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Fully anharmonic nonperturbative theory of vibronically renormalized electronic band structures
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We develop a first-principles approach for the treatment of vibronic interactions in solids that overcomes
the main limitations of state-of-the-art electron-phonon coupling formalisms. In particular, anharmonic effects
in the nuclear dynamics are accounted for to all orders via ab initio molecular dynamics simulations. This
nonperturbative, self-consistent approach evaluates the response of the wave functions along the computed
anharmonic trajectory; thus, it fully considers the coupling between nuclear and electronic degrees of freedom.
We validate and demonstrate the merits of the concept by calculating temperature-dependent, momentum-
resolved spectral functions for silicon and the cubic perovskite SrTiO3, a strongly anharmonic material featuring
soft modes. In the latter case, our approach reveals that anharmonicity and higher-order vibronic couplings
contribute substantially to the electronic structure at finite temperatures, noticeably affecting band gaps and
effective masses and hence macroscopic properties such as transport coefficients.
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I. INTRODUCTION

Electronic band structures are a fundamental concept in
material science used to qualitatively understand and quan-
titatively assess optical and electronic properties of materi-
als, e.g., charge carrier mobilities and absorption spectra of
semiconductors. Over the last decade, three pivotal advance-
ments have paved the way towards predictive, quantitative
ab initio calculations of electronic band structures: Advances
in relativistic approaches [1], improvements in the treatment
of electronic exchange and correlation [2,3], and the inclusion
of electron-phonon interactions via perturbative many-body
formalisms based on the Allen-Heine theory [4]. The latter
approach has been widely used to calculate temperature-
dependent effects on the electronic structure stemming from
nuclear motion [5–19]. However, such perturbative calcula-
tions rely on two approximations. (a) The nuclear motion
is approximated in a harmonic model which is equivalent
to the concept of phonons, and (b) the vibronic interaction
between electronic and nuclear degrees of freedom is treated
by perturbation theory in terms of electron-phonon coupling.
In both approximations, interactions at finite temperatures
T are thus described via truncated Taylor expansions, using
derivatives computed at the static equilibrium geometry, i.e.,
for the total energy minimum corresponding to the atomic
geometry Req obtained in the classical T = 0 K limit. Clearly,
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both these approximations are problematic whenever large
deviations from Req occur, e.g., at elevated temperatures and
for soft bonded atoms. Several strategies have been proposed
to mitigate either one of these approximations [20–28]. This
revealed that the predictive power of perturbative calculations
can be problematically limited, even for low-temperature
properties of simple materials such as MgO and LiF [22];
solids featuring more anharmonic dynamics, such as molec-
ular crystals [29]; and perovskites [30], which are affected
more severely. A consistent computational approach able to
settle these issues by accounting, on equal footing, for both
anharmonic effects in the nuclear motion and the full vibronic
coupling is, however, still lacking.

In this work, we fill this gap by deriving a fully anhar-
monic, nonperturbative first-principles theory of vibronic cou-
pling and demonstrate its implementation in the all-electron,
numeric atomic orbitals code FHI-AIMS [31]. As validation,
we show that our approach reproduces literature data for
Si, a largely harmonic case in which the perturbative ap-
proach works exceptionally well. Furthermore, we compute
temperature-dependent spectral functions, band gaps, and ef-
fective masses for cubic SrTiO3, a prototypical perovskite. In
this case, the highly anharmonic dynamics [32,33] associated
with the octahedral tilting typically observed in perovskites
[34,35] results in a breakdown of the perturbative model and
thus in significant changes in the electronic properties. Be-
sides clarifying the experimental findings for SrTiO3 [36,37],
our calculations reveal that anharmonic, higher-order vibronic
couplings (AVICs) have substantial influence on electronic
properties, especially of perovskites, a material class with ex-
ceptional potential for high-temperature applications [38–43].

The organization of this paper is as follows: In Sec. II we
introduce the theoretical framework of our statistically an-
harmonic, higher-order vibronic coupling (stAVIC) approach
for obtaining full anharmonic temperature-dependent band
structures. In the same section we also outline the main
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equations involved in our implementation of band structure
unfolding using numeric atom-centered orbitals. In Sec. III
we present all computational details of the calculations per-
formed in this work. In Sec. IV we demonstrate the merits of
our methodology by reporting first-principles calculations of
temperature-dependent spectral functions and band gaps of Si
and SrTiO3 for a wide range of temperatures. For SrTiO3, we
also report temperature-dependent effective masses. Section V
summarizes our key results and emphasizes the importance of
our methodology for materials’ design in various applications.
Further technical details are left to Appendixes A–C.

II. THEORY

In this section we describe the theoretical framework of
our methodology and discuss the implementation details of
the band structure unfolding technique when numeric atom-
centered orbitals are used.

