
PHYSICAL REVIEW B 102, 045133 (2020)

Effect of Stern-Gerlach force on negative magnetoresistance
and Hall resistance in spin-dependent viscous flow
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In two-dimensional electron systems (2DES), a hydrodynamic regime with remarkable viscous effects is
recognized when the sample width is small enough and momentum-conserving scattering is dominant. Based
on hydrodynamic calculations for a 2DES, we obtain large effective viscosity coefficients, which lead to large
negative magnetoresistance (MR) and Hall resistance due to the effect of an in-plane Stern-Gerlach force on
the viscosity components. The spin-dependent viscous effect manifests itself via both longitudinal and Hall
resistances. The negative MR and Hall resistance are markedly sensitive to the perpendicular magnetic field with
amplitude around zero, which would be useful in MR sensors and magnetic recording devices.
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I. INTRODUCTION

Negative magnetoresistance (MR) and Hall resistance in
two-dimensional electron systems (2DESs) continue to stim-
ulate intense research interest. They exhibit new features
in a hydrodynamic regime when the typical length scale
of electron-electron scattering (lee) is shorter than those of
electron-disorder and electron-phonon scatterings (l), i.e.,
lee � l . In this case, the motion of electrons becomes col-
lective, and the electron transport is dominated by a vis-
cous effect. A hydrodynamic approach [1,2] was used to
explain the giant negative MR reported in experiments [3–9].
Two-dimensional (2D) viscous electron flows have recently
been systematically studied within hydrodynamic theory in
Refs. [10–12].

Hall viscosity in the presence of a magnetic field has
attracted considerable attention recently due to its quantized
nature in the quantum Hall regime [13–15]. For 2DESs
in magnetohydrodynamic regimes, transport measurements
[15–17] have demonstrated classical Hall viscosity through
inhomogeneous flow [1]. The Hall resistance and MR have
been studied for viscous electron flow by numerical solutions
of the kinetic equation in Ref. [16]. Delacrétaz and Gro-
mov exploited the contribution of Hall viscosity to charge
transport, and explained how to determine the Hall viscosity
from resistance measurements in a transport experiment [15].
Pellegrino et al. [17] proposed an all-electrical scheme to
determine the Hall viscosity of a 2D electron liquid based on
hydrodynamic equations. The experimental observation of the
hydrodynamic effect and Hall viscosity was reported in GaAs
mesoscopic samples [9], where a negative Hall resistivity was
observed at low magnetic fields.
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However, in the hydrodynamic regime, negative MR and
Hall resistance have not been studied in spin-related viscous
electron flow. It is thus desirable to understand the mechanism
of a spin-dependent viscous effect in the 2DES. In addition,
the effect of in-plane magnetic fields on negative MR was
studied in a GaAs/AlGaAs quantum well [6], where the MR
remained essentially unaffected by B‖ < 30 kG, and it can
be suppressed by B‖ � 30 kG. Thus an interesting question
arises: How does the gradient of an in-plane magnetic field
affect the negative MR? In this paper, we propose a two-
component hydrodynamic approach to study the effect of
an in-plane Stern-Gerlach force on viscosity components on
negative MR and Hall resistance. Our hydrodynamic approach
is based on the kinetic theory for a two-component system
consisting of spin-up and spin-down electrons. The dominant
contribution of the Stern-Gerlach force on negative MR and
Hall resistance originates from a spin-dependent viscosity
stress tensor. The electron viscosity tensor is derived in a
shortcut way similar to Ref. [1]. We perform detailed cal-
culations on the effective regular and Hall components of
viscosity together with negative MR and Hall resistance for
long rectangular GaAs and InSb samples with rough edges in
the presence of the Stern-Gerlach force.

II. MODEL AND FORMALISM

The system under consideration is depicted in Fig. 1, which
is a 2DES in the (x, y) plane with width w along the y
direction. The 2DES is modulated by a uniform electric field
Ex along the x direction, a uniform magnetic field B0 along
the z direction, and a constant magnetic field gradient [18]
∇By along the y direction. The spin quantization direction
is taken to be the y axis. The magnetic field gradient leads
to the spin-dependent Stern-Gerlach force g∗μB

2 ∇Bys, where
μB = eh̄

2mec is the Bohr magneton, g∗ is the effective g-factor,
me is the free-electron mass, e is the fundamental charge, h̄
is the Planck constant, c is the speed of light, and s = ±
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FIG. 1. Schematic illustration of the geometry for the considered
2DES system. The system is modulated by a constant magnetic field
gradient ∇By along the y direction, an external electric field E along
the x direction, and a uniform magnetic field B0 along the z direction.

represents up spin and down spin. Unless specified, Gaussian
units are adopted for all physical quantities. The electron
density of spin-up and spin-down electrons under zero field
is uniform, n+ = n− = n/2.

