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Thermodynamic signatures of an antiferromagnetic quantum critical
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Recent experiments in unconventional superconductors, and in particular iron-based materials, have reported
evidence of an antiferromagnetic quantum critical point (AFM-QCP) emerging inside the superconducting
dome of the phase diagram. Fluctuations associated with such an AFM-QCP are expected to promote unusual
temperature dependencies of thermodynamic quantities. Here, we compute the T dependence of the specific heat
C(T ) deep inside a fully gapped s+− superconducting state as the AFM-QCP is approached. We find that at the
AFM-QCP, the specific heat C(T ) vanishes quadratically with temperature, as opposed to the typical exponential
suppression seen in fully gapped BCS superconductors. This robust result is due to a nonanalytic contribution to
the free energy arising from the general form of the bosonic (AFM) propagator in the SC state. Away from the
AFM-QCP, as temperature is lowered, C(T ) shows a crossover from a T 2 behavior to an exponential behavior,
with the crossover temperature scale set by the value of the superconducting gap and the distance to the QCP. We
argue that these features in the specific heat can be used to unambiguously determine the existence of AFM-QCPs
inside the superconducting domes of iron-based and other fully gapped unconventional superconductors.
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I. INTRODUCTION

Strongly correlated electronic systems often display com-
plex phase diagrams in which the competition among different
types of long-range order extends down to zero temperature
[1–3]. In this situation, the system may display one or sev-
eral quantum critical points (QCPs), which are continuous
zero-temperature phase transitions that separate two distinct
symmetry-broken ground states [4]. In the phase diagram of
many unconventional superconductors, the superconducting
(SC) dome is often peaked near a putative antiferromagnetic
(AFM) QCP [5]. It has been widely discussed that AFM
quantum critical fluctuations can enhance Tc and also lead
to strange normal-state properties [6,7]. However, experimen-
tally identifying such an AFM-QCP is challenging. Ideally,
one would suppress the SC dome, e.g., by applying a magnetic
field, in order to reveal the underlying QCP [8]. The very large
values of the field that are necessary to kill Tc, and its impact
on the magnetic state itself, make this a complicated task [9].

In some materials, where the competition between AFM
and SC is not too strong, however, the AFM transition line
can persist even inside the SC dome [10–15], suggesting
the presence of an AFM-QCP coexisting with long-range
SC order [see Fig. 1(a)]. This is believed to be the case in
some iron-based superconductors [16–21], most prominently
Ba(Fe1−xCox )2As2 and BaFe2(As1−xPx )2 [22–24], and in cer-
tain f -electron systems, such as CeCo(In1−xCdx )5 and Nd-
doped CeRhIn5 [25,26]. These systems offer the appealing
possibility of probing an AFM-QCP without having to destroy
the SC dome. Therefore, to unambiguously identify an AFM-
QCP enclosed by a SC dome, it is fundamental to elucidate its
manifestations on experimentally accessible quantities.

Recently, measurements of the zero-temperature penetra-
tion depth λ(0) were employed to search for AFM quantum
criticality inside the SC dome of the iron pnictides discussed
above [22–24]. While a sharp peak in λ(0) was observed as
the SC dome was traversed, theoretically it remains unclear
whether such a feature can be uniquely attributed to an under-
lying AFM-QCP [27–31]. This motivates the study of how
other observables, and in particular thermodynamic quanti-
ties, are affected by AFM fluctuations inside the SC dome.

In this paper, we determine the low-temperature behavior
of the specific heat C(T ) of a fully gapped superconductor
upon approaching an AFM-QCP. This QCP divides the SC
dome into two regions: a pure SC state and a state where
AFM and SC coexist microscopically (as opposed to phase-
separate), as shown schematically in Fig. 1(a). We specifically
consider the case of s+− superconductivity, in which the
gap changes sign between different bands [32,33]. While
such a state is ubiquitous in the iron pnictide materials, it
has been proposed to be realized in other unconventional
superconductors, such as CeCu2Si2 [34]. Importantly, the fact
that the spectrum is gapped allows us to perform controlled
calculations and isolate the effects caused by quantum AFM
fluctuations. Previously, it was shown that AFM fluctuations
can significantly affect the specific-heat jump at Tc [35,36],
which is in accordance with experimental measurements on
BaFe2(As1−xPx )2 [37]. Our focus here is on the impact of
AFM fluctuations on the low-temperature behavior of the
specific heat, as the system approaches a QCP.