A. Statistically anharmonic, higher-order
vibronic coupling approach

In the following, the energy εR
l of the electronic state |ψR

l 〉
is obtained by solving the Schrödinger equation HR

el |ψR
l 〉 =

εR
l |ψR

l 〉, where HR
el is the electronic Hamiltonian of the sys-

tem at the atomic geometry R. This may be a Kohn-Sham
Hamiltonian with a certain exchange-correlation functional.
For readability, we use the generalized index l to indicate
both the band index n and the wave vector k. The temperature
dependence of εR

l is evaluated within the Born-Oppenheimer
approximation via the canonical ensemble average at temper-
ature T :

〈
εR

l

〉
T = 1

Z

∫
dRdP exp

[−E (R, P)

kBT

]
εR

l . (1)

Here, kB is the Boltzmann constant, Z is the canonical parti-
tion function, P is the momenta of the nuclei, and E (R, P)
is the total energy of the combined electronic and nuclear
system. For the evaluation of Eq. (1), the state-of-the-art
formalism [44] resorts to the two perturbative approximations
mentioned above. When the harmonic approximation is em-
ployed for the potential-energy surface (PES) the classical
equations of motions for R, P can be solved analytically, and
so can the quantum-mechanical Schrödinger equation. Hence,
Eq. (1) is approximated via 〈εR

l 〉T ≈ 〈εR
l 〉ha

T as

〈
εR

l

〉ha
T = 1

Zha

∫
dRhadPha exp

[−Eha(Rha, Pha)

kBT

]
εR

l , (2)

which allows for a straightforward evaluation of the phase-
space integral [24–26,45,46]. When the dependence of the
electronic states on the nuclear motion is truncated up to
second order in the atomic displacements εR

l ≈ ε
pt,R
l , then the

ensemble average in Eq. (2) yields the perturbative Allen-
Heine energies 〈εpt,R

l 〉ha
T .

In this work, we rely on neither of the two approximations.
First, ab initio molecular dynamics (aiMD) trajectories with
length t0 are used to evaluate the canonical ensemble average
in Eq. (1) as a time t average,

〈
εR

l

〉
T = 〈

εR
l

〉MD
T = lim

t0→∞
1

t0

∫ t0

0
ε

R(t )
l dt . (3)

This accounts for the full anharmonicity of the PES. Sec-
ond, the dependence of the electronic eigenenergies ε

R(t )
l

on the nuclear positions is explicitly evaluated by solving
HR(t )

el |ψR(t )
l 〉 = ε

R(t )
l |ψR(t )

l 〉 at each aiMD step R(t ). All or-
ders of coupling between electronic and nuclear degrees
of freedom are included by these means. This involves
reexpanding

∣∣ψR(t )
l

〉 =
∑

m

pR(t )
ml

∣∣ψeq
m

〉
, pR(t )

ml = 〈
ψeq

m

∣∣ψR(t )
l

〉
, (4)

in terms of the wave functions at equilibrium |ψeq
m 〉. With that,

one obtains

ε
R(t )
l = 〈

ψ
R(t )
l

∣∣ HR(t )
el

∣∣ψR(t )
l

〉 = ε
eq
l

+
∑
m,n

[
pR(t )

nl

]∗
pR(t )

ml

〈
ψeq

n

∣∣ HR(t )
el − H eq

el

∣∣ψeq
m

〉
. (5)

In this form, it is evident that Eq. (5) incorporates not only the
first nonvanishing derivatives of HR(t )

el − H eq
el as perturbative

formalisms but all orders. Similarly, all orders of couplings
with the nuclear motion—not just quadratic terms—are cap-
tured via the coefficients pR(t )

ml , which describe the intricate
R(t ) dependence of the wave functions along the aiMD.
Accordingly, all orders of AVIC are statistically captured by
these means. Our approach, named stAVIC in the following,
is thus valid even when the (harmonic) phonon ansatz is
inappropriate.

In practice, the thermodynamic average in Eq. (3) can
be evaluated via ab initio path-integral MD [47] or via
aiMD [48], the latter corresponding to the classical, high-
temperature limit of interest in this work. Regardless, a direct
evaluation of Eq. (3) is not particularly useful since it does not
give access to state- and momentum-resolved band structures
in the fundamental Brillouin zone (BZ). Since large supercells
are required to capture vibrations with a nonzero wave vector
in solids, the obtained electronic energies εl = ε

R(t )
NK and wave

functions ψl = ψ
R(t )
NK , with band indices N and wave vectors

K, span only a reduced BZ [49] (capital letters indicate
supercell quantities). As shown in Sec. II B, individual states
thus become indistinguishable, and only band edges can be
reliably identified [47,48]. Besides preventing a comparison
with angle-resolved photoemission spectroscopy experiments
or with the static limit at Req, for which the wave vectors k
of ε

eq
l = ε

eq
nk and ψ

eq
l = ψ

eq
nk span the full fundamental BZ,

this “BZ folding” makes it impossible to determine state- and
momentum-dependent electronic properties, such as lifetimes
and effective masses. To recover a band structure in the
fundamental BZ also for supercells, the expansion coefficients
introduced in Eq. (4) are used to “unfold” the states ψNK . To
this aim, we consider the spectral function expressed in the
Lehman representation [50]:

AR(t )
nk (E ) =

∑
NK

∣∣pR(t )
nk,NK

∣∣2
δ
(
E − ε

R(t )
NK

)
. (6)

Compared to Eqs. (4) and (5), in which the perturbed eigen-
value ε

R(t )
NK is obtained from a superposition of equilibrium

states ψ
eq
nk, Eq. (6) reflects the inverse relationship: Each

perturbed eigenvalue ε
R(t )
NK contributes to all states nk in the
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fundamental BZ, whereby pR(t )
nk,NK = 〈ψeq

nk|ψR(t )
NK 〉 determines

the strength of this contribution.
For each configuration R(t ), we obtain the momentum-

resolved spectral function AR(t )
k (E ) = ∑

n AR(t )
nk (E ) by sum-

ming over n in Eq. (6):

AR(t )
k (E ) =

∑
NK

PR(t )
k,NKδ

(
E − ε

R(t )
NK

)
. (7)

The spectral weight PR(t )
k,NK = ∑

n |pR(t )
nk,NK |2 describes the over-

lap between the supercell state |ψR(t )
NK 〉 and all equilibrium

states with wave vector k [51,52]. Details for its numerical
evaluation are provided in Sec. II B. The momentum-resolved
spectral function in thermodynamic equilibrium 〈AR(t )

k (E )〉T

is then computed as the thermodynamic average of AR(t )
k (E )

along R(t ) via Eq. (3). Momentum-resolved quasiparticle
peaks are extracted from 〈AR(t )

k (E )〉T by scanning over the
energy axis, from which band gaps 〈εg〉T and effective masses
m∗

e are then obtained.

B. stAVIC: Spectral weight formalism

In ab initio MD simulations of solids, it is necessary to
use extended supercells to accurately sample vibrations with
a nonzero wave vector. Due to the larger cell size in real space,
the electronic structure obtained in reciprocal space from such
supercell calculation suffers from BZ folding. In other words,
the band structure is associated with a reduced BZ, as shown
in Fig. 1(a). At finite temperatures, the motion of the nuclei
breaks the symmetries within the supercell, thus making
individual states indistinguishable [see Figs. 1(b) and 1(c)].
This prevents any assessment of the momentum dependence
of the electronic dispersion. Hence, a BZ unfolding [49] is
necessary to reverse this BZ folding and thus to obtain clearly
disentangled states in the fundamental BZ and to map the

FIG. 1. Electronic valence band structure of SrTiO3 along �-R
obtained from calculations in the primitive unit cell with static nuclei
at equilibrium (red) and in 5 × 5 × 5 supercells (gray). As (a) ex-
emplifies, the electronic dispersion ε(k) obtained in the primitive
unit cell along �-R is “folded” into a reduced Brillouin zone with
a shorter reciprocal-space path �-R′ in supercell calculations. While
individual states and their momentum dependence are still visible
in the case of tiny displacements [(a), T < 1K], this is no longer
the case at finite temperatures since the nuclear motion breaks the
symmetries within the supercell. Accordingly, momentum-resolved
electronic structures are no longer accessible, as (b) and (c) show for
representative geometries obtained from aiMD runs at 140 and 300K,
respectively.

properties of the dynamical system back onto the established
language and terms of solid-state physics.

The band-resolved spectral function Ank(E ) can be ob-
tained from the imaginary part of the retarded one-electron
Green’s function [53] and then evaluated using Eq. (6). In
practice, the electronic states are expanded [31] as a linear
combination of Bloch-type functions using the expansion
coefficients c j,nk and CJ,NK, respectively,

ψnk =
∑

j

c j,nk χ j,k, ψNK =
∑

J

CJ,NK χJ,K . (8)

For notational clarity we have dropped the superscript indices
eq and R(t ) from the reference ψnk and perturbed ψNK states,
respectively. The Bloch-type functions are related to atomic
orbitals via discrete Fourier transforms

χ j,k =
∑

l

e−ik·lφ j,l , (9)

χJ,K =
∑

L

e−iK·L�J,L, (10)

in which the sums are taken over all lattice vectors l =
(l1, l2, l3) and L = (L1, L2, L3). Enforcing translational in-
variance yields the overlap matrix elements pnk,NK in the
following form [54,55]:

pnk,NK = 〈ψnk|ψNK〉

=
√

L

l

∑
jJ

c∗
j,nkCJ,NK

×
∑

l

e−ik·l 〈φ j,l |�J,0〉 δk−G,K. (11)

