales depicted. Note that the
Gaussians (dashed lines) are no fit but are calculated from Eqs. (17)
and (18). In the case with η = 0, an overall triangular shape survives
even for long times, with some local fluctuations.

regime (strong interactions and high temperatures) and for
the timescales depicted; see also Refs. [42,45] for the pos-
sibility of superdiffusive transport. Note that the Gaussians in
Fig. 3(a) are no fit since the width �(t ) has been calculated
exactly according to Eq. (18); that is, there is no free param-
eter involved. In contrast, the profiles for η = 0 in Fig. 3(b)
are clearly non-Gaussian and remain, even for the long times
shown, in an overall triangular shape with variations on short
length scales.

B. Small imbalances

1. Real space

Next, let us study a finite imbalance between the particle
masses. In analogy to Fig. 2, time-space density plots are
shown in Fig. 4 for η = 0.8 and η = 0.6. For these ratios
the broadening of the initial density peak apparently happens
on a timescale comparable to the one observed for η = 1 in
Fig. 2, with a barely noticeable slowdown with the increasing
imbalance. Similar observations can be made for the density
profiles at fixed times, as shown in Fig. 5. At weak imbal-
ance η = 0.8 [Fig. 5(a)], the profiles are still in very good
agreement with Gaussians [see Eq. (17)], which suggests that
diffusion occurs also for η = 1. Even for stronger imbalance
η = 0.6 [Fig. 5(b)], the profiles appear to be of Gaussian
shape, although small deviations start to appear at t t↑ = 4,
which might be seen as the onset of a drift from normal to
anomalous diffusion (see also the discussion below).

2. Spatial width

In order to analyze the broadening of the density profiles
further, Fig. 6 shows the time dependence of the spatial width
�(t ) obtained by Eq. (18) for moderate imbalance η = 0.8
and different system sizes L = 10, . . . , 14. Necessarily, there
is an initial linear increase �(t ) ∝ t for t t↑ � 1, indicating

7r

(L = 14)

pr,↑(t)

(a) η = 0.8

0 5 10
t t↑

7r

0.5

1

(b) η = 0.6

FIG. 4. Real-time broadening of the initially peaked density pro-
file for weak imbalances (a) η = 0.8 and (b) η = 0.6.

ballistic transport, as expected for short times below the
mean free time. Subsequently, �(t ) shows a scaling ∝ √

t ,
consistent with diffusion. However, for later times, we find
that �(t ) approaches a saturation value which increases with
increasing L. This behavior of �(t ) can be easily understood
since the width of a density profile on a finite lattice with L
sites is obviously bounded from above. Namely, assuming
equilibration, i.e., a perfectly homogeneous distribution of
pr,↑ for t → ∞ with δpr,↑ = 1/L at each site, we obtain the
saturation value

�2(t → ∞) =
L∑

r=1

r2

L
−

[
L∑

r=1

r

L

]2

= 1

12
(L2 − 1). (26)

10−3

10−2

10−1

t t↑ = 1, 2, 4

10−3

10−2

10−1

1 7 13

t t↑ = 1, 2, 4

p
r,
↑(

t)
−

p
e
q
. (a) η = 0.8

p
r,
↑(

t)
−

p
e
q
.

r

(b) η = 0.6

FIG. 5. Density profiles pr,↑(t ) at fixed times for the same system
parameters and imbalance ratios as shown in Fig. 4. The dashed lines
are Gaussian functions calculated from Eqs. (17) and (18). (a) At
moderate imbalance η = 0.8, the profiles can be very well described
by Gaussians. (b) At slightly smaller η = 0.6, the density profiles are
still in good agreement with Gaussians, although small deviations
become apparent at t t↑ = 4.
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0

2

4

0 5 10

∝ t

η = 0.8

Σ
(t

)

t t

∝ √√
t

L = 10, ..., 14

FIG. 6. Spatial width �(t ) as obtained by Eq. (18) for imbalance
ratio η = 0.8 and different system sizes L = 10, . . . , 14 (arrow). The
dotted line with the scaling �(t ) ∝ √

t is a fit to the L = 14 curve.
The width �(t ) (dash-dotted line) as calculated by Eq. (22) is shown
for comparison (L = 14).

This L-dependent saturation value is reached quickly for the
weakly imbalanced case η = 0.8 in Fig. 6, e.g., � ≈ 4 for
L = 14.

