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First-principles description of the exciton-phonon interaction: A cumulant approach
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Electron-phonon coupling leads to intriguing effects in the spectra of materials. Current approximations to
calculate spectra most often describe this coupling insufficiently. Starting from basic equations of many-body
perturbation theory, we derived a cumulant formulation for neutral excitation spectra that contains excitonic
effects and the coupling between excitons and phonons. The cumulant approach allows us to include dynamical
effects arising from the electron-phonon coupling in a simple and intuitive way. It can be implemented
as a postprocessing of state-of-the-art GW -plus-Bethe-Salpeter calculation of excitonic states and a density
functional perturbation theory calculation of phonons and electron-phonon coupling. We demonstrate that, in
order to obtain a consistent treatment of exciton-phonon coupling, diagrams have to be taken into account that
can be neglected when the effect of lattice vibrations is treated in a static or quasistatic approximation. From the
application of this approach to a model system, we analyzed the main features of the exciton-phonon interaction
and provided a general picture of their link with the properties of materials such as exciton mass and exciton
Bohr radius.
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I. INTRODUCTION

The electron-phonon (el-ph) interaction is central to a wide
range of phenomena in materials physics [1]. For example,
it underpins the temperature dependence of the electrical
resistivity in metals and the carrier mobility in semiconduc-
tors, gives rise to conventional superconductivity, and sets
the relaxation processes of excited states. Moreover, the el-ph
interaction often affects the excitation spectra measured, for
example, in photoemission and absorption spectroscopies. In
those spectra, it induces shifts and broadening of peaks as
well as additional structures called satellites. Those effects
dominate the photoluminescence and the low-energy optical
spectra of indirect-gap semiconductors [2–5], and they play
a key role in the understanding of the electronic and optical
properties of molecular crystals [6], quantum dots [7], and
polaronic systems such as transition metal oxides [8,9] and
ionic crystals [10].

The effect of el-ph interaction has been investigated ex-
tensively in the past using model Hamiltonians [11–14] of-
ten combined with the polaronic picture [15], and it still
attracts considerable attention. Models are often not predictive
and difficult to combine with ab initio calculations. On the
contrary, many-body perturbation theory (MBPT) [16–19]
represents a reliable and accurate approach for the description
of excited states and is thus the ideal framework to investigate
the effect of el-ph interaction on the excitation spectra [1].

In MBPT the key quantities are Green’s functions. The
one-particle Green’s function G gives direct access to one-
particle excitations measured by photoemission, while the
two-particle correlation function L yields neutral excitations
probed in optical absorption, electron energy loss, and in-
elastic x-ray scattering experiments. In this framework, all

many-body effects induced by the Coulomb and el-ph in-
teractions are included through the electron self-energy �

[1,18,19]. It defines both the kernel of the Dyson equa-
tion for G, and an effective electron-hole (e-h) interaction
that is the kernel of the Bethe-Salpeter equation (BSE) for
L [18,19].

In state-of-the-art calculations of the one-particle Green’s
function [1], the el-ph interaction is treated within the Heine-
Allen-Cardona (HAC) scheme [20,21], which consists of a
second-order expansion of the electron self-energy in terms
of the el-ph coupling constant. This approach has been suc-
cessfully applied to the study of the temperature dependence
of quasiparticle (QP) gap in insulators [22–25] and semi-
conductors [26,27], and it has been extended to the BSE
for optical spectra [28]. However, although the HAC scheme
provides an accurate description of QP excitations and their
lifetime, it often fails to describe satellites in photoemission
spectra [8,9,29]. Satellites are genuine dynamical effects that
require both the full frequency dependence of the self-energy
and the inclusion of higher-order corrections in the pertur-
bative expansion of the Green’s function [1,30]. This would
make the solution of the Dyson equation inaccessible in real
materials.

In the spectra of neutral excitations, satellites are com-
pletely missed by present-day approaches that treat the el-ph
interaction within a static or quasistatic approximation [28]
(i.e., neglecting the full frequency dependence of the electron
self-energy). The fully dynamical BSE is extremely compli-
cated to solve [31,32], and its solution might not be worth
the effort. Indeed, the BSE with a first-order kernel is similar
to the Dyson equation for G in the HAC scheme that often
fails for satellites. Rather than a scheme based on a Dyson
equation, a cumulant approach [33–35] for the two-particle
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correlation function, reflecting a picture of coupled bosons,
appears more promising. It is the exact solution for a two-level
limiting case [36], and it is additionally motivated by the
success of an increasing number of ab initio calculations for
G using a cumulant of second order in the el-ph coupling
[37–40]. This promising approach was recently formulated for
the two-particle correlation function in order to include corre-
lation effects arising from the dynamically screened Coulomb
interaction and neglected in standard BSE calculations [41].
The formulation of Ref. [41] is general and in principle can
be extended to describe the coupling between excitons and
any kind of bosonic excitation such as free electron-hole pairs,
other excitons, plasmons, photons, as well as phonons.

In this paper, motivated by these recent developments, we
derive the cumulant expression for the two-particle correlation
function in the presence of el-ph interaction. In particular,
following Ref. [41], the derivation is done in two main steps.
First of all, starting from the fully dynamical BSE we ob-
tained a Dyson-like equation for the two-time charge-charge
response function that represents the exciton propagator and
provides the spectrum of neutral excitations. This requires
the introduction of an exciton self-energy related to the el-ph
interaction. At this point, the cumulant expression for the
exciton propagator comes out naturally. Indeed, in analogy
with the one-particle Green’s function [42], the cumulant
coefficient is obtained imposing that the first-order expansion
of a cumulant ansatz for the exciton propagator matches the
first-order expansion of the Dyson equation. Our method is
applied to a simple model system that is used as an illustrative
example to discuss the basic physical aspects of the cumulant
in a general way.