Here, the first summation runs over all real basis functions
|φi,l 〉 and |�J,0〉 of the reference and perturbed systems,
respectively. The corresponding Born–von Karman supercells
contain l and L periodic replicas of the original cell, set at 0,
along each Cartesian direction. The presence of the Kronecker
delta δk−G,K ensures that K is mapped onto k via a reciprocal
lattice vector G of the perturbed system. For the mapping
between the indices of the basis functions of the reference
and perturbed system, j and J , the following relationship is
satisfied: ∑

j′
s−1

j j′ (k)S j′J (K) = δ jJ , (12)

with

s j j′ (k) =
∑

l

eik·l 〈φ j,0|φ j′,l 〉 , (13)

S j′J (K) =
√

L

l

∑
l

e−ik·l 〈
φ j′,l

∣∣�0
J,0

〉
δk−G,K. (14)

Here, |�0
J,0〉 indicates the basis functions of an unperturbed

supercell, in which the atomic nuclei are at their equilibrium
positions. In other words, |�0

J,0〉 are the equilibrium states
in the supercell, obtained by periodically replicating the un-
perturbed reference system. Taking the summation over all
bands n in Eq. (11) yields the spectral weights Pk,NK entering
Eq. (7). In particular, using the completeness relation Ik =
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FIG. 2. (a) Spectral function Ak(E ) of cubic SrTiO3 along the high-symmetry path M-�-R-X (336 k points) calculated using DFT-PBE
in a 5 × 5 × 5 supercell containing 625 atoms at their classical, 0 K positions (static equilibrium). (b) Thermodynamically averaged spectral
functions 〈AR(t )

k (E )〉T of cubic SrTiO3 along �-R (128 k points) for T = 300 and 1200 K calculated nonperturbatively on the harmonic and
anharmonic PES using DFT-PBE and 30 uncorrelated geometries in a 5 × 5 × 5 supercell containing 625 atoms. For all plots the band structure
in static equilibrium is shown as white lines.

∑
n |ψnk〉 〈ψnk| of the states |ψnk〉, the spectral weight can be

rewritten as

Pk,NK = 〈	NK|Ik|	NK〉 , (15)

and the final result with respect to the perturbed expan-
sion coefficients and overlap matrix of the perturbed basis
functions is

Pk,NK = L

l

∑
jJl

C∗
J,NKCj,NKe−ik·l 〈� j,l |�J,0〉 δk−G,K. (16)

The advantage of the above expression for the calculation
of the spectral weights is that no knowledge of the wave
functions of the reference system is explicitly required.

In our implementation we evaluate Eq. (7) by calculating
the spectral weights using Eq. (16) and ensuring that the
correct mapping between the j and J indices is obtained
through Eq. (12). In Fig. 2(a) we demonstrate the first step of
the validation of our approach by showing the perfect band
structure unfolding as calculated for a 5 × 5 × 5 supercell
geometry of SrTiO3, which is an exact periodic replica of the
unit cell containing atoms at their relaxed classical positions.
Examples of spectral functions obtained by supercell calcu-
lations on perturbed configurations exploring the harmonic
(left) and anharmonic (right) potential-energy surfaces for
T = 300 and 1200 K are shown in Fig. 2(b). The relevant
computational details are provided in Sec. III.

III. COMPUTATIONAL DETAILS

All calculations were performed with the all-electron, full-
potential, numeric-atomic orbital code FHI-AIMS [31] using
density-functional theory (DFT) with the local-density ap-
proximation (LDA) for Si and DFT with the Perdew-Burke-
Ernzerhof (PBE) functional for SrTiO3. In the latter case, van
der Waals interactions were included using the Tkatchenko-
Scheffler method [56]. For both structures, light defaults
were used for the numerical settings and for the basis set.
With respect to Brillouin zone (BZ) integrations, 12 × 12 ×
12 (Si)/5 × 5 × 5 (SrTiO3) k grids (in the primitive BZ) were
used during the self-consistency cycle.

Table I summarizes the lattice constants and band gaps
computed for static, cubic SrTiO3 using different exchange-
correlation functionals (LDA, PBE, PBE functional re-
vised for solids (PBEsol) [58], and Heyd-Scuseria-Ernzerhof
(HSE06) hybrid functional [59]), with and without van der
Waals (vdW) interactions. Generally, we observe that vdW
interactions stabilize the cubic structure, curing the typical
underbinding observed with the PBE functional. All LDA
and generalized gradient approximation (GGA) functionals
severely underestimate the experimental band gap of 3.26 eV
[36] by at least 1 eV, whereas HSE06 and HSE06-vdW yield
static band gaps of 3.63 and 3.45 eV, respectively. The fact
that PBE-vdW yields excellent agreement with respect to
experimental lattice expansion data, validates our choice of
the functional used for all stAVIC calculations on SrTiO3.

Harmonic phonon properties were calculated using finite
differences as implemented in the software package PHONOPY

[60]. The computed phonon frequencies and normal-mode
coordinates were employed to sample the harmonic phase
space via importance sampling Monte Carlo [24] to
evaluate the thermodynamic averages 〈·〉ha−qm

T and 〈·〉ha−cl
T

using quantum-mechanical and classical statistics, respec-
tively. Soft modes with imaginary phonon frequencies are

TABLE I. Lattice constant and band gap of cubic SrTiO3 calcu-
lated within density-functional theory using the LDA, PBE, PBEsol,
and HSE06 exchange-correlation (XC) functionals. Van der Waals
(vdW) interactions are accounted for via the Tkatchenko-Scheffler
method [56].