Moreover, for the biggest size L = 14, Fig. 6 also shows
�(t ) calculated from current-current correlation functions
via Eq. (22). Overall, the behavior of this �(t ) is in good
agreement with the one described above. Note that the small
deviations between the two widths setting in at t t↑ ∼ 6 pre-
sumably arise when the tails of the density distribution reach
the boundaries of the system (see Fig. 5). Additionally, we
note that the finite-size saturation value (26) does not apply
to Eq. (22), which, by definition, is not bounded. Rather, for
times t t↑ � 6, we find an accelerated increase of �(t ). This is
caused by the fact that the current-current correlation function
〈 j↑(t ) j↑〉 does not completely decay to zero in a system of
finite size (see also Refs. [41,81]).

3. Momentum space

Complementary to the real-space data for η = 0.8, 0.6
shown in Fig. 5, the corresponding Fourier modes pq,↑(t )
with momentum q = 2πk/L are shown in Fig. 7 for the
four longest wavelengths available, i.e., k = 1, . . . , 4. While
pq,↑(t ) decays rather quickly for k � 2 (with the decay rate
increasing with k), we find that at least for k = 1, pq,↑(t )
is, to good quality, described by an exponential decay [see
Eq. (25)], consistent with the onset of diffusion on the corre-
sponding length scales.

C. Strong mass imbalance

Now, let us study how the equilibration dynamics change
for stronger imbalances and also discuss the possibility of
localization for η > 0.

1. Real-space dynamics

Before discussing the full density profile in detail, let us
for simplicity focus on the decay of the central peak pL/2,↑(t ),
as shown in Fig. 8 for imbalance ratios η = 0, . . . , 1 and
two system sizes, L = 12 and L = 14. While pL/2,↑(t ) ∝ t−1/2

to good quality for η = 1, consistent with diffusive trans-
port, this decay is slowed down with decreasing η. At
small, but finite, η = 0.1, we find that pL/2,↑(t ) approxi-

0.1
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(a) η = 0.8

0.1

1

0 2 4

(b) η = 0.6

p
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(t
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p
q
,↑

(0
)

p
q
, ↑

(t
)/

p
q
,↑

(0
)

t t↑

FIG. 7. Discrete Fourier transform pq,↑(t ) of the density profile
with momentum q = 2πk/L and wave numbers k = 1, 2, 3, 4 (ar-
row) for weak imbalances (a) η = 0.8 and (b) η = 0.6.

mately coincides with the η = 0 curve up to times t t↑ ≈ 40,
until it eventually starts to decay towards the equilibrium
value pL/2,↑(t → ∞) − peq. = (1 − peq.)/L. Note that the
two curves for L = 12, 14 agree very well with each other
before the equilibration value is reached. On these timescales,
the behavior of the density dynamics thus appears to be
independent of the system size. This also illustrates the ac-
curacy of the DQT approach since there is no sign of sample
dependence in the time-dependent fluctuations of the strongly
imbalanced curves. For additional data with smaller η and
longer timescales, see Appendix B. Moreover, a more detailed
finite-size analysis can be found in Appendix C.

Next, let us come back to a discussion of the full density
profile. To this end, Fig. 9 shows time-space density plots
for η = 0.4 and η = 0.2. We find that the broadening of
the density profiles visibly slows down with decreasing η,
until no substantial spreading of the density can be observed

0.1

1

0.1 1 10 100

L = 12
14∝ t−

1/2

p
L

/
2
,↑

(t
)
−

p
e
q
.

t t↑

η = 0.0
η = 0.1
η = 0.2
η = 0.4
η = 0.6
η = 1.0

FIG. 8. Decay of the central peak pL/2,↑(t ) at different imbal-
ances ranging from η = 0 to η = 1 (from top to bottom) for system
sizes L = 12 (dotted line) and L = 14 (solid line). Dashed lines
indicate the expected L-dependent long-time value (1 − peq.)/L.
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7r

(L = 14)

pr,↑(t)

(a) η = 0.4

0 20 40
t t↑

7r

0.5

1

(b) η = 0.2

FIG. 9. Time-space density plot as in Fig. 4, but for (a) η = 0.4
and (b) η = 0.2.

for η = 0.2 up to the maximum time t t↑ = 40 shown here,
consistent with Fig. 8, as discussed above.