From a semiclassical viewpoint, the properties of the 2DES
can be obtained from the distribution function fs = fs(p, r),
which depends on the spin index s, electron quasimomentum
p, and position r. The distribution function is governed by
the Boltzmann kinetic equation under the relaxation-time
approximation [19,20]

vs · ∇r fs +
(

eE + eB0

c
vs × ez + s

g∗μB

2
∇By

)
· ∇p fs

= − fs

τs
. (1)

Here, vs(p) = ∂ε
∂p is the velocity of an electron with spin

s and energy ε, ez is the unit vector along the normal
direction, and τ+ = τ− = τ = 1/(1/τph + 1/τ0) is the nor-
mal momentum relaxation time [20] due to electron scat-
tering by acoustic phonons (τph) and disorders (τ0). As
in Ref. [1], we take a constant τ0 = 4.5 × 10−10 s and
an electron-temperature-dependent 1/τph = AphT with Aph =
109 s−1 K−1. The macroscopic flow density js and drift veloc-
ity us for the spin-s subsystem are calculated from

js =
∫

d2p
(2π )2

vs fs = nus. (2)

Under zero field, the distribution function is given by the
Fermi-Dirac function

f 0 = 1

1 + e(ε−μ)/(kBT )
, (3)

where μ = (h̄
√

2πn)
2
/(2m) is the chemical potential in equi-

librium, m is the effective mass of an electron in the 2DES,
and kB is the Boltzmann constant. Under external fields, a
small local change of the chemical potential and temperature
(δμs and δT ), together with the current-induced drag, results
in a small deviation from the local equilibrium. Such a devi-
ation can be accounted for by introducing a small correction
[19–21] δ fs to the distribution function fs,

fs = f 0 + δ fs,

δ fs = −∂ f 0

∂ε

(
δμs + (ε − μs)

δT

T
+ p · us

)
.

(4)

We assume here that thermalization between the electronic
system and the lattice is much faster than quasiparticle re-
combination. This allows us to neglect local temperature
fluctuations, i.e., δT = 0. Further, the electron system is con-
sidered to be incompressible [1], ∇ · us = 0, which implies
δns/δμs = 0, i.e., that the system does not respond to changes
in μs up to exponentially small corrections.

A macroscopic equation for the flow densities can be
obtained by multiplying the kinetic equation [Eq. (1)] by the
quasiparticle velocity and summing over all single-particle
states. As a result, we find [19,20]

∇i�i j − en

2m
Ej − ε jkωc jsk − s

ng∗μB

4m
∇ jBy = − js j

τ
. (5)

Here, the Einstein summation convention is applied for the re-
peated index i, j, k ∈ {x, y}, ε jk = 1,−1 for ( jk) = (xy), (yx)
and 0 otherwise, �i j is defined as the viscosity stress tensor,
and ωc = eB0/mc is the cyclotron frequency. By means of the
changing rate of deformation

Vi j = ∂ui

∂x j
+ ∂u j

∂xi
, (6)

�i j can be written as

�i j =
∫

d2p
(2π )2

viv j

2
fs = n

2
〈viv j〉

= −n

2
(ηxxVi j + sζxus j + ηyxεikVk j + sζyεikusk ), (7)

where ηxx and ηyx are the same as in Ref. [1], while ζx and
ζy are induced by the effect of the Stern-Gerlach force. The
derivations of ζx and ζy are presented in the Appendix. One
has

ηxx = 1

1 + β2

v2
F τ2

4
, ηyx = β

1 + β2

v2
F τ2

4
,

ζx = 1

1 + β2

τ2g∗μB

2m

∂By

∂y
, ζy = β

1 + β2

τ2g∗μB

2m

∂By

∂y
,

(8)

where τ2 is the relaxation time for the second moment of the
electron distribution function, vF = h̄

√
2πn/m is the Fermi

velocity, and β = 2τ2ωc. As pointed out in Ref. [1], both
electron-electron scattering and electron scattering on disor-
der contribute to τ2, 1/τ2 = 1/τ2,ee + 1/τ2,0 with 1/τ2,ee =
AFL

ee T 2/[ln ( mv2
F

2kBT )]
2
. The values of τ2,0 = 1.1 × 10−11 s and

AFL
ee = 1.3 × 10−9 s−1 K−2 are taken as the same in Ref. [1].