XC functional Lattice constant (Å) Bang gap (eV)

LDA 3.86 2.00
PBE 3.96 2.30
PBE-vdW 3.90 2.09
PBEsol 3.90 2.10
PBEsol-vdW 3.87 2.00
HSE06 3.91 3.63
HSE06-vdW 3.85 3.45
Expt. (T = 140 K) 3.90 [57] 3.26 [36]
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FIG. 3. (a) Thermodynamically averaged spectral function 〈AR(t )
k (E )〉T of silicon along L-�-X (256 k points) for T = 500 K calculated with

stAVIC using DFT-LDA and 30 uncorrelated geometries in a 6 × 6 × 6 supercell containing 432 atoms. The band structure in static equilibrium
is shown as black lines. (b) Vibronic renormalization of the band gap 
〈εg〉T = 〈εg〉T − 〈εg〉ha-cl

0K of silicon as function of temperature obtained
via the stAVIC 
〈εg〉MD

T (orange) and via the nonperturbative harmonic approach: 
〈εg〉ha-cl
T (gray) and 
〈εg〉ha-qm

T (red). All calculations were
performed using DFT-LDA and 6 × 6 × 6 supercells containing 432 atoms. Perturbative harmonic calculations (blue, [13]) and experimental
data (black, [64]) are shown as well.

“frozen in” in this harmonic approach (∼1% of all modes in
the employed SrTiO3 supercells).

Born-Oppenheimer aiMD simulations were carried out in
the canonical ensemble (NVT) using a time step of 1 fs and the
Bussi-Donadio-Parrinello thermostat [61]. Trajectories with a
time length of 1.5–2.0 ps for Si and SrTiO3 were used to
thermally equilibrate the systems. An additional 1.0–2.0 ps for
Si and SrTiO3 of aiMD were simulated for the stAVIC evalu-
ation. Thermal lattice expansion was calculated by computing
the thermodynamic average of the stress tensor observed
during an aiMD trajectory; subsequently, the structure was
reoptimized under external pressure to obtain temperature-
dependent geometries for which the stress tensor becomes
negligible in the thermodynamic average [62]. As shown in
Appendix A, a significant band gap opening is induced when
considering thermal lattice expansion in SrTiO3.

The band gaps at finite temperatures are obtained by aver-
aging over 50 (Si) and 100 (SrTiO3) configurations, which are
selected from the already equilibrated aiMD trajectory in steps
of 0.01 ps. For the aiMD, 6 × 6 × 6 supercells with 432 atoms
(Si) and 5 × 5 × 5 supercells with 625 atoms (SrTiO3) were
used. Both the chosen number of configurations for the ther-
modynamic averaging and the chosen supercell sizes ensure a
convergence of the temperature-dependent band gap within 

±5%. We note that finite supercell size effects and symmetry
breaking lead to the splitting of degenerate states, as observed
for the triply degenerate valence band maximum of Si before
[25,63]. In this case, we determine the energy change of the
band as the mean renormalization of all originally degenerate
bands [63]. For high temperatures (T > 500 K) the large
quasiparticle linewidths lead to a large spectral broadening,
making the quasiparticle peaks of the band edges hard to
distinguish. As a second check, band gaps were additionally
determined by analyzing the thermodynamically averaged
joint density of states [25], as discussed in Appendix C. For
all investigated temperatures, the analysis of the joint density

of states confirmed our stAVIC calculations. The temperature-
dependent electron effective masses of SrTiO3 were extracted
from the calculated momentum-resolved spectral functions
by performing parabolic fits of these spectral functions in
the proximity of the conduction band minimum � along
the corresponding high-symmetry paths connecting �-R and
�-M.

Let us note that eventually, the computational cost is domi-
nated by the sampling of the phase space, i.e., the ab initio MD
in the stAVIC calculations. The numerical effort to perform
the BZ unfolding and obtain spectral functions is comparable
to a few self-consistency cycles.

IV. RESULTS

In this section we demonstrate the potential of our method-
ology in calculating full temperature-dependent band struc-
tures and band gaps that include anharmonic effects and all
orders of vibronic coupling. As validation, we show that
our approach reproduces harmonic data for Si, for which
the perturbative Allen-Heine approach performs particularly
well, and then we present temperature-dependent spectral
functions, band gaps, and effective masses for cubic SrTiO3.