II. PERTURBATIVE EXPANSION OF THE TWO-PARTICLE
CORRELATION FUNCTION

In the framework of MBPT, the two-particle correlation
function L is formally obtained from the solution of the BSE
[18,19]:

L(1423) = L0(1423) + L0(14′21′)
δ�(1′2′)
δG(3′4′)

L(3′42′3). (1)

Here 1 stands for space, spin, and time (r1σ1t1), and re-
peated indices are integrated over. The quantity L0(14′21′) ≡
G(11′)G(4′2) is the uncorrelated two-particle Green’s func-
tion, while the kernel is the functional derivative of the self-
energy � with respect to the one-particle Green’s function
G. � can be formally split in a purely electronic part and
a contribution related to the coupling with phonons. The
electronic part is the sum of the Hartree contribution �H and
the Coulomb exchange-correlation term �C

xc that in state-of-
the-art calculations is evaluated in the static COulomb Hole
plus Screened EXchange (COHSEX) approximation (or even-
tually quasiparticle GW approximation) [19,43]. According
to the HAC scheme [20,21], the el-ph contribution can be
split in a static Debye-Waller term �DW and an exchange-
correlation term �

ph
xc related to the dynamical fluctuation of

the lattice. The latter can be perturbatively expanded in terms
of the nuclear contribution (W ph) to the screened Coulomb
interaction [1]. At the first order in W ph (i.e., second order in
the el-ph coupling), �ph

xc reduces to the Fan-Migdal (FM) term

that is used in state-of-the-art calculations [1,28]. Moreover,
both �DW and W ph can be written in terms of the el-ph matrix
elements and the phonon propagator that we assume to be
known.

In the standard approach, i.e., in the absence of el-ph
interaction and with an instantaneous kernel, the BSE can
be rewritten directly in terms of two-time L0(r1t1r4t3r2t1r3t3).
Under these conditions, the BSE becomes a Dyson-like equa-
tion that can be directly solved in two times or one frequency
[19]. In the present case, instead, because of the explicit time
dependence of W ph, Eq. (1) cannot be rewritten in terms of
a two-time propagator only, and it is hardly solvable even
considering the simplest first-order W ph expansion for �.

In the following, we will rearrange Eq. (1) in such a way
as to obtain an approximate Dyson-like equation for L that
allows including simultaneously dynamical effects related to
W ph and excitonic effects related to the Coulomb interaction.
This is a necessary step to include a QP correction to the
exciton energy and find a cumulant representation for L. First
of all, we rewrite Eq. (1) as

L(1423) = L̄(1423) + L̄(12′21′)
[
�1(1′4′2′3′)

+ L0,−1
0 (1′4′2′3′)

− (L0
0 + L1

0 )−1(1′4′2′3′)
]
L(3′44′3), (2)

where we have split both L0(1423) and the kernel �(1423) =
δ�(12)
δG(34) into two parts: L0 = L0

0 + L1
0 and � = �0 + �1.

Here (L0
0 + L1

0 )−1(1423) denotes the inverse of L0
0 (1423) +

L1
0 (1423), and L̄ is the solution of

L̄(1423) = L0
0 (1423) + L0

0 (12′21′)�0(1′4′2′3′)L̄(3′44′3).
(3)

Up to here, the splitting has been arbitrary. We choose
�0(1423)≡ − iv(13)δ(12)δ(34)+iW C

0 (12)δ(13)δ(24), where
v is the bare Coulomb potential and W C

0 (12) = W C (12)δ(t2 −
t1) is the statically screened Coulomb potential. Moreover,
we set L0

0 (1423) ≡ Ḡ(13)Ḡ(42), where Ḡ is the one-body
Green’s function evaluated in the COHSEX approximation
and eventually dressed by �DW.

This definition for Ḡ is consistent with our choice for �0.
With this choice, Eq. (3) is the static BSE (SBSE) with el-ph
interaction treated in the static approximation (i.e., including
only the Debye-Waller term). By construction, the kernel of
Eq. (2) describes dynamical effects induced by el-ph coupling
beyond the SBSE.

We now expand this kernel to first order in W ph.
The first-order correction to the self-energy is just the
FM term �FM(12) = iW ph(12)Ḡ(12), which leads to
first-order correction to the Green’s function G1(12) =
Ḡ(11′)�FM(1′2′)Ḡ(2′2). This leads to

L1
0 (1423) = Ḡ(13)Ḡ(44′)�FM(4′2′)Ḡ(2′2)

+ Ḡ(11′)�FM(1′3′)Ḡ(3′3)Ḡ(42), (4)

and, through the expansion of the inverse, to

L(1423) = L̄(1423) + L̄(12′21′)
[
�1(1′4′2′3′)

+ L0,−1
0 (1′52′6)L1

0 (6857)L0,−1
0 (74′83′)

]
L̄(3′44′3).

(5)
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FIG. 1. Feynman diagrams associated with the first-order expansion L in terms of W ph. They involve diagrams associated with the term
L0,−1

0 L1
0L0,−1

0 [(a) and (b)] and diagrams arising from the kernel �1 defined in Eq. (8) [(c) and (d)]. Arrows are the one-particle Green’s function
Ḡ, the gray circles indicate L̄, the gray boxes denote the T matrix, and wiggly lines correspond to W ph.