In the stationary regime under the external fields, the drift
velocity is along the x direction (usy = 0), under which a Hall
electric field Ey is established due to the magnetic field. In this
case one finds

ηxx

2

∂2ux

∂y2
+ s

ζx

2

∂usx

∂y
+ e

2m
Ex − usx

τ
= 0,

e

2m
Ey − ηyx

2

∂2ux

∂y2
− s

ζy

2

∂usx

∂y
− ωcusx + s

g∗μB

4m

∂By

∂y
= 0,

(9)

where ux = u+x + u−x. The hydrodynamic approach outlined
above has been widely used and justified when the electron-
electron scattering is the fastest process [1,9,11,20]. Adding
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and subtracting over the spin index for the first and second
identity of Eq. (9), we get(

ηxx + τζ 2
y

4

)
∂2ux

∂y2
+ e

m
Ex − ux

τ
= 0,

e

m
Ey −

(
ηyx + τζxζy

4

)
∂2ux

∂y2
− ωcux = 0. (10)

Using the conventional no-slip boundary condition
ux(y = ±W

2 ) = 0, we obtain the velocity profile and the
Hall voltage from Eq. (10),

ux = eτ

m
Ex

(
1 − cosh(ky)

cosh(kw/2)

)
, (11)

VH = τωcExw

(
1 − tanh(ξ )

ξ

)
− η1yx

η1xx
Exw

tanh(ξ )

ξ
, (12)

where k = ( 1
τη1xx

)
1/2

and ξ = kw/2. Finally, the magnetore-
sistance and Hall resistance are obtained,

ρxx = m

e2nτ

1

1 − tanh(ξ )/ξ
,

ρxy = ρbulk
xy

(
1 − 1

ωcτ

η1yx

η1xx

tanh(ξ )/ξ

1 − tanh(ξ )/ξ

)
, (13)

where ρbulk
xy = −mωc

e2n . Particularly, we define the effective vis-
cous coefficients as

ηxx1 = ηxx + 1

(1 + β2)2

(
τ2

g∗μB

2mvF

∂By

∂y

)2
v2

F τ

4
,

ηyx1 = ηyx + β

(1 + β2)2

(
τ2

g∗μB

2mvF

∂By

∂y

)2
v2

F τ

4
. (14)

III. RESULTS AND DISCUSSIONS

Our numerical results in the presence of the Stern-Gerlach
force are first compared to those in Refs. [1,6] in a GaAs
2DES with electron density 2.8 × 1011 cm−2, an effective
mass m = 0.0665me, and g∗ = 0.44. In the presence of an
in-plane magnetic field gradient ∂By

∂y , the spin-up and spin-
down electron density is taken to be uniform with the value
n+ = n− = n/2 = 1.4 × 1011 cm−2. The Stern-Gerlach force
is larger for a material with a larger g-factor. We thus then
consider a InSb [22] 2DES with μ ≈ 105 cm2/V s, g∗ = 40,
m = 0.018me, and n = 1 × 1010 cm−2. The effective width
and temperature are set at w = 10 μm and T = 1 K in both
cases. Without specification, hereafter ∂By

∂y is normalized by

1 T μm−1.
Figure 2(a) shows ρxx as a function of B0 without and

with the Stern-Gerlach force for different ∂By

∂y in the GaAs
2DES. The magnetoresistance in GaAs 2DES has been ex-
perimentally and theoretically studied in Refs. [1,6] for a long
sample with straight boundaries. When the edges are rough
and scattering of electrons on them is diffusive, the Poiseuille
flow is formed and the magnetoresistance is proportional to
the diagonal viscosity such as ηxx. The viscosity coefficients
under a perpendicular magnetic field differ significantly from
those in zero field, leading to a giant negative MR. Without the
Stern-Gerlach force, our results are the same as in Ref. [1].
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FIG. 2. Longitudinal resistance (ρxx) vs perpendicular magnetic
field B0 for the (a) GaAs and (b), (c) InSb 2DES.