Our model consists of a multiband, two-dimensional SC in
proximity to an AFM-QCP. By computing the contribution of
the AFM fluctuations to the SC free energy, we find that at
the AFM-QCP, C(T ) vanishes as T 2 inside the fully gapped
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FIG. 1. (a) Schematic phase diagram showing AFM and s+−-SC
orders with critical temperatures TN and Tc, respectively. As some
control parameter r, representing for example doping, is increased,
the AFM temperature TN decreases and eventually becomes zero at
a putative QCP at r = 0. As occurs in some iron-based compounds,
the QCP is located inside the SC dome, such that both AFM and
s+−-SC orders exhibit microscopic coexistence for a finite range
of r. Note that the TN line may display a back-bending inside the
SC dome (not shown here), as seen in certain iron-based materials
[10]. (b) Simplified band structure depicting a circular holelike
Fermi pocket and two elliptical electron-like Fermi pockets displaced
from the hole pocket by the AFM wave vectors QX = (π, 0) and
QY = (0, π ).

SC state. This is in sharp contrast to the behavior far away
from the QCP, where C(T ) displays the standard exponential
suppression e−|�|/T , where |�| is the zero-temperature SC
gap. This power-law (as opposed to exponential) behavior
of the specific heat comes from a nonanalytic contribution
of the soft AFM fluctuations to the free energy of the SC
state. It is a robust result rooted on the general form of the
AFM propagator inside the SC state, which resembles the
propagator of the AFM fluctuations of a two-dimensional
quantum Heisenberg model obtained by Chubukov, Sachdev,
and Ye (CSY) within the large-N approach [38]. Away from
the AFM-QCP, the specific heat displays a crossover behavior.
In particular, the T 2 behavior crosses over to the more typical
exponential behavior at a temperature T ∗ of the order of√

r|�|, where r measures the distance to the AFM-QCP
located at r = 0. Our results provide a simple diagnostics to
identify AFM-QCPs inside the SC domes of unconventional
superconductors.

The paper is structured as follows. In Sec. II, we briefly
describe the multiband model employed here and comment
on its applicability to address the physical properties of iron-
based compounds. Section III deals with the evaluation of the
AFM propagator inside the superconducting state. In Sec. IV,
we derive the free energy in the vicinity of the AFM quantum
phase transition and compute the specific heat. In Sec. V,
we analyze how the specific heat is affected by the fermion-
induced mode-mode coupling between AFM fluctuations and
discuss the relation of our results to an earlier study of the
specific heat in the nonlinear σ model near a critical coupling
(Ref. [38]). Finally, Sec. VI contains our conclusions and a
discussion of our findings in connection with experiments.

II. MICROSCOPIC MODEL

Our main conclusions are a direct consequence of the
analytical form of the AFM propagator inside a nodeless su-

perconducting state, and are thus independent of microscopic
considerations. Yet, it is instructive to derive such a prop-
agator from a known microscopic model. Since iron-based
superconductors (FeSCs) are the main candidate to display
an AFM-QCP inside a fully gapped SC state, we consider a
simple three-band model, which has been widely investigated
previously [33,39]. In momentum space, the noninteracting
part of the three-band Hamiltonian is given by