The corresponding cuts of the density profiles at fixed
times are shown in Figs. 10(a) and 10(b). Note that, owing
to the slow broadening of the profiles, we show cuts at later
times than in Fig. 5. One clearly sees that the profiles are not
Gaussian anymore, but rather exhibit a pronounced triangular
shape in the semilogarithmic plot used. In particular, they can
be well described by the function

pr,↑(t ) − peq. = β(t ) exp

[
−|r − L/2|α(t )

2�2
f (t )

]
, (27)

with the time-dependent fit parameters α(t ), �f (t ), and β(t ).
In particular, the exponent α(t ) ∈ [1, 2] is introduced to cap-
ture the triangular shape. This shape indicates a crossover
to anomalous diffusion for small ratios η � 0.4 [84]. This is
another central result of this paper.
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p
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.
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α(t) = 1.15
1.15
1.25

(b) η = 0.2

FIG. 10. Density profiles pr,↑(t ) as in Fig. 5, but for smaller
(a) η = 0.4 and (b) η = 0.2. The profiles broaden much more slowly
and take on a triangular shape in the semilogarithmic plot used. The
fit parameter α(t ) is the exponent used in Eq. (27).

0

2
(a) η = 0.4

0

2

0 5 10 15 20

(b) η = 0.2

Σ
(t

) L = 10, ..., 14

Σ
(t

)

t t↑

L = 10, ..., 14

FIG. 11. Spatial width �(t ) for different system sizes
L = 10, . . . , 14 (arrows) as obtained by Eq. (18) at (a) η = 0.4
and (b) η = 0.2. The width �(t ) (dash-dotted lines) as calculated
according to Eq. (22) is shown for comparison (L = 14).

2. Spatial width

Additionally, Fig. 11 shows the width �(t ) of the density
profiles for η = 0.4 and η = 0.2, as calculated by Eqs. (18)
and (22). Compared to the weakly imbalanced case shown
in Fig. 6, �(t ) now grows much slower, and Eqs. (18) and
(22) are in better agreement since the distribution is still well
concentrated in the center of the chain. For η = 0.2, �(t )
appears to remain at a constant plateau up to the maximum
time t t↑ = 20 shown.

To analyze the η dependence of the width in more de-
tail, Fig. 12 shows �(t ) in Eq. (18) on a longer timescale
t t↑ � 150 for various values of η and a fixed system size
L = 14. While the growth of �(t ) towards the saturation
value becomes slower and slower with decreasing η, we find
that even for the smallest value of η = 0.05 shown here,
�(t ) clearly increases at long times. In contrast, the width

0

2

4

0 50 100 150

L = 14

0

2

4

0 50 100 150

L = 14

Σ
(t

)

t t↑

η = 0

η = 1

Σ
(t

)

t t↑

η = 0

η = 1

FIG. 12. Spatial width �(t ) for fixed system size L = 14 and
varying imbalances ranging from η = 0 to η = 1 (arrow) in steps
of 0.05. In the balanced case η = 1, the width reaches its natural
saturation value (dashed line) of � ≈ 4 [see Eq. (26)] rather quickly,
while the other curves grow slower as η goes to zero. The curve for
η = 0 remains at around � ≈ 2.
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FIG. 13. Discrete Fourier transform pq,↑(t ) of the density profile
with momentum q = 2πk/L and wave numbers k = 1, 2, 3 (arrow)
for two imbalance ratios, (a) η = 0.2 and (b) η = 0.1 (L = 15).
Another density mode pq,↑(t ) (dashed line) for a smaller system size
L = 10 with wave number k = 2, which has the same momentum
q = 2π/5 as the mode k = 3 for L = 15, is shown for comparison.

in the η = 0 case fluctuates around a constant and lower
value, which might be interpreted as the Anderson localization
length.

3. Momentum-space dynamics

Let us now turn to momentum-space dynamics again. To
this end, Figs. 13(a) and 13(b) show the discrete Fourier
modes pq,↑(t ) for imbalance ratios η = 0.2 and η = 0.1.
Note that the data are obtained for an even larger system
with L = 15 lattice sites and for momenta q = 2πk/L, with
k = 1, 2, 3. Comparing Figs. 13 to 7, we find that pq,↑(t ) now
decay visibly slower for all wave numbers k. Moreover, in
contrast to the scaling of decay rates in the case of normal
diffusion [see Eq. (25)], the density modes now seem to decay
at a similar rate for all k. Furthermore, even for small η = 0.1
and k = 1, we find that pq,↑(t ) is clearly nonconstant, which
suggests that genuine localization is absent for η > 0.