At a large enough magnetic field gradient 30, ρxx becomes
different from that in Ref. [1]. The peak value of ρxx increases
monotonically with further increasing the magnetic field gra-
dient, leading to stronger negative MR. The negative MR is
characterized by δρ = ρc − ρ0 or ρc/ρ0, where ρc is the value
of ρxx at B0 = 0.5 kG and ρ0 is the value of ρxx at B0 =
0. Indeed, the negative MR is ρc/ρ0 = 0.18 with ∂By

∂y = 90,
compared to ρc/ρ0 = 0.27 without the Stern-Gerlach force,
at B ≈ 0.5 kG.

Hereafter we consider the InSb 2DES where a large
Stern-Gerlach force is realized under a much smaller ∂By

∂y .
Figure 2(b) shows ρxx as a function of B0 without and with
the Stern-Gerlach force for different ∂By

∂y . Figure 2(c) shows

ρxx for larger ∂By

∂y . It can be seen that ρxx has a peak at
B0 = 0, exhibiting first a dramatic decrease and then decaying
very slowly with the amplitude of B0, indicating negative
MRs. As shown in Figs. 2(b) and 2(c), this dramatic decrease
almost terminates at B0 = 0.2 kG with ρxx = ρc. The value of
negative MR at B0 = 0.2 kG is shown in Table I for different
∂By

∂y and compared to that without the Stern-Gerlach force.

With increasing ∂By

∂y , the ρxx peak becomes larger and

steeper. The peak value monotonically increases with ∂By

∂y due

to Eq. (14). The highest ρxx peak appears under ∂By

∂y = 8,

where ρxx decays quickly from ρ0 = 5.9 × 104 to ρc = 184 �

when B0 changes from 0 to ∼0.2 kG, as shown in Fig. 2(c)
(dark blue line). Such a large negative MR could be used
for challenging the applications in magnetic recording and
understanding spin-dependent viscous phenomena. Note that
ρc/ρ0 ≈ 0.003 is about two orders of magnitude smaller than
that without the Stern-Gerlach force ρc/ρ0 ≈ 0.3, as shown
in Fig. 2(b) (black line). Consequently, a giant negative MR
(ρc/ρ0 ≈ 0.003) effect develops at low perpendicular mag-
netic fields (�0.2 kG), where Landau quantization is not yet
important [6]. The high sensitivity of ρxx to weak magnetic
fields could serve as a sensitive probe in MR sensors.
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TABLE I. The negative MR (δρ and ρc/ρ0) of an InSb 2DES at B0 = 0.2 kG under different values of ∂By

∂y .

∂By

∂y 0 0.2 0.4 0.8 1.0 2.0 4.0 6.0 8.0

δρ −54 −92 −199 −642 −971 −3765 −14932 −32882 −58816
ρc/ρ0 0.3 0.2 0.1 0.04 0.03 0.009 0.0045 0.0035 0.003

The largest negative MR predicted in Ref. [23] is ρc/ρ0 ≈
0.02 in a 2DES with μ ≈ 2.2 × 107 cm2/V s at B ≈ 1 kG.
The strongest negative MR reported by Shi et al. [6] is about
ρc/ρ0 ≈ 0.08, which was the strongest possible negative MR
as a result of classical memory effects. In comparison to those
reported in Refs. [6,23], our result exhibits a stronger negative
MR with the smallest ρc/ρ0 ≈ 0.003 in terms of the Stern-
Gerlach force, which could be important for memory units.

The tunability of negative MR by the Stern-Gerlach force
results from the effective viscosity coefficients such as ηxx1

and ηyx1 [see Eq. (14)]. Figures 3(a) and 3(b) present the
effective regular component of the kinematic viscosity tensor
ηxx1 (normalized by η = v2

F τ2/4) as a function of the magnetic
field B0 under several values of ∂By

∂y . Without the Stern-Gerlach
force, ηxx1 = ηxx has a narrow positive peak at B0 = 0. With
increasing ∂By

∂y , the peak value of ηxx1 increases monotonically,

and reaches the highest value of ≈1100 for ∂By

∂y = 8, which is
responsible for the strongest negative MR shown in Fig. 2(c).
This can be explained as follows. From the expression of ηxx1

in Eq. (14), ηxx1 reaches a maximum value at B0 = 0. The
peak value is nearly proportional to τ2 + α2τ/(1 + β2), and
the peak width is proportional to mc/(2τ2e) (∼0.05 kG), with
α = τ2

g∗μB

2mVF

∂By

∂y . Under the Stern-Gerlach force, the obtained
ηxx1 differs obviously from its counterpart ηxx in a spin de-
generate case. The nontrivial effect of the Stern-Gerlach force
on the viscosity of electron fluids leads to unique transport
properties of a spin-dependent viscous flow.
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FIG. 3. The effective regular and Hall components of the kine-
matic viscosity tensor in an InSb 2DES as a function of perpendicular
magnetic field B0 under different values of ∂By

∂y . (a), (b) ηxx1/η; (c),
(d) ηyx1/η.