To be consistent, we also use the first order in W ph ex-
pression for �1, which can be obtained from δ�FM

δḠ = iW ph.
This gives the first-order W ph diagrams for L shown in
Figs. 1(a)–1(c), where we used the following representation
for L̄:

L̄(1423) = L0
0 (1423) + L0

0 (12̄21̄)T (1̄4̄2̄3̄)L0
0 (3̄44̄3) (6)

in terms of the T -matrix defined as [18]

T (1423) = �0(1423) + �0(12̄21̄)L0
0 (1̄4̄2̄3̄)T (3̄44̄3). (7)

In particular, the class of diagrams in Figs. 1(a) and 1(b) and
Fig. 1(c) arises from L0,−1

0 L1
0L0,−1

0 and �1, respectively. It
describes an exciton that, through the emission (absorption) of
a phonon scatters in an intermediate state consisting of a non-
interacting electron-hole pair. This approximation is formally
equivalent to the Shindo treatment of the el-ph interaction
in the case of shallow excitons [44]. However, since W ph is
not instantaneous, as pointed out in Ref. [41] in the case of
dynamically screened Coulomb interaction, there is no reason
to neglect the class of first-order diagrams shown in Fig. 1(d).
They take into account excitonic effects in the intermediate
states, and they can be included by considering the following
first-order expression for �1:

�1(1423) = iW ph(23)T (142̄3̄)Ḡ(3̄3)Ḡ(2̄2)

+ iW ph(14)T (1̄4̄23)Ḡ(11̄)Ḡ(44̄)

+ iW ph(42)T (14̄2̄3)Ḡ(2̄2)Ḡ(44̄)

+ iW ph(13)T (1̄423̄)Ḡ(3̄3)Ḡ(11̄)

+ iW ph(12)δ(13)δ(24). (8)

Inserting Eq. (8) and Eq. (4) into Eq. (5), we obtain

L(1423) = L̄(1423) + L̄(12′21′)K(1′4′2′3′)L̄(3′44′3), (9)

with the new kernel

K(1423) = iW ph(14)L̄(142̄3̄)Ḡ−1(3̄3)Ḡ−1(2̄2)

+ iW ph(32)L̄(1̄4̄23)Ḡ−1(11̄)Ḡ−1(44̄)

+ iW ph(13)L̄(14̄2̄3)Ḡ−1(2̄2)Ḡ−1(44̄)

+ iW ph(42)L̄(1̄423̄)Ḡ−1(3̄3)Ḡ−1(11̄). (10)

The diagrammatic representation of L in Fig. 1 illustrates
that we include the complete series of ladder diagrams in
the effective four-point Coulomb interaction �0 responsible
for excitonic effects, whereas the dynamical el-ph interaction
is included through an effective kernel evaluated at the first
order in W ph. Under the assumption that elementary scattering
processes between occupied and empty states are negligi-
ble, which corresponds to the Tamm-Dancoff approximation
(TDA) [16,45,46] for both L̄ and the scattering processes
induced by W ph, Eq. (5) is the exact expression for the first-
order W ph expansion of L.

III. EXCITON SELF-ENERGY AND CUMULANT
COEFFICIENT

Our next goal is to express Eq. (9) in terms of
the two-time e-h correlation function Ḡ(r1t1r4t3r2t1r3t3) =
−iL̄(r1t1r4t3r2t1r3t3) and W ph. Ḡ represents the noninteract-
ing exciton Green’s function. When evaluated at r2 = r1 and
r4 = r3 it corresponds to the charge-charge response function
from the SBSE. We want now to obtain an expression for the
full charge-charge response function G in the presence of el-ph
interaction. In analogy to the one-particle G for one-particle
excitations, G represents an interacting Green’s function for
the exciton, i.e., an exciton propagator. To this end, we first
note that the diagrammatic series obtained from Eq. (9) can be
traced back to the two prototypical Feynman diagrams drawn
in Figs. 2(a) and 2(b) evaluated at all orders in �0. At first
glance, it is impossible to detect the two-times Ḡ in the black
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FIG. 2. (a) and (b) Prototypical first-order diagrams in W ph. Here
arrows represent Ḡ, the gray boxes are the SBSE kernel �0, and the
wiggly lines stand for W ph. Red indicates inserts needed to express
the result in terms of the two-times Ḡ (see text). (c) Representation
of the diagrams (a) and (b) in terms of Ḡ (bold line).

diagrams of Fig. 2. Still we can make use of the following
trick. The relation for the single-particle Ḡ [41],∫

dx2′ Ḡ(x2′t1′2)Ḡ(2′′x2′t1′ ) = ±iḠ(2′′2)�(t2t1′t2′′ ) (11)

(with the + and − sign for hole and electron propagators, re-
spectively), holds when t1′ lies between t2 and t2′′ as indicated
by �(t2t1′t2′′ ). In the Feynman diagrams of Figs. 2(a) and 2(b),
using Eq. (11) corresponds to inserting additional space-spin
points that are integrated over [red dots in Fig. 2(a)]. Their
time coordinates can be chosen equal to an already existing
time integration point, as indicated by the red ovals.