To analyze the dependence on system size, Fig. 13 also
shows the Fourier mode pq,↑(t ) for L = 10 and wave number
k = 2. This mode has the same momentum q = 2π/5 as
the mode k = 3 for L = 15. We find that for both η = 0.2
and η = 0.1 the decay of pq,↑(t ) is almost independent of
L. Especially for η = 0.1, the curves show no significant
differences up to the maximum time t t↑ = 120 shown.

Finally, Fig. 14(a) shows the relaxation of the Fourier
mode pq,↑(t ) with the smallest wave number k = 1 for various
0 � η � 1. The decay appears to be exponential for η � 0.2,
albeit very slow for strong imbalances. While, for sufficiently
small times, all η > 0 curves agree with the η = 0 curve, they
start to deviate at a certain point in time. In order to analyze
this separation time from the η = 0 curve in more detail, we
define

τη,δ = max

{
t

∣∣∣∣
∣∣pη

q,↑(t ) − p0
q,↑(t )

∣∣
p0

q,↑(t )
< δ

}
(28)
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(b)
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δ = 0.05, 0.10, ..., 0.50
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(t
)/

p
q
,↑
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t t↑

η = 0

η
=

1

τ η
,δ

t ↑

η

FIG. 14. (a) Discrete Fourier transform pq,↑(t ) of the density
profile for fixed momentum q = 2π/14 and (b) “lifetime” according
to the definition (28) for various distances δ = 0.05, . . . , 0.5 in steps
of 0.05.

using the running averages of the density modes

pη

q,↑(t ) = 1

t

∫ t

0
pη

q,↑(t ′)dt ′. (29)

It measures the maximum time up to which η = 0 and η > 0
curves do not deviate up to a distance δ. (Note that this
maximum time cannot exceed the maximum simulation time,
here tmax t↑ = 1000. Moreover, the running averages are used
to mitigate the fluctuations of pq,↑(t ), which complicate the
extraction of precise separation times.)

The physical picture for this analysis can be understood as
follows. For very small but nonzero η, the heavy particles still
appear as a quasistatic disorder potential for the lighter parti-
cles, which induces localization analogous to η = 0. At some
point in time, however, the residual hopping of the heavy par-
ticles becomes relevant, which can be seen as an η-dependent
lifetime of the Anderson insulator. The corresponding data
for different distances δ are shown in Fig. 14(b). For every
δ, the lifetime grows fast with decreasing η but, apparently, is
always finite for all η considered. A complementary analysis
of τη,δ , based on the spatial width �(t ) (see Fig. 12), can be
found in Appendix D and provides a similar picture.

V. CONCLUSION

In this paper, we have studied the real-time dynamics of
local charge densities in the Fermi-Hubbard chain with a
mass imbalance between the spin-↑ and -↓ particles. To this
end, we have prepared a certain class of pure states featuring
a sharp initial peak of the density profile for the (lighter)
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spin-↑ particles in the middle of the chain and investigated
the resulting nonequilibrium dynamics. Relying on dynamical
quantum typicality, this dynamics can be related to time-
dependent correlation functions at equilibrium.

In the regime of weak and moderate imbalance, η � 0.6,
we have provided evidence for the emergence of diffusive
dynamics, manifesting in (i) the Gaussian shape of density
profiles, (ii) square-root scaling of the spatial variance in time,
and (iii) exponentially decaying modes for small momenta.

In contrast, in the regime of strong imbalance, η � 0.6, we
have observed signatures of anomalous transport, emerging as
an exponential rather than a Gaussian shape of density profiles
and subdiffusive scaling of spatial variance and density modes
in time, consistent with other works [35,41]. However, we
cannot rule out that this anomalous transport is just a transient
effect which crosses over to normal diffusion at even longer
times, e.g., at timescales much longer than the lifetime of the
Anderson insulator.

For very small but nonzero η, our results are consistent
with the absence of genuine localization and support long, but
finite, equilibration times.

Promising future research directions include extensions of
the model such as nearest-neighbor interactions and the study
of lower temperatures, including potential relations between
static and dynamical properties at such temperatures [85].