A. stAVIC: Temperature-dependent band structure of Si

Figure 3(a) shows the momentum-resolved spectral func-
tion of Si along the high-symmetry path L-�-X at 500 K,
as calculated using the stAVIC approach. For comparison
purposes we also include the band structure of Si calculated
for the unit cell with the nuclei at static equilibrium. The
differences between the two plots reflect essentially the effect
of vibronic coupling on the band structure. For example,
identifying the positions of quasiparticle peaks of the spectral
function reveals that the valence band top at � increases in
energy by 73 meV, and the conduction band bottom at 0.83
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�-X decreases in energy by 64 meV, leading to a total band
gap renormalization of 137 meV.

Figure 3(b) shows the temperature dependence of the band
gap renormalization 
〈εg〉T = 〈εg〉T − 〈εg〉ha-cl

0K of bulk Si.
Our aiMD-based stAVIC calculations 
〈εg〉MD

T are in ex-
cellent agreement with reference data 
〈εpt

g 〉ha−qm
T obtained

with the perturbative, harmonic formalism [13] for T �
400 K. Discrepancies at lower temperatures are exclusively
caused by quantum-nuclear effects not captured in aiMD.
In Fig. 3(b), this is demonstrated by comparing nonpertur-
bative, harmonic data obtained by evaluating Eq. (2) with
Monte Carlo sampling [24,65] using classical 
〈εg〉ha-cl

T and
quantum-mechanical 
〈εg〉ha-qm

T statistics. In both cases, an-
harmonic effects are thus neglected, while higher-order vi-
bronic couplings are included via Eq. (5). The fact that the
anharmonic 
〈εg〉MD

T and harmonic 
〈εg〉ha-cl
T approaches al-

most coincide in the classical limit proves that anharmonic
effects are, indeed, negligible for silicon and that discrep-
ancies with experiment at high T reflect the deficiencies of
the LDA functional [27,63]. Similarly, higher-order vibronic
couplings are negligible here, given that the nonperturbative

〈εg〉 ha-qm

T and perturbative 
〈εpt
g 〉ha-qm

T data follow each other
closely. Quantitatively, this is substantiated by the fact that
our 
〈εg〉ha-qm

T calculations yield a quantum zero-point renor-
malization of 62 meV, in line with previous harmonic ap-
proaches (56–62 meV) [23–26] and with experimental values
(62–64 meV) [66,67].

B. stAVIC: Temperature-dependent band structure of SrTiO3

Unlike Si, AVICs are not negligible for many materials
[21,22,29,30,68–70], as we demonstrate here for the proto-
typical perovskite SrTiO3. At T = 0 K, this material exhibits
a tetragonal I4/mcm structure (c/a = 0.998), in which the
individual tetrahedra are slightly tilted with respect to each
other [71]. Above 105 K [72] and up to its melting point
at 2300 K [36], SrTiO3 exhibits a cubic Pm3m structure, in
which all tetrahedra appear to be aligned [see Fig. 4(a)]. This
cubic structure does not correspond to a minimum but to a
saddle point of the PES and thus features imaginary phonon
frequencies. Even in the cubic lattice (c/a = 1), the tetrahedra
favor a tilted arrangement in the static limit, corresponding
to the minima in Fig. 4(a). Thermodynamic hopping between
these wells results, on average, in an apparent alignment
of the tetrahedra, in close analogy to other vibrationally
stabilized materials [74–77]. Perturbative approaches cannot
capture this complex dynamics that is commonly observed
in perovskites [21,30,62]: If the saddle point with aligned
tetrahedra is chosen as the static equilibrium Req, phonon
modes with imaginary frequencies have to be frozen in [30],
and their coupling to the electronic structure is neglected. If
one of the minima with tilted tetrahedra is chosen as Req, both
the harmonic approximation for the PES and the parabolic
electron-phonon model become not only inaccurate but even
qualitatively wrong at elevated temperatures, at which mul-
tiple minima are explored, as shown by the parabolic fits in
Fig. 4(a). In other words, perturbative calculations require us
to assume either (a) a tilted alignment at all temperatures or (b)
that the modes responsible for the stabilization of the cubic

FIG. 4. (a) Energy of the valence band maximum (red) and PES
(orange) of SrTiO3 as a function of the displacement of atoms
along the soft phonon mode at the R point. The direction of these
displacements is shown as arrows in the planar ball-and-stick model
of SrTiO3. O, Ti, and Sr atoms are represented by white, gray, and
brown spheres, respectively. Parabolic fits at the tilted minimum are
shown in blue and black. (b) Band gap renormalization of cubic
SrTiO3 as a function of temperature calculated using DFT-PBE and
5 × 5 × 5 supercells (625 atoms). Perturbative harmonic calculations

〈εpt

g 〉ha-qm
T using finite differences [73] are shown in blue; nonpertur-

bative harmonic calculations 
〈εg〉ha-cl
T and 
〈εg〉ha-qm

T are in red and
gray, and nonperturbative anharmonic stAVIC calculations 
〈εg〉MD

T

are in orange. Long-range polar interactions are accounted for in all
cases (see Appendix B). Triangles represent experimental data [36];
the respective band gap in the static limit (3.568 eV) was determined
via linear regression [67] from the high T > 800 K data.

polymorph above 105 K are insignificant. Neither of these
assumptions is justified, and the breakdown of the harmonic,
perturbative model has a direct impact on the thermodynamic
properties of SrTiO3.