H0 =
∑
k,σ

(εc,k − μ)c†
k,σ

ck,σ

+
∑
k,σ,a

(εd,a,k+Qa − μ)d†
a,k+Qa,σ

da,k+Qa,σ , (1)

where c†
k,σ and d†

a,k,σ are, respectively, the creation oper-
ators for hole-like and electron-like excitations with spin
projection σ ∈ {↑,↓} and momentum k. The index a = X,Y
labels the two symmetry-related electron pockets. In par-
ticular, while the hole pocket is centered at the � = (0, 0)
point of the Brillouin zone, the electron pockets are centered
at X = (π, 0) and Y = (0, π ), corresponding to a = X and
a = Y , respectively. The dispersions of the hole and electron
bands are parametrized according to εc,k = εc,0 − k2/(2m)
and εd,a,k+Q = −εd,0 + k2

x /(2ma) + k2
y /(2mā), where we in-

troduced the notation ā = Y, X for a = X,Y . Here, εc,0 and
εd,0 are energy offsets, and m, mx, and my are band masses. As
schematically depicted in Fig. 1(b), εc,k describes a circular
hole pocket at the center of the Brillouin zone, whereas
εd,a,k+Qa gives elliptical electron pockets displaced from the
hole pocket by the AFM wave vectors QX = (π, 0) and
QY = (0, π ).

The interacting part of the three-band model Hamiltonian
in the band basis contains four-fermion couplings that can
be classified as density-density inter- and intrapocket interac-
tions, an exchange interpocket interaction, and a pair-hopping
interpocket interaction [40]. A renormalization-group (RG)
analysis of this model reveals two main instabilities in the
phase diagram [33,39]: an AFM phase with ordering vector
QX = (π, 0) or QY = (0, π ) and an s+− SC state, in which
the hole pocket has a uniform gap with opposite sign as the
uniform gaps in the electron pockets. While at low doping
levels (tuned by the chemical potential in the model) AFM
wins, at intermediate doping levels the s+− SC state wins.
This gives rise to the possibility of an AFM-QCP inside the
SC dome. Importantly, it has been argued that only in the case
of an s+− SC state is a microscopic coexistence between AFM
and SC possible [10].

As discussed in Ref. [39], to capture the main properties of
the interplay between AFM and SC, it is convenient to further
simplify the model and focus on the interaction between the
hole pocket and only one of the two electron pockets. Here-
after, we will thus consider this simplified two-band model,
dropping the index a and referring to the AFM wave vector
simply as Q. To proceed, based on the RG results, we project
the interacting Hamiltonian of the two-band model into the
two leading instabilities, AFM and SC:

HAFM = −gafm

2

∑
j

(c†
j,ασα,α′d j,α′ ) · (d†

j,βσβ,β ′c j,β ′ ), (2)
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where gafm > 0 is the coupling constant in the AFM channel
and

HSC = gsc

2

∑
j

[c†
j,α (iσ y)†

α,α′c
†
j,α′d j,β (iσ y)β,β ′d j,β ′ + H.c.],

(3)

with gsc > 0 being the coupling constant in the s+− SC
channel.

III. AFM PROPAGATOR IN THE SC STATE

We first perform the Hubbard-Stratonovich decoupling of
the interacting Hamiltonians HAFM and HSC by introduc-
ing the order parameters M j = gafm〈c†

j,σ σσ,σ ′d j,σ ′ 〉, �c, j =
gsc〈c†

j,σ (iσ y)σ,σ ′c†
j,σ ′ 〉, and �d, j = gsc〈d†

j,σ (iσ y)σ,σ ′d†
j,σ ′ 〉 for

AFM and SC orders, respectively. We consider that the system
is on the magnetically disordered side of the QCP and restrict
the temperature scale to the regime T 
 Tc. In this situation,
the SC gaps �c(T ) and �d (T ) do not vary with doping
and are, approximately, equal to their ground-state values
[10], i.e., �c(T ) = −�d (T ) = �. Since in this situation the
fermionic excitations become gapped, they can be formally
integrated out to obtain the effective AFM action. By consid-
ering the Gaussian fluctuations of the AFM order parameter
around the mean-field solution, we find that the contribution
to the action from AFM fluctuations inside the SC state gives

δS[�] = 1

2
T
∑
q,�m

δM̄a
q,i�m

[
4

δab

gafm
− �ab(q, i�m)

]
δMb

q,i�m
,

(4)

where δMb
q,i�m

denotes AFM (quantum) fluctuations, q is the
momentum deviation from the AFM wave vector Q (either
QX or QY ), �m = 2πmT is a bosonic Matsubara frequency,
and �ab(q, i�m) refers to the particle-hole bubble defined
according to

�ab(q, i�m)

= −T
∑
ωn

∫
k

tr[ΣaG(k, iωn)ΣbG(k + q, iωn + i�m)].