Taking t2 = t1 and t4 = t3, the Feynman diagram corre-
sponds to the lesser part (i.e., t1 < t3) of the two-times two-
particle correlation function (or exciton Green’s function) G<.
It is expressed in terms of two-times Ḡ and W ph [compare
Figs. 2(a) and 2(b) with Fig. 2(c)]. The same applies to G>,
when t1 > t3. On the basis of excitonic states where Ḡ is
diagonal, this reads

G<
λλ′ (t13) = Ḡ<

λλ(t13)δλλ′

+
∫ t3

t1

dt1′

∫ t3

t1′
dt3′ Ḡ<

λλ(t11′ )�λλ′ (t1′3′ )Ḡ<
λ′λ′ (t3′3),

(12)

where t13 stands for (t1, t3), λ = (λ, q) labels the exciton band
index λ and the exciton wave vector q, and repeated indices
are summed over. �λλ′ (t13) given by

�λλ′ (t13) =
∑

α

iWph
λααλ′ (t13)Ḡ<

αα(t13) (13)

is an effective exciton self-energy, because Ḡλλ(t13) represents
the propagator of independent excitons. It is the analog of the

FM self-energy for one-particle excitations with Ḡ and W ph

replaced by Ḡ and Wph, respectively.
The effective exciton-exciton interaction Wph is given by

matrix elements of W ph that can be read from Fig. 2 and that
are detailed in Appendix A. Wph = Wph

pp + Wph
eh consists of

an effective electron-electron or hole-hole interaction labeled
pp from the first diagram in Fig. 2(a), and an electron-hole
(eh) interaction from the second diagram in Fig. 2(b). This
reflects the fact that excitons are composite particles [47],
and their effective interaction results from the interaction
between their constituents, i.e., all electrons and holes. The
two terms have opposite sign, leading to partial cancellation
of dynamical effects as suggested in the case of dynamically
screened Coulomb interaction [41,48].

In particular, writing W ph in terms of the exciton propa-
gator and el-ph matrix elements, the exciton self-energy in
the frequency space at zero temperature takes the following
expression:

�λqλ′q(ω) = 1

N

∑
αμq̄

gexc∗
αλ′;μ(q, q̄)gexc

αλ;μ(q, q̄)

ω − (Eαq+q̄ + �μq̄) + iη
, (14)

where �μq denotes the energy of the phonon with wave vector
q and band index μ, Eαq is the equivalent quantity for exci-
tons, and gexc

αλ;μ(q, q̄) are the exciton-phonon matrix elements
defined in Appendix A. Starting from the full dynamical
BSE, we have provided a rigorous derivation of Eq. (14),
which corresponds to a first-order expansion of the excitonic
Hamiltonian in terms of W ph [49–51]. This first-order ex-
pansion is based on the hypothesis, a priori unjustified, that
dynamical effects induced by the el-ph interaction on neutral
excitations can be described in terms of excitons coupled with
phonons. Our derivation highlights the basic assumptions and
approximations that justify its validity.

Finally, following the dynamical BSE scheme suggested
in Ref. [52] in the context of dynamical effects induced by
electronic correlation, a partial summation of Eq. (2) can be
performed writing

G<
λλ′ (ω) = Ḡ<

λλ(ω) + Ḡ<
λλ(ω)�λα(ω)G<

αλ′ (ω), (15)

where � should be evaluated using G< instead of Ḡ< in
Eq. (13). This allows us to include a partial resummation of
self-consistent contribution as well. Equation (15) represents
a Dyson-like equation for the exciton propagator in the pres-
ence of the el-ph interaction that can be solved on top of a
standard SBSE calculation of Ḡ. The relaxation of the TDA
on the el-ph interaction does not have much of an effect on
Eq. (15). Indeed, the inclusion of el-ph scattering processes
between occupied and empty states gives rise to an additional
static contribution to the exciton self-energy [51] that can be
grouped together with the Debye-Waller term and included in
the definition of Ḡ (or L̄).

At this point it is important to note that, although the Dyson
equation with a first-order self-energy [as in Eq. (15)] can
give in principle an accurate description of the QP properties
such as QP energy and lifetime, it cannot capture the satellite
physics. Indeed, several calculations of the one-particle G
that solved a Dyson-like equation within GW [42,53–57] or
HAC [8,9,29] approximations demonstrated that the posi-
tion of the first satellite is wrong, and satellite replicas are
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completely missed. On the other hand, satellite structures are
well described through a cumulant approach [38,39,53–57].
In the following, we will provide a scheme that combines
the two approaches (the Dyson equation and the cumulant
representation) and allows us to treat QP and satellite features
on the same footing.

First of all, following the idea of Bechstedt et al. [58]
for the description of plasmonic satellites in the context of
one-particle excitations, we cut the exciton self-energy in two
parts: a QP contribution �λλ(EQP

λ ) evaluated at the exciton
QP energy (EQP

λ ) and a dynamical contribution �λλ(ω) =
�λλ(ω) − Re�λλ(EQP

λ ). Then we expand G at the first order
in �. Under these conditions, Eq. (15) becomes

GQP
λλ (ω) = Ḡλλ(ω) + Ḡλλ(ω)�λλ

(
EQP

λ

)
GQP

λλ (ω), (16)

Gλλ(ω) = GQP
λλ (ω) + GQP

λλ (ω)�λλ(ω)GQP
λλ (ω), (17)

where GQP is the QP exciton propagator obtained replacing
Eλ with EQP

λ in the expression of Ḡ. The QP energy, according
to Eq. (16), is obtained through the following self-consistent
relation: EQP

λ = Eλ + Re�λλ(EQP
λ ). Finally, from the compar-

ison of Eq. (17) with the first-order expansion of a cumulant
ansatz,

Gλλ(t13) = GQP
λλ (t13)eCλ(t13 ) ≈ GQP

λλ (t13)[1 + Cλ(t13)], (18)

we obtain

Cλ(t13) = −i
∫ t3

t1

dt1′

∫ t3

t1′
dt3′�λλ(t1′3′ )eiEQP

λ (t3′−t1′ ). (19)

The exciton propagator Gλλ resulting from Eqs. (18) and (19)
can be expressed in terms of a renormalization factor e−Rλ

describing the amount of spectral weight transferred from the
QP to the satellite structures, the exciton linewidth �λ induced
by the el-ph coupling, and a term C̃λ responsible for satellite
structures:

G<
λλ(t13) = e−Rλe−i(EQP

λ +i�λ )(t3−t1 )eC̃λ(t13 ), (20)

where

Rλ = − ∂

∂ω
�λλ(ω)|

ω=EQP
λ

, (21)

�λ = Im�λλ(ω)|
ω=EQP

λ
, (22)

C̃λ(t13) = − 1

π

∫ +∞

−EQP
λ

dω
Im�λλ

(
ω + EQP

λ

)
(ω − iη)2

e−iω(t3−t1 ). (23)

The expression in Eq. (20) constitutes the main result of
this work. Starting from basic equations in MBPT, it provides
a clean derivation of the cumulant representation for the
exciton Green’s function in the presence of el-ph interaction.
The approach allows us to include dynamical corrections
induced by the el-ph interaction on both QP excitations and
satellites in a systematic way, and it can be implemented
as a postprocessing of standard SBSE calculations of the
excitonic band structure and density functional perturbation
theory (DFPT) calculations [59] of phonons and el-ph matrix
elements. Actually, to be consistent with our theory, the el-
ph interaction should be treated in the GW approximation
[25,60–62], using, for example, the recently developed GW

perturbation theory (GWPT) approach [63]. However, in stan-
dard semiconductors, correlation effects on the el-ph coupling
beyond DFT are often negligible [64], and DFPT constitutes
a good compromise.

In the next sections, we will apply this approach to a simple
model system that will be used as an illustrative example to
discuss the basic physical aspects of the cumulant in a general
way.

IV. APPLICATION TO A SIMPLE MODEL SYSTEM

In the following, we will consider a model system consist-
ing of two free-electron bands coupled with a nondispersive
Einstein-like phonon of frequency �0 living in a homoge-
neous medium of dielectric constants ε0 and ε∞. Moreover,
we model the el-ph matrix elements gnk,mk+q describing elec-
tronic scattering processes from state (nk) to state (mk +
q) (q being the phonon wave vector) through the Fröhlich
expression:

gq = i

q

[
4π

V

�0

2

(
1

ε∞
− 1

ε0

)]1/2

, (24)

where V is the volume of the primitive cell. In this way, the
el-ph matrix elements are independent from the electron wave
vector k and the band index n(m). Excitons, on the other hand,
are described in the effective-mass approximation so that the
solution of the SBSE are Wannier excitons with energy

Eλq = QP − μ

2ε2∞n2
λ

+ q2

2M
, (25)

where QP is the QP band gap, μ is the reduced mass of
the electron-hole pair, nλ is the Rydberg quantum number of
the state λ, M is the exciton mass, and q is the length of its
wave vector. Under these conditions, the exciton self-energy
in Eq. (14) evaluated at q → 0 takes the following expression
(see Appendix B):

�λλ(ω) = 4α

π

√
d

qD
�2

0

∫ qD

0
dq̄

1 − Sλλ(q̄)

ω − (QP + �̃q̄) + iη
, (26)

where qD is the Debye wave vector, �̃q = q2

2M + �0, α =√
M

2�0
( 1
ε∞

− 1
ε0

) is the Fröhlich coupling constant for excitons,

d = q2
D/2M
�0

is the ratio between the exciton bandwidth inside
the Debye sphere and the phonon frequency, and Sλλ(q) is
the square modulus of the exciton envelop wave function that
for the 1S state is S(q) = 1

[1+( qa
2 )2]2 (a being the exciton Bohr

radius). From the numerator of the integral in Eq. (26) we see
that the exciton self-energy is the sum of the two opposite
contributions which, as discussed in the previous section, are
related to Wph

pp and Wph
eh , respectively. The latter, in particular

has a strong dependence from the Bohr radius through the
factor Sλλ. Inserting Eq. (26) in Eqs. (21)–(23) and using
Eq. (19) we can evaluate the spectral function of G that, in
the case of Wannier excitons, gives the absorption spectrum.

Figure 3(a) shows the SBSE and cumulant absorption
spectra for the lowest excited state (Wannier exciton in the
1S configuration; we omit the subscript λ in the following).
As pointed out by other approximate solutions of this model
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FIG. 3. Model absorption spectra renormalized to the strength
of the QP peak. Main panels: cumulant results. (a) Total spectrum.
(b) Comparison between the pp, eh, and mixed contributions. Inset
in (a) Absorption spectrum from the SBSE, with a broadening of
0.03 eV.

system based on perturbation theory [65] and variational
method [66], the coupling with phonons creates a series of
satellites at energies E + n�0 with integer n, and a weight
transfer from the QP peak to the satellites, due to e−R.

Figure 3(b) highlights pp, eh, and (for the second satellite)
mixed contributions. In the first satellite, the pp and eh terms
have opposite sign, but the negative eh contributions are
always smaller. Since the resulting structures are located at the
same frequency, the spectral function remains positive. The
strength of the second satellite goes as [Wph]2 according to an
expansion of Eq. (18). Therefore, only the mixed contribution
stemming from the product pp-eh is negative.