The temperature dependence of the band gap renormal-
ization of SrTiO3 is shown in Fig. 4(b). Examples of the
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FIG. 5. Thermodynamically averaged spectral function
〈AR(t )

k (E )〉T of cubic SrTiO3 for T = 1200 K calculated with
stAVIC using DFT-PBE and 30 uncorrelated geometries in a
5 × 5 × 5 supercell containing 625 atoms. The band structure
in static equilibrium is shown as white lines. The extracted,
temperature-dependent electron effective masses along �-R and
�-M are shown below.

spectral functions calculated along �-R at 300 and 1200 K
are shown in Fig. 2(b). Corrections [78] for long-range polar
effects [79] that are not fully captured within the finite aiMD
supercells are included. Thermal lattice expansion and the
associated, non-negligible band gap opening of, e.g., 154 meV
at 1000 K are also accounted for nonperturbatively. Details
on the treatment of lattice expansion and polar effects on
the band gap renormalization are given in Appendixes A
and B, respectively. As discussed for Fig. 3(b), the fact that

〈εg〉ha-cl

T and 
〈εg〉ha-qm
T become comparable for T > 500 K

implies that the use of classical aiMD is justified in this
regime. In contrast to Si, distinct deviations between harmonic

〈εg〉ha-cl

T and anharmonic 
〈εg〉MD
T data are observed for

SrTiO3, leading to an additional renormalization in stAVIC
as large as 147 meV at 600 K and 260 meV at 1200 K. With
respect to the perturbative, harmonic data, this corresponds
to a remarkable increase of 18% and 27%, respectively.
With respect to experiment [36], stAVIC improves the agree-
ment significantly and quantitatively reproduces the measured
high-temperature slope. This has substantial influence on
the actual properties of SrTiO3; for example, this band gap
narrowing massively increases intrinsic charge carrier densi-
ties nc ∝ exp [−〈εg〉T /(2kBT )] by two orders of magnitude
at 1000 K.

More insights can be obtained from the momentum-
resolved spectral functions, e.g., by extracting the electron

effective masses m∗
e (T ) along �-R and �-M, as done in

Fig. 5. These particular effective masses have been the topic of
debate [37,80] since ab initio calculations [81,82] of SrTiO3

systematically underestimate measured values by a factor of
2 or more [82,83]. The stAVIC calculations reveal a large
enhancement of m∗

e (T ) with T , confirming the important role
of the nuclear motion suggested by experiments [37,80]. The
strong temperature dependence ∝ T 2.1−2.5 also substantiates
the hypothesis [84] that m∗

e (T ) is responsible for the unusually
large decrease in Hall mobility ∝T −2.7 at high temperatures
[85] that defies harmonic models yielding ∝T −1.5 [84]. Cer-
tainly, this dictates further research along these lines to disen-
tangle the influence of AVICs on, e.g., charge carrier densities,
effective masses, and scattering mechanisms (lifetimes and
linewidths), as well as on the interplay with polaronic [86]
and quantum-nuclear effects at low T [47].

V. CONCLUSIONS

In this work, we have demonstrated a fully anharmonic,
nonperturbative theory of the vibronic interactions in solids
that overcomes the two main approximations (harmonic and
electron-phonon coupling models) that limit the applicability
of perturbative state-of-the-art formalisms [22,29,30]. The
presented stAVIC methodology gives access to momentum-
resolved electronic spectral functions and, in turn, to a
plethora of other electronic properties [44]. As demonstrated
for the perovskite SrTiO3, accounting for AVICs is pivotal at
elevated temperatures and/or in strongly anharmonic materi-
als. stAVIC thus lends itself to aiding and guiding in silico
materials design of high-temperature applications, e.g., for
optical gas sensing in next-generation combustion chambers
[38], solid oxide fuel cells [39,40], and thermoelectric waste-
heat recovery devices [41,42], as well as hybrid photovoltaic
cells operating under concentrated sunlight [43]. For all these
applications, in which perovskites and also many other highly
anharmonic materials play a substantial role, an accurate as-
sessment of the temperature-dependent, momentum-resolved
electronic structure is essential since the associated electronic
properties such as band gaps and effective masses [87,88], as
well as the anisotropic band structure corrugation [89], are
critical for the material’s performance.

All the electronic structure theory calculations produced in
this project are available on the Novel Materials Discovery
(NOMAD) repository [90].
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FIG. 6. (a) Calculated lattice constant of cubic SrTiO3 as a
function of temperature (red disks) versus experimental data from
Ref. [91] (black squares). For each case the linear thermal expansion
coefficient is indicated. The linear fits for T > 300 K are guides to
the eye. (b) Temperature-dependent renormalization of the band gap
of cubic SrTiO3 due to thermal lattice expansion. The linear fit for
T > 300 K is a guide to the eye.