(5)

Here,
∫

k(· · · ) ≡ ∫BZ
d2k

(2π )2 (· · · ) is the integral over the Bril-
louin zone, and the matrix Green’s function is given by

G(k, iωn) =
[(

1 0
0 0

)
⊗
(

iωn − ξc,k −iσ y�∗
iσ y� iωn + ξc,−k

)

+
(

0 0
0 1

)
⊗
(

iωn − ξd,k iσ y�∗
−iσ y� iωn + ξd,−k

)]−1

,

(6)

where ξc,k = εc,k − μ, ξd,k = εd,k+Q − μ, and Σ = σ x ⊗
(σ 0
0 −σT ) is an 8 × 8 matrix.

In order to evaluate the AFM propagator χ−1
ab (q, i�m) =

4δab/gafm − �ab(q, i�m) that enters in the action δS[�], we
follow Refs. [11,41] and first write the dispersions ξc,k and
ξd,k for the hole- and electron-like bands as ξd,k = −ξc,k +
δϕ , ξc,k+q = ξc,k + δq, where δϕ = δ0 + δ2 cos(2ϕ) and δq =
vF q cos(ϕ − θ ). Here, ϕ and θ are the angles that the vectors

k and q make with the x̂ axis, respectively. The parameters δ0

and δ2 are given by δ0 = εc,0 − εd,0 − 2μ + k2
F (m−1

x + m−1
y −

m−1/2)/4 and δ2 = k2
F (m−1

x − m−1
y )/4; they measure, respec-

tively, the offset energy between the hole and electron pockets
and the ellipticity of the electron band. Previous calculations
have shown that this model admits a transition from a SC state
to a SC-AFM coexistence state over a certain parameter range
[11,41].

We assume as usual that the most relevant contri-
bution to �ab(q, i�m) comes from the electronic states
close to the Fermi surface, such that

∫
BZ

d2k
(2π )2 (· · · ) =

ν0
∫ 2π

0
dϕ

2π

∫∞
−∞ dξ (· · · ), where ν0 is the density of states at

the Fermi level. Moreover, due to spin-rotational symme-
try, �ab(q, i�m) = δab�(q, i�m). Expanding �(q, i�m) for
small momentum and frequency, we have

�(q, i�m) = �(0, 0) + δ�(q, 0) + δ�(0, i�m), (7)

where the last two terms are, respectively, the leading-
order momentum and frequency contributions. The first term
combines with the constant term in Eq. (4) to give r ≡
ν−1

0 [4/gafm − �(0, 0)], which measures the distance to the
AFM transition. Evaluating the particle-hole bubble gives

r = 4

[
1

ν0gafm
− 2πT

∑
ωn>0

〈
En

E2
n + (δϕ/2)2

〉
ϕ

]
, (8)

where En ≡ √ω2
n + |�|2 is the spectrum in the SC phase and

〈(· · · )〉ϕ ≡ ∫ 2π

0
dϕ

2π
(· · · ) denotes the angular average around

the Fermi surface. At T = 0 one obtains

r(δ,�) = 4 log

(
Tc,0

TN,0

)
+
〈

2|δϕ| cosh−1
(√

1 + δ2
ϕ

4|�|2
)

√|�|2 + (δϕ/2)2

〉
ϕ

,

(9)

where we made the dependence of r on the set of parameters
δ = {δ0, δ2} and the SC gap � explicit, as they determine the
position of the AFM-QCP. In this expression, TN,0 refers to
the transition temperature to the pure AFM state at perfect
nesting (i.e., δ = 0) and Tc,0 is the transition temperature to
the SC state in the absence of AFM order.