ACKNOWLEDGMENTS

This work has been funded by the Deutsche Forschungsge-
meinschaft (DFG), Grants No. 397067869, No. 355031190,
and No. 397171440, within the DFG Research Unit FOR
2692.

APPENDIX A: TYPICALITY RELATION

To make this paper self-contained, we here derive the
typicality relation (12) (see also [44]). To this end, we start
with the correlation function

Cr,↑(t ) = 2 〈(nL/2,↑ − peq.)[nr,↑(t ) − peq.]〉 + peq. (A1)

and use 〈nr,↑(t )〉 = peq. = 1/2, while carrying out the multi-
plication of the brackets, to obtain

Cr,↑(t ) = 2 〈nL/2,↑nr,↑(t )〉 = Tr[nL/2,↑nr,↑(t )]

d / 2
. (A2)

This expression, using cyclic invariance of the trace and the
projection property n2

L/2,↑ = nL/2,↑, can be written as

Cr,↑(t ) = Tr[nL/2,↑nr,↑(t )nL/2,↑]

d / 2
. (A3)

Exploiting typicality, the trace can be approximated by a
single typical pure state |φ〉 as

Cr,↑(t ) = 〈φ| nL/2,↑nr,↑(t )nL/2,↑ |φ〉
〈φ | φ〉 / 2

+ ε(|φ〉)

≈ (〈φ| n†
L/2,↑eiHt )nr,↑(e−iHt nL/2,↑ |φ〉)

〈φ | φ〉 / 2
, (A4)

where the variance of the statistical error ε(|φ〉) is bounded
from above by Var(ε)(|φ〉) < O(1/d ) (at a formally infinite
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FIG. 15. Decay of the central peak pL/2,↑(t ) for L = 10 and long
times at η � 0.1.

temperature) and becomes negligibly small already for inter-
mediate system sizes. With |ψ (0)〉 = nL/2,↑ |φ〉 /

√〈φ | φ〉 / 2
we arrive at

Cr,↑(t ) ≈ 〈ψ (t )| nr,↑ |ψ (t )〉 = pr,↑(t ), (A5)

and finally, making a comparison to (A1),

pr,↑(t ) − peq. ≈ 2 〈(nL/2,↑ − peq.)[nr,↑(t ) − peq.]〉 . (A6)

APPENDIX B: EQUILIBRATION FOR SMALL η

Complementary to Fig. 8, Fig. 15 shows data for the central
peak pL/2,↑(t ), but now for a smaller system size L = 10 (in
the half-filling sector N↑ + N↓ = L) and significantly longer
timescales. We find that pL/2,↑(t ) ultimately decays towards
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FIG. 16. Comparison of density profiles for two system sizes
L = 13, 14 and a few exemplary imbalance ratios η. The overall
behavior coincides nicely for both L, apart from slight deviations at
the boundaries.
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its equilibrium value, even for very small values of η. Note
that the interaction strength in Fig. 15 is chosen as U/t↑ = 20,
analogous to earlier investigations in Ref. [35], where similar
findings were presented for momentum-space observables.

APPENDIX C: L INDEPENDENCE OF DENSITY PROFILES

To demonstrate the L independence for the scaling of the
density profiles, Fig. 16 shows pr,↑(t ) for two system sizes
with L = 13 and 14 and exemplary values for times t and
imbalances η. Apart from small deviations at the tails, we find
that the profiles for different L are in very good agreement.
This fact also demonstrates the accuracy of the typicality
approach.

APPENDIX D: ANDERSON LIFETIME

In addition to Fig. 14(b), Fig. 17 shows another analysis of
the lifetime τη,δ . Here, τη,δ is calculated in analogy to (28), but
based on the spatial width �(t ) (see Fig. 12),

τη,δ = max

{
t

∣∣∣∣ |�η
(t ) − �

0
(t )|

�
0
(t )

< δ

}
, (D1)

100
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τ η
,δ
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η

FIG. 17. Lifetime in analogy to the definition (28) for various
distances δ = 0.05, . . . , 0.5 in steps of 0.05, now based on the spatial
width �(t ) shown in Fig. 12.

with

�
η
(t ) = 1

t

∫ t

0
�η(t ′)dt ′. (D2)

In comparison to Fig. 14(b), Fig. 17 provides a very similar
picture for the η-dependent lifetime.
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