APPENDIX A: THERMAL LATTICE
EXPANSION OF SrTiO3

The computed temperature dependence of the lattice con-
stant of SrTiO3, which is associated with its thermal expan-
sion, was calculated by running aiMD in 6 × 6 × 6 super-
cells containing 1080 atoms, thus taking anharmonic effects
into account [62]. As shown in Fig. 6(a), we observe a
linear increase of the lattice constant for T > 200 K , i.e., for
temperatures in which the cubic structure is, indeed, stable.
This corresponds to a considerable linear thermal expansion
coefficient of αL = 1

a(T )
∂a(T )
∂T ≈ 1.1 × 10−5 K−1, which is

in excellent agreement with the corresponding experimental
value extracted from the measured data reported in Ref. [91].
The lattice expansion induces a significant opening of the
band gap as the temperature increases, for example, 154 meV
at 1000 K, as shown in Fig. 6(b). This effect is accounted
for in all calculations of the band gap renormalization of
SrTiO3 discussed in the main text. Let us note that thermal
lattice expansion has not been accounted for in the stAVIC
calculations for the band gap renormalization of Si to allow
for a consistent comparison to literature data. Furthermore,
our calculations reveal that this effect is negligible in Si even

FIG. 7. Fröhlich polar coupling correction [Eq. (B1)] to the band
gap of SrTiO3 for a 5 × 5 × 5 supercell as a function of temperature
using quantum (red) and classical (black) occupation numbers.

at high temperatures, resulting, for example, in a band gap
opening of 13 meV at 1100 K.

APPENDIX B: POLAR FRÖHLICH COUPLING

In polar materials, there is an additional contribution to
the energy level renormalization stemming from long-range
Fröhlich coupling [78,79,92,93] that is not fully captured
in the limited supercells used in aiMD. We account for the
missing portion of these effects via the following analytic
correction for the adiabatic case [46,78,79]:

〈

εFr

l

〉HA
T = 2

π
αh̄ωLO tan−1

(
qF

qLO

)
[2nT + 1], (B1)

which can be obtained by integrating Eq. (B3) of Ref. [46]
up to the truncation parameter qF defined below. In Eq. (B1),
the strength of the polar coupling is characterized by the

FIG. 8. Temperature-dependent square-root joint density of
states of SrTiO3 calculated using stAVIC and 5 × 5 × 5 supercells
containing 625 atoms. The black line represents the square-root joint
density of states evaluated with atoms at static equilibrium.
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dimensionless polaron constant given by [94]

α = e2

4πε0

1

h̄

(
1

κ∞
− 1

κ0

)(
m∗

2h̄ωLO

)1/2

, (B2)

where m∗ is the effective mass of the carrier, ωLO is the fre-
quency of the LO phonon, and κ∞, κ0 are the high-frequency
dielectric constant and static permittivity, respectively. The
quantity nT = [exp(h̄ωLO/kBT )−1]−1 is the Bose-Einstein
occupation factor of the LO mode, and qLO is defined as√

2m∗(ωLO + ω)/h̄, where h̄ω is the energy of the state. The
radius of integration qF is used as a truncation parameter to
avoid a double counting of the Fröhlich interactions already
accounted for in the aiMD supercell. For our calculations we
take qF equal to the radius of the Debye sphere, i.e., to the
sphere with the same volume as the Brillouin zone of the
employed 5 × 5 × 5 supercell. In order to evaluate Eq. (B1)
we set the LO phonon energy to h̄ωLO = 59 meV [95], the
light-electron and light-hole effective masses along R → �

to me = 0.537 and mh = 0.944 [81], and the high-frequency
dielectric constant to κ∞ = 5.5 [96]. The static permittivity
of SrTiO3 exhibits a large variation with temperature, and
therefore, we extract the temperature dependence of κ0 from
Ref. [95]. Our calculations of the temperature-dependent

polar coupling correction to the band gap of SrTiO3 for a
5 × 5 × 5 supercell are shown in Fig. 7. For classical nuclei
(black), the square bracket in Eq. (B1) is replaced by its
classical limit without zero-point vibrations, which results in
a correction that varies linearly from 0 meV at T = 0 K to
−265 meV at T = 1100 K.

APPENDIX C: EVALUATION OF BAND GAPS
VIA THE JOINT DENSITY OF STATES

For the calculation of the joint density of states at each
aiMD step R(t ) we consider the following relationship:

JR(t )(E ) =
∑

ckc,uku

δ
(
ε

R(t )
ckc

− ε
R(t )
uku

− E
)
, (C1)

where the summation runs over all conduction and valence
state indices ckc and uku. In order to determine the temper-
ature dependence of the band gap we consider the energy
offset between the thermodynamically averaged square-root
joint density of states for temperatures T and 0 K, i.e., the
energy offset between

√
〈JR(t )(E )〉T (red lines in Fig. 8) and√

〈JR(t )(E )〉0K (black line in Fig. 8).
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