Evaluating the Matsubara sums in both δ�(q, 0) and
δ�(0, i�m) at T = 0, we obtain

δ�(q, 0) = −ν0η(δ,�, θ )(vF q)2, (10)

δ�(0, i�m) = −ν0κ (δ,�)�2
m, (11)

where

η(δ,�, θ ) = 1

2

〈
cos2(ϕ − θ )

{
2|�|2 − (δϕ/2)2

[|�|2 + (δϕ/2)2]2

−
3|�|2|δϕ| cosh−1

(
1 + δ2

ϕ

2|�|2
)

4[|�|2 + (δϕ/2)2]5/2

⎫⎬
⎭
〉

ϕ

, (12)

κ (δ,�) = 1

2

〈
1

|�|2 + (δϕ/2)2
+ |�|2

|δϕ|[|�|2 + (δϕ/2)2]3/2

× cosh−1

(
1 + δ2

ϕ

2|�|2
)〉

ϕ

. (13)
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As a result, we find that the AFM propagator is χab(q, i�m) =
δabχ (q, i�m), with χ (q, i�m) given by

χ (q, i�m) = ν−1
0

r(δ,�) + η(δ,�, θ )(vF q)2 + κ (δ,�)�2
m

.

(14)

The dependence of η(δ,�, θ ) on θ implies that the prefactors
for q2

x and q2
y are actually different. This is because q is a

deviation from either QX or QY .
Two comments are in other at this point. First, a com-

plementary approach would be to treat the static χ (0, 0) as
an input, introduce the coupling gafm between collective spin
fluctuations and low-energy fermions in a superconductor,
and treat the polarization �(q, i�m) as a bosonic self-energy.
The full χ (q, i�m) in this approach has the same form as in
Eq. (14), but η and κ acquire additional factors (ν0gafm)2. The
results for the specific heat (see below) are identical in the
two approaches, except for different powers of ν0gafm in the
crossover scales.

Second, the inverse of χ (q, i�m) from Eq. (14) is the pref-
actor for the (δM )2 term in the Ginzburg-Landau functional
[see Eq. (4)]. There exist Gaussian corrections to r(δ,�)
from the b(δM )4 term in the functional (the mode-mode
coupling term). We proceed in Sec. IV without including these
corrections, and in Sec. V we analyze how they affect the
results. The reasoning to first neglect the b(δM )4 term is that
in our case b ∼ |�|/EF is small, and mode-mode coupling
affects the specific heat only at the smallest T and smallest
deviations from an AFM-QCP.

IV. THERMODYNAMIC PROPERTIES IN THE VICINITY
OF THE AFM-QCP

The AFM propagator in Eq. (14) is not particular to the
microscopic model derived here, but is expected to describe
a generic AFM-QCP inside a fully gapped SC state. This
is because the gap in the spectrum eliminates the Landau
damping typically present in a metallic AFM due to the
decay of the AFM fluctuations in particle-hole excitations
[6,7,42,43], resulting in the dynamic exponent z = 1. Thus,
for the remainder of the paper, to emphasize the generality of
our results, we will omit the explicit dependence of the param-
eters r, η, and κ on δ and �. We will make use of the general
result that κ ∼ |�|−2, as can be verified in our model from
Eq. (13) (provided that δ0, δ2 are not much larger than |�|).
As for the dependence of η on the angle θ , it is convenient to
introduce ηx,y such that η(θ ) ≡ ηx cos2 θ + ηy sin2 θ .

To obtain the AFM-fluctuations contribution to the free
energy, we integrate out the AFM fluctuations in the action
δS[�] [see Eq. (4)]. As a result, we obtain the free energy
from fluctuations near QX or QY in the form

F (T ) = NT
∑
�m

∫
q

log[χ−1(q, i�m)], (15)

where N = 3 is the number of components of the AFM order
parameter.