In the following, to better understand how dynamical ef-
fects related to the coupling with phonons are related to the
properties of the system, we will focus on the behavior of the
renormalization factor R. It describes the amount of spectral
weight transferred from the QP peak to the satellite structures.
Moreover, it measures how relevant the exciton-phonon cou-
pling is: a larger R corresponds to a more important exciton-
phonon coupling. According to the structure of Wph, it is
convenient to separate the renormalization factor in pp and
eh contributions: R = Rpp + Reh with

Rpp = 2α
√

d

π

[
1

1 + d
+ arctan

√
d√

d

]
, (27)

Reh = 2α
√

d

π

[(
d

(πa/λD)2

)2 2√
d

f

(
d,

πa

λD

)]
. (28)

Here λD = 2π
qD

is the Debye wavelength and f is a dimen-
sionless function defined by the integral

f

(
d,

πa

λD

)
=

∫ √
d

0

dx[(
d

(πa/λD )2 + x2
)
(1 + x2)

]2 . (29)
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FIG. 4. Intensity plot of the rescaled renormalization factor
R/ 2α

√
d

π
. On the horizontal axis, the exciton Bohr radius renormalized

with the Debye wavelength λD. On the vertical axis, the ratio d
between the exciton bandwidth and the phonon frequency.

From Eq. (27) we see that Rpp is an implicit function of
the exciton mass M through the quantity d inside the expres-
sion in the square brackets. The prefactor is a dimensionless
constant since the M dependence in

√
d is exactly canceled

by the Fröhlich coupling constant α. The eh contribution [see
Eq. (28)], on the other hand, is also a function of the exciton
Bohr radius through the quantity πa

λD
.

Figure 4 shows the behavior of the rescaled renormaliza-
tion factor R/( 2α

√
d

π
) as a function of d and πa/λD. The weight

transfer is important for nondispersive excitons (small d), and
much weaker when d 	 1. Indeed, the exciton bandwidth is
related to the rate of the exciton hopping processes, while the
phonon frequency �0 expresses the time scale of the lattice
dynamics of the system. When d 	 1, the hopping processes
are fast compared to the lattice vibrations and the exciton
behaves like a particle propagating in a frozen lattice, so W ph

is negligible. For fixed d , the evolution of R with πa/λD

shows that a strongly localized exciton is much less influenced
by dynamical effects. This can be attributed to the fact that R
is a sum of pp and eh contributions, with Rpp positive and
independent of a and Reh negative and vanishing for πa

λD
→ ∞

(see Fig. 5). Therefore, Rpp and Reh cancel to a large extent
for small a. In particular, as can be inferred from Fig. 5, the
cancellation becomes exact for πa

λD
→ 0.

The different behavior of Rpp and Reh is strictly related
to the different length scale of Wph

pp and Wph
eh that defines

the distance to which two particles (electrons or holes) and
an electron-hole pair interact through a phonon exchange.
Indeed, while the length scale of Wph

pp is set by λD, due to the
excitonic effects, the length scale for Wph

eh is of the order of√
a2 + λ2

D. This explains why |Wph
eh | < |Wph

pp| for each a. For
a 	 λD the e-h distance is proportional to a, independently
of λD, such that |Wph

eh | becomes negligible. When a 
 λD the
typical length scale is λD, the same for Wph

pp and Wph
eh , and

the cancellation becomes exact. In real systems, the different
character of the valence and conduction states can make the
cancellation imperfect, but this will not change the trends.
Indeed, the exact cancellation for a 
 λD persists in the long-
range part of the exciton-phonon interaction, which is the only
one considered in the Fröhlich model.
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FIG. 5. Behavior of the ratio between eh and pp contributions to
the renormalization factor as a function of the rescaled exciton Bohr
radius.

From this analysis we can conclude that dynamical ef-
fects induced by the coupling with phonons are the result
of a delicate competition between several effects related to
the electronic localization. Indeed, localization reduces the
screening efficiency increasing the strength of the electron-
phonon interaction that in the present model is described by
the Fröhlich coupling constant α. At the same time, it gives
rise to weakly dispersive excitons corresponding to a small
exciton bandwidth. Both effects would enhance the exciton-
phonon coupling. However, electronic localization results in a
small exciton Bohr radius that causes cancellation effects.

Finally, inserting the expression of the exciton self-energy
Eq. (26) into Eq. (22), we can evaluate the exciton linewidth
that for the 1S exciton at wave vector q is

�q = 2α�0√
dq − 1

⎡
⎣1 − 1[

1 + (
1 − 1

dq

)( aq
2

)2]2

⎤
⎦θ (dq − 1),

(30)

where we have introduced the quantity dq = q2/2M
�0

. As we
can see from Eq. (30), the exciton takes a finite lifetime
only for energy values larger than �0. This is intuitive since
at zero temperature, when only phonon emission processes
are involved, decay channels below the phonon frequency
are not allowed by energy conservation. This is consistent
with the fact that the lowest excited state of any many-body
system should have infinite lifetime at zero temperature. We
emphasize that the only inclusion of the FM self-energy in
the one-particle Green’s function would give a completely
different result. Indeed, in this case the lowest excited state of
a direct-gap semiconductor is undamped only when excitonic
effects are neglected (i.e., in an independent-particle picture).
The inclusion of the electron-hole interaction causes a mixing
of the lowest energy undamped electron-hole pair associated
to the QP gap with higher-energy damped excitations that
always results in the formation of a damped exciton inde-
pendently of its energy. This nonphysical behavior is directly
related to the lack of the class of diagrams shown in Fig. 1(d).
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FIG. 6. Main panel: model absorption spectra renormalized to
the strength of the SBSE main peak. The blue dashed line indicates
the position of the indirect QP gap i

QP. Inset: schematic electronic
band structure of an indirect-band-gap semiconductor. In our model,
the conduction band is described in terms of two valleys with the
same electronic mass.