We then present in Figs. 3(c) and 3(d) the normalized
effective Hall viscosity coefficient ηyx1 (normalized by η =
v2

F τ2/4) under the same condition as in Figs. 3(a) and 3(b).
Without the Stern-Gerlach force, ηyx1 = ηyx shows an anti-
symmetric distribution with respect to B0 = 0 and reaches a
positive maximum value of 0.5 at B0 = mc/(2τ2e). As ∂By

∂y
increases from 0 to 8, the peak of ηyx1 becomes higher,
while the peak width of |ηyx1| is proportional to mc/(2τ2e)
in all cases. The positive highest peak of ηyx1 occurs at B0 =
mc/(2τ2e) (∼0.05 kG) for ∂By

∂y = 8, which has an amplitude
350, which is three orders of magnitude larger than that of
ηyx. The contrast between the variation of ηyx1 and ηyx with
the Stern-Gerlach force can be understood from Eq. (14). This
equation tells us that ηyx1 is proportional to B0.

The enhancement of the effective Hall viscosity will alter
greatly the spin-dependent viscous flow from a spin degen-
erate system. In Fig. 4, the Hall resistance ρxy is plotted
as a function of the perpendicular magnetic field B0 under
several values of ∂By

∂y . Due to the time-reversal symmetry, ρxy

is antisymmetric about B0 = 0. In the absence of the Stern-
Gerlach force, the profile of ρxy agrees with that in Ref. [9].
There exists a steep slope of ρxy at B0 = 0. Such a Hall slope
increases with ∂By

∂y and reaches its maximum value at ∂By

∂y = 8.

The huge maximum value of ρxy for ∂By

∂y = 8 is comparable
to that observed in an InSb 2DES at 1.5 K [22] and is about
30 times as large as that measured in graphene/boron nitride
2DES at 400 K [24]. The drastic change of ρxy with B0

is totally unexpected and can be explained from Eq. (13).

−1 0 1
−400

−200

0

200

400

ρ xy
(Ω

)

B0 (kG)
 

 

−1 0 1
−2

−1

0

1

2 x 104

B
0
 (kG)

ρ xy
(Ω

)

 

 

2
4
6
8

0
0.2
0.4
0.8
1

(a) (b)

∂ By/∂ y:
∂ By/∂ y:

FIG. 4. Hall resistance (ρxy) of an InSb 2DES as a function of
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The second term in this equation is proportional to ηyx1/ηxx1

which determines the profile of ρxy, where |ηyx1|/η (as well as
ρxy) takes its maximum value at B0 = mc/(2τ2e) (∼0.05 kG)
while ηxx1 shows a relatively low value (see Fig. 3 above).
In other words, the |ηyx1|/η takes its minimum value at
B0 = 0 and rapidly increases to its maximum value at B0 =
mc/(2τ2e), while ηxx1/η has a maximum value at B0 = 0
and quickly decreases as B0 increases. The fact is that they
increase/decrease at the same rate. This is consistent with
Eq. (9), where the Hall viscosity coefficient (ηyx1) determines
the dispersion of the 2D electron collective waves, while the
regular viscosity coefficient (ηxx1) determines their dissipa-
tion, resulting in negative MR. These characteristics have
been reported in Ref. [1]. However, they are enhanced in the
presence of the Stern-Gerlach force. Our results and analysis
indicate that this spin-dependent viscous mechanism is re-
sponsible for the outstanding negative MR, the Hall viscosity,
and Hall resistance.

Giant negative MR has been observed in viscous electron
flow in Refs. [3–9]. The Stern-Gerlach force can be obtained
by applying an in-plane magnetic field gradient to the 2DES
sample, which has been realized experimentally [18]. There-
fore, it is demonstrated that the large negative MR and Hall
resistance obtained in this theoretical work is within the scope
of current experimental technology.