Like we said, in this section we neglect corrections to
r(δ,�) from mode-mode coupling and treat r(δ,�) = r as
a temperature-independent input parameter that measures the

distance to a QCP. Evaluating the Matsubara sum on the right-
hand side of Eq. (15) by the ζ -function regularization method
and integrating it over the two-dimensional momentum space,
we obtain

F (T ) = F0 − NκT 3

π
√

ηxηyv
2
F

ϒ
[ r

κT 2

]
, (16)

where F0 ≡ N
∫ d2q

(2π )2 Eq is a temperature-independent term
defined as the momentum integral of the energy dispersion
Eq =

√
r
κ

+ η(θ )
κ

(vF q)2, ϒ(z) ≡ √
z Li2(e−√

z ) + Li3(e−√
z ),

and Lis(z) are polylogarithms of order s.
At a finite distance from the QCP and small T , r > κT 2,

the temperature dependence of the magnetic part of the free

energy is exponential: F0 − F (T ) ∼ T 2√re−
√

r/κT 2
, and we

recall that κ ∼ 1/�2 when δ0, δ2 � �. At the magnetic QCP,
r = 0. Here we obtain

FQCP(T ) = F0 − Nζ (3)κ

π
√

ηxηyv
2
F

T 3, (17)

where ζ (3) ≈ 1.20205 is Apéry’s constant. Thus, at the QCP,
the free energy acquires a power-law dependence on the tem-
perature, despite the fact that the ground state is a fully gapped
superconducting state. Note that the details of the microscopic
model only enter this expression in the prefactor via the
coefficients ηx, ηy, vF , and κ; in contrast, the T 3 dependence
is universal. In this regard, for our original three-band model,
the final expression would have to include contributions from
fluctuations around both QX and QY simultaneously. The
determination of the prefactor in this case is a bit more
involved as compared to the two-band case, because the ratio
between the gaps in the hole and in the electron pockets is not
exactly −1. However, as explained, this does not affect our
main result on the temperature dependence of F .

In fact, the emergence of the universal power-law depen-
dence at r = 0 can be traced to the nonanalytic form of the
frequency summand in F (T ). Indeed, after the momentum
integration, we have at r = 0,

F (T ) − F0 ∝ T
∑

m

�2
m log

(
�

|�m|
)

, (18)

where � ∼ (ν0κ )−1. Because of the log |�m| term, the fre-
quency sum contains a universal T 3 contribution, which
comes from �m = 2πmT = O(T ), i.e., from Matsubara num-
bers n = O(1) (see Refs. [38,44] for details).

The same result for the magnetic contribution to the free
energy, Eq. (15), is obtained if we use the full expression for
the free energy of a superconductor near a magnetic instability
[45–47]. The bosonic part of the latter contains an additional∑

q �χ term, but this term cancels out by the contribution
from closed linked skeleton diagrams [44].

Using Eq. (16), it is straightforward to calculate the specific
heat C(T ) = −T ∂2F (T )/∂T 2:

C(T ) = 6NκT 2

π
√

ηxηyv
2
F

K
[

r

κT 2

]
, (19)
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FIG. 2. (a) Dependence of the specific heat C(T )/T [in units of κ|�|2/(
√

ηxηyv
2
F )] on the reduced temperature T ≡ T/|�| and on the

distance r ≡ r/κ from the QCP measured in terms of the dimensionless parameter κ̄ ≡ |�|2κ . For temperatures on the order of T ∗ ∼ √
r|�|,

C(T ) ∝ T 2 even when the system is away from the quantum critical point. As the temperature is lowered, the T 2 behavior only persists down
to T = 0 at the QCP. For finite r, the specific heat is suppressed exponentially to zero for T 
 T ∗. As shown in panel (b), C(T )/T

2
increases

monotonically upon approaching the QCP.

where the function K(z) is expressed in terms of the polylog-
arithm function as

K(z) ≡ √
z Li2(e−√

z ) + Li3(e−√
z ) + z3/2

6(e
√

z − 1)

+ z

2
[
√

z − log(e
√

z − 1)]. (20)

At the QCP, r = 0, it follows from Eq. (19) that the specific
heat becomes quadratic in temperature:

CQCP(T ) = 6Nζ (3)κ

π
√

ηxηyv
2
F

T 2. (21)

This behavior differs fundamentally from the one obtained
either in a conventional SC [48] or in a two-dimensional
metal close to an AFM-QCP without the presence of SC order
[6,7,42,43]. In fact, in the former case the specific heat is
exponentially suppressed, C(T ) ∼ T −3/2e−|�|/T , whereas in
the latter case it becomes linear-in-T with C(T ) ∼ T log(1/r).
We note in passing that the T �2

m log |�m| term in the free
energy also emerges in an interacting Fermi liquid in two
dimensions and gives rise to a T 2 nonanalytic correction to
the specific heat [44].

As the system moves away from the AFM-QCP toward
the magnetically disordered state (i.e., the overdoped side of
the phase diagram), a new temperature scale T ∗ ≡ √

r/κ ∼√
r|�| becomes important. For T ∼ T ∗, C(T ) still displays a

T 2 dependence with a correction:

C(T ) ≈ 6Nζ (3)κT 2

π
√

ηxηyv
2
F

[
1 − 1

12ζ (3)

(
T ∗

T

)2
]
. (22)

On the other hand, when T 
 T ∗, C(T ) displays an exponen-
tial suppression in T , as expected for gapped systems:

C(T ) ≈ Nκ (T ∗)2

π
√

ηxηyv
2
F

(
T ∗

T

)
exp

(
−T ∗

T

)
. (23)

Note that this exponential suppression is not as sharp as the
one occurring in a conventional superconductor described by
the BCS theory [48], since T ∗ ∼ √

r|�| can still be signifi-
cantly smaller than |�| close enough to the AFM-QCP.

The full dependence of the specific heat on both the
temperature and the distance to the QCP r is illustrated in
Fig. 2(a). The main result is the T 2 dependence of C(T ) at
the AFM-QCP. Importantly, even away from the QCP, there
is a clear crossover from a T 2 dependence to an exponential
suppression; the corresponding crossover temperature is T ∗ ∼√

r|�| discussed above. Figure 2(b) shows the corresponding
enhancement of C(T )/T 2 for a fixed temperature as the QCP
is approached.

We emphasize that the analysis presented here is restricted
to the disordered-AFM side of the magnetic QCP, since we
are not taking into account the effects of a finite staggered
magnetization, but only the presence of AFM fluctuations
inside a long-range ordered SC phase. A full treatment of
the behavior of the specific heat as the system enters the
SC-AFM coexistence phase will require detailed knowledge
of the band structure and other microscopic details. This is
beyond the scope of this work, where we instead focus on uni-
versal properties that do not depend crucially on microscopic
considerations.

Also, in our study we focused only on the magnetic con-
tribution to the free energy and neglected the electronic part.
The conventional reasoning for this is that electronic states are
gapped out and only contribute e−|�|/T to the specific heat.
Near a QCP, one has to be a bit more careful because the
fermionic self-energy is singular at r = 0 and at a finite T
due to a singular contribution from static spin fluctuations:
�(k, iωn) ∝ T χLG(k + Q, iωn), where χL = ∫ d2qχ (q, 0).
This singular self-energy gives rise to thermal precursors to
the magnetic state by splitting the spectral function peak
at ω = |�| into two peaks at a smaller and a larger fre-
quency. For our purposes, the relevant question is whether this
�(k, iωn) gives rise to a singular fermionic contribution to the
free energy. To address this question, we analyze the fermionic

045125-5



DE CARVALHO, CHUBUKOV, AND FERNANDES PHYSICAL REVIEW B 102, 045125 (2020)

part of the free energy,

Fel =−T
∑
ωn

∫
k

log
{
ε2

k+[ωn+�(k, iωn)]2+�2(k, iωn)
}

− 2T
∑
ωn

∫
k
[−i�(k, iωn)G(k, iωn)

+ i�(k, iωn)F (k, iωn)]. (24)

Here we explicitly introduced the anomalous self-energy �

and the anomalous Green’s function F . The poles in G and
F are at a finite ω � |�| and � ≈ |�|, so the nonexponential
contribution can only come from the normal self-energy �.
However, expanding Eq. (24) in �, we find that at least
the leading-order contribution cancels out; i.e., there is no
nonexponential contribution from the fermionic part of the
free energy. To check what happens for higher-order terms in
�, one would need to include higher-order skeleton diagrams.