V. PHONON-ASSISTED ABSORPTION IN THE
CUMULANT SCHEME

In this section, we will show how the cumulant approach
allows one to describe phonon-assisted absorption in terms of
satellites in the optical spectra induced by the exciton-phonon
coupling. To this end, we generalize the previous model to a
two-band system displayed in the inset of Fig. 6. The lowest
excited states of this prototypical indirect-gap semiconductor
can be classified in terms of direct and indirect Wannier
excitons. The latter are described by the same equations used
for the direct exciton with the exciton wave vector q replaced
by q − q0 (q0 being the distance between the two conduction-
band minima). As a consequence, the energy of an indirect
exciton with wave vector q in the Rydberg state λ is

Eλq = i
QP − μ

2ε2∞n2
λ

+ |q − q0|2
2M

, (31)

where i
QP is the indirect QP gap. The same applies to

the exciton envelope wave function. In analogy with the
direct-gap semiconductor discussed in the previous section,
the optical spectrum is determined only by direct excitons.
However, their self-energy, beside a sum over direct excitons,
also involves indirect transitions with smaller energies.

For simplicity, in the following we consider only contribu-
tion to the self-energy coming from the indirect transitions.
Moreover, we make the assumptions that the two conduction-
band minima have the same curvature, q0 is similar to qD, and
d 	 1. These are essential requirements for the validity of
the effective-mass approximation for both direct and indirect
transitions. Under these conditions, the exciton self-energy
becomes (see Appendix B)

�λλ(ω) = 2α

π

√
dc

qc
�2

0

∫ qc

0
dq̄ f (q̄)

1 − Sλλ(q̄)

ω − (
i

QP + �̃q̄
) + iη

,

(32)
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where qc = qD − q0, dc = q2
c /2M
�0

, and f (q) = q̄
q0

ln | q̄+q0

q̄−q0
|. In-

serting Eq. (32) into Eqs. (21) and (23), we can evaluate the
optical absorption spectrum.

In Fig. 6 we compare the optical spectra of our two band
model system evaluated within SBSE and the cumulant ap-
proximations. Also in this case the exciton-phonon interaction
gives rise to new features in the spectrum. In particular, the
first peak below the main direct exciton peak is located at
energy i

QP + �0. It is associated with elementary scatter-
ing processes between direct and indirect excitons through
phonon exchange as expected in phonon assisted processes.
The other feature, as expected is a satellite replica related to
multi phonon processes.

VI. CONCLUSIONS

In conclusion, starting from basic equations of MBPT, we
have derived a cumulant formulation for neutral excitation
spectra that contains excitonic effects and the coupling be-
tween excitons and phonons. The cumulant approach allows
us to include dynamical effects arising from the el-ph coupling
in a simple and intuitive way. It can be implemented as a post-

processing of a standard GW +BSE calculation of excitonic
states and a DFPT calculation of phonons and el-ph coupling.
We demonstrate that, in order to obtain a consistent treatment
of exciton-phonon coupling, diagrams have to be taken into
account that can be neglected when the effect of lattice
vibrations is treated in a static or quasistatic approximation.
From the application of this approach to a model system, we
analyzed the main features of the exciton-phonon coupling
and provided a general picture of their link with the properties
of materials such as exciton mass and exciton Bohr radius.
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APPENDIX A: EXPLICIT EXPRESSION OF THE
EXCITON-PHONON COUPLING

The particle-particle and electron-hole contributions to the
effective exciton-exciton interaction Wph in Eq. (13) of the
main text can be directly read from the diagrams in Fig. 2. In
the basis of the excitonic eigenstates (Avck

λq ) where the solution
Ḡ of the SBSE is diagonal, this yields

W pp
λqαq′αq′λ′q(t1′3′ )

=
∑

v1c1v2c2 v̄1v̄2

∑
k1k2

Av1c1k1∗
λq Av̄2c2k2∗

αq′ W v1k1+qv2k2+q
v̄2k2+q′v̄1k1+q′ (t1′3′ )Av̄1c1k1

αq′ Av2c2k2
λ′q

+
∑

v1c1v2c2 c̄1 c̄2

∑
k1k2

Av1c1k1∗
λq Av2 c̄2k2+q−q′∗

αq′ W c2k2c1k1
c̄1k1+q−q′ c̄2k2+q−q′ (t3′1′ )Av1 c̄1k1+q−q′

αq′ Av2c2k2
λ′q

Weh
λqαq′αq′λ′q(t1′3′ )

= −
∑

v1c1v2c2 v̄c̄

∑
k1k2

Av1c1k1∗
λq Av2 c̄k2+q−q′∗

αq′ W v1k1+qc̄k2+q−q′
c2k2 v̄k1+q′ (t1′3′ )Av̄c1k1

αq′ Av2c2k2
λ′q

−
∑

v1c1v2c2 v̄c̄

∑
k1k2

Av1c1k1∗
λq Av̄c2k2∗

αq′ W v̄k2+q′c1k1
c̄k1+q−q′v2k2+q(t3′1′ )Av1 c̄k1+q−q′

αq′ Av2c2k2
λ′q , (A1)

where matrix elements W ij
lm of W ph are defined in terms of single-particle wave functions φ as

W ij
lm(t12) =

∫
dr12φ

∗
i (r1)φ∗

l (r2)W ph(12)φj(r2)φm(r1), (A2)

and v (c) stands for valence (conduction) states.
Expressing W ph in terms of the el-ph coupling and phonon propagator, Eq. (A2) becomes

W
iki jk j

lkl mkm
(t12) = 1

N

∑
μq

g∗
mi,μ(ki, q)Dμq(t12)gl j,μ(k j, q)δkm,ki+qδkl ,k j+q. (A3)

Inserting Eqs. (A3) and (A1) into Eq. (13) and taking the Fourier transform, we obtain the expression in Eq. (14) with the
following definition of the exciton-phonon matrix elements:

gexc
αλ,μ(q, q̄) =

∑
vv̄ck

Avck
λq gv̄v,μ(k + q, q̄)Av̄ck∗

αq+q̄ −
∑
cc̄vk

Avck
λq g∗

c̄c,μ(k, q̄)Avc̄k+q̄∗
αq−q̄ . (A4)