IV. CONCLUSIONS

In conclusion, we have used a hydrodynamic model to
investigate the negative magnetoresistance and Hall resistance
for long rectangular GaAs and InSb 2DESs under the mod-
ulations of an in-plane magnetic-field gradient and a weak
perpendicular magnetic field. Our model is correlated with the
predictions of spin-dependent viscous flow in a hydrodynamic
regime. In this regime, the effective viscous coefficients can be
altered greatly by the Stern-Gerlach force, resulting in large
negative magnetoresistance and Hall resistance. At a proper
Stern-Gerlach force, both longitudinal and Hall resistances are
markedly sensitive to the perpendicular magnetic field around
the zero value. Such a sensitivity could be useful for MR
sensors and data storage devices.
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APPENDIX: SPIN-DEPENDENT
VISCOSITY COMPONENTS

In this Appendix, we derive the spin-dependent viscosity
components in the presence of the Stern-Gerlach force and the
perpendicular weak magnetic field, in a shortcut way similar
to the Drude conductivity.

The viscosity terms in the hydrodynamic theory can be
expressed through the viscous stress tensor of per one parti-

cle, �i, j = m〈viv j〉, where v = (vx, vy) is the velocity of an
electron and the angular brackets represent averaging over
the electron velocities at a position r = (x, y). The motion
equation without a magnetic field and Stern-Gerlach force
reads

m
∂ui

∂t
= −∂�i j

∂x j
− mui

τ
+ eEi, (A1)

where u = 〈v〉 is the hydrodynamic velocity. Following
Ref. [1], the expression for �i j is given [21] for a
timescale much larger than the relaxation time for the second
moment τ2,

�i j = �0
i j = −mηui j, ui j = ∂ui

∂x j
+ ∂ui

∂x j
. (A2)

Based on the Drude-like equation, �i j defined in Eq. (A2) is
obtained during τ2,

∂�i j

∂t
= −�i j − �0

i j

τ2
. (A3)

The terms of the magnetic field and Stern-Gerlach force
can be added in the equations for ∂ui/∂t and ∂�i j/∂t ,(

∂〈vi〉
∂t

)
mag

= ωcεik〈vk〉,
(

∂〈viv j〉
∂t

)
mag

= ωc(εik〈vkv j〉 + ε jk〈v jvk〉),

(
∂〈vi〉
∂t

)
spin

= sFi,

(
∂〈viv j〉

∂t

)
spin

= s(Fi〈v j〉 + Fj〈vi〉).

(A4)

Here, F = g∗μB

2m
∂By

∂y , Fi = F for i = y and 0 otherwise. The
terms in Eq. (A4) are added to the right-hand side of Eq. (A3),
which yields

∂�i j

∂t
= −�i j − �0

i j

τ2
+ mωc(εzik〈vkv j〉

+ εz jk〈vivk〉) + sm(Fi〈v j〉 + Fj〈vi〉). (A5)

In the stationary regime under the magnetic field and Stern-
Gerlach force, we derive from Eqs. (A4) and (A5) the follow-
ing equation,

�i j − τ2ωc(εzik�k j +εz jk�ik ) − sτ2m(Fi〈v j〉+Fj〈vi〉) = �0
i j .

(A6)

The components of the tensor �i j satisfy

�xx − τ2ωc(�yx + �xy) = �0
xx,

�yy − τ2ωc(−�yx − �xy) = �0
yy,

�xy − τ2ωc(�yy − �xx ) = �0
xy + sτ2mF 〈vx〉,

�yx − τ2ωc(�yy − �xx ) = �0
yx + sτ2mF 〈vx〉,

(A7)
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which leads to �yy = −�xx, �xy = �yx, and

�xx = 1

1 + β2
�0

xx + β

1 + β2
�0

yx + smζy〈vx〉,

�yx = 1

1 + β2
�0

yx − β

1 + β2
�0

xx + smζx〈vx〉, (A8)

with

ηxx = 1

1 + β2

v2
F τ2

4
, ηyx = β

1 + β2

v2
F τ2

4
,

ζx = 1

1 + β2

τ2g∗μB

2m

∂By

∂y
, ζy = β

1 + β2

τ2g∗μB

2m

∂By

∂y
. (A9)

Here, τ2 is the relaxation time for the second moment of the electron distribution function, vF = h̄
√

4πn/m is the Fermi velocity,
and β = 2τ2ωc.
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