APPENDIX B: WANNIER EXCITON COUPLED WITH EINSTEIN PHONON

In this Appendix, we give details concerning the model system consisting of a Wannier exciton coupled with an Einstein
phonon of frequency �0 through a Fröhlich-like interaction. In the case of a Wannier exciton, the excitonic state Avck

λq is directly
related to the envelope exciton wave function Fλ(r) (solution of the hydrogenlike Hamiltonian describing the relative motion of
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the electron-hole pairs in the Wannier model). In particular, Avck
λq = Fλ(k + γ q), where Fλ(k) is the Fourier transform of Fλ(r)

and γ = mc
mc+mv

(mv and mc being the mass of the hole and the electron, respectively). The phonon propagator is q-independent
and is given by the following expression:

D(t12) = −i[θ (t2 − t1)e−i�0(t3−t1 ) + θ (t1 − t2)ei�0(t3−t1 )]. (B1)

Thus using Eqs. (B1) into Eq. (A1), we obtain

Wph
λqαq′αq′λ′q(t12) = |gq′ |2

[
D(t12)

∑
k

F ∗
λ (k + γ q)Fα[−k − γ (q′ + q)]

∑
k

Fλ′ (k + γ q)F ∗
α [−γ (q + q′) − k]

+ D(t21)
∑

k

F ∗
λ (k + γ q)Fα[−γ (q + q′) + q′ − k]

∑
k

Fλ′ (k + γ q)F ∗
α [−γ (q + q′) + q′ − k]

− D(t12)
∑

k

F ∗
λ (k + γ q)Fα[−γ (q + q′) + q′ − k]

∑
k

Fλ′ (k + γ q)F ∗
α [(−γ )(q + q′) − k]

− D(t21)
∑

k

F ∗
λ (k + γ q)Fα[−γ (q + q′) − k]

∑
k

Fλ′ (k + γ q)F ∗
α [−γ (q + q′) + q′ − k]

]
, (B2)

where gq is defined in Eq. (24). Alternatively, inserting gq and Fλ(k + γ q) in Eq. (A4) we can express Wph in terms of the
exciton-phonon matrix elements that in the present model have an analytical expression in terms of the electron and hole mass
and the exciton Bohr radius [67–69].

For an exciton at q = 0 in the state λ, this gives the self-energy:

�λλ(t13) = − i

N

∑
αq′

|gq′ |2e−i(Eαq′ +�0 )(t3−t1 )

[∫
dr12F ∗

λ (r1)Fα (r1)F ∗
α (r2)Fλ(r2)e−iγ q′ ·(r2−r1 )

+
∫

dr12F ∗
λ (r1)Fα (r1)F ∗

α (r2)Fλ(r2)e−i(γ−1)q′ ·(r2−r1 ) −
∫

dr12F ∗
λ (r1)Fα (r1)F ∗

α (r2)Fλ(r2)eiq′ ·r2 e−iγ q′ ·(r2−r1 )

−
∫

dr12F ∗
λ (r1)Fα (r1)F ∗

α (r2)Fλ(r2)e−iq′ ·r1 e−iγ q′ ·(r2−r1 )

]
(B3)

with

Eαq = QP − μ

2ε2∞n2
α

+ q2

2M
, (B4)

where QP is the QP band gap, μ is the reduced mass of the electron-hole pair, nα is the Rydberg quantum number associated
with the state α, M = mv + mc is the mass of the exciton, and q is the length of its wave vector.

Since a typical Wannier exciton is characterized by a binding energy of two orders of magnitude smaller than the quasiparticle
gap, in the sum over α we can neglect the quantity μ

2ε2n2
α
. Thus, we can make the approximation

∑
α

F ∗
α (r1)F ∗

α (r2)e−iEαq′ (t3−t1 ) ≈ δ(r1 − r2)e−i(QP+ q′2
2M )(t3−t1 ) (B5)

that corresponds to include in the sum over α only free electron-hole states. This approximation is exact for mv = mc, when the
contribution coming from bound electron-hole states is zero [69]. Under these conditions, we have

�λλ(t13) = − i

2π2
�0

(
1

ε∞
− 1

ε0

)∫
dq′ 1

|q′|2 [1 − Sλλ(q′)]e−i(QP+�̃q )(t3−t1 ), (B6)

where the integral over q′ is performed inside the Debye sphere, and the first and second terms refer to the contribution coming
from W pp and Weh, respectively. �̃q = q2

2M + �0, and the function Sλλ that appears in the electron-hole contribution to the
effective exciton-exciton interaction is defined as

Sλλ(q) =
∫

dr|Fλ(r)|2eiq′r. (B7)

For the lowest exciton, Sλλ(q) = 1

[1+ q2a2

4 ]
2 , where a is the exciton Bohr radius.

In the case of the indirect-gap semiconductor, the sum over α in Eq. (B3) runs over the indirect excitonic states for which

Eαq = i
QP − μ

2ε0nα

+ |q − q0|2
2M

(B8)
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and Avck
αq = Fα[k + γ (q − q0)]. This leads to the following expression for the exciton self-energy:

�λλ(t13) = − i

2π2
�0

(
1

ε∞
− 1

ε0

) ∫
S0

dq′ 1

|q′ + q0|2 [1 − Sλλ(q′)]e−i(i
QP+�̃q )(t3−t1 ), (B9)

where S0 denotes a sphere of radius qD − q0 centered in q0, and λ labels the lowest-energy direct Wannier exciton.
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