V. IMPACT OF THE MODE-MODE COUPLING
ON THE SPECIFIC HEAT

We now analyze how the specific heat near the AFM-
QCP is affected by Gaussian corrections from the b(δM )4

term in the Ginzburg-Landau functional. Because fermions
are gapped, the Ginzburg-Landau functional for soft AFM
fluctuations is the soft-cutoff version of the effective action
for the O(N ) nonlinear σ model near a QCP. Therefore, the
specific heat should have the same functional form as in the
nonlinear σ model–based analysis (see Ref. [38]). In fact, the
Gaussian approximation is equivalent to the N → ∞ limit in
the nonlinear σ model analysis. Within this approximation, we
obtain the following expression for the renormalized distance
to the QCP, which we denote m2(T ) hereafter (m is also called
the “AFM mass”):

m2(T ) = r + bNT
∑
�m

∫
q

ν−1
0

m2(T ) + η(θ )(vF q)2 + κ�2
m

,

(25)

where the factor b in the b(δM )4 term present in the effective
action is the four-leg vertex shown in Fig. 3. One expects it to
be on the order of b ∼ (ν0gafm)4/|�|2. Indeed, we explicitly
computed b for perfect nesting (i.e., δ0 = δ2 = 0) and found
b = 2(ν0gafm)4/|�|2.

Regularizing the ultraviolet divergence on the right-hand
side of Eq. (25) by incorporating the contribution at T = 0
and m(T = 0) = 0 into a redefinition of r, and then evaluating
explicitly the frequency sum and the momentum integral, we
obtain

m2(T ) = r + λ
√

κT log

[
1

2
csch

(
m(T )

2
√

κT

)]
, (26)

where λ ≡ N (ν0gafm )4

π
√

ηxηyκv2
F ν0|�|2 is a dimensionless coupling. Sub-

stituting ηx,y = ηx,y/|�|2, κ = κ/|�|2, and πv2
F ν0 = EF , we

obtain λ = N (ν0gafm )4√
ηxηyκ

|�|
EF

. We assume that |�| 
 EF , hence

λ 
 1. It is convenient to introduce m ≡ m/|�|√κ and
r ≡ r/|�|2κ , T ≡ T/|�|, λ ≡ λ/|�|√κ ∼ λ, and reexpress

FIG. 3. Four-leg Feynman diagram used to determine the tem-
perature dependence of the AFM mass on the disordered side
of the AFM-QCP [see Eq. (25)]. The solid lines represent the
fermionic propagators, whereas the dashed lines denote the AFM
order parameter.

Eq. (26) as

m2(T ) = r + λ T log

[
1

2
csch

(
m(T )

2T

)]
. (27)

At T = 0, Eq. (27) reduces to

m2
0 + 1

2λm0 = r, (28)

where m0 is the AFM zero-temperature mass. We see that at
the smallest m0, the mode-mode coupling term becomes the
dominant one as it contains a smaller power of m0. Solving
Eq. (28), we obtain

m0 = λ

4

(√
1 + 16r

λ
2 − 1

)
. (29)

At r � λ
2
, the mode-mode coupling is irrelevant and m0 ≈√

r, i.e., m2
0 ≈ r. In the opposite limit r 
 λ

2
, the dependence

of m0 on r is determined by the mode-mode coupling, and
m0 ≈ 2r/λ. The crossover between the two dependencies

occurs at r ∼ λ
2
.

The same happens when the system is at the AFM-QCP
and one considers finite temperatures. At T 
 λ, we have
from Eq. (27)

m(T ) = �T , (30)

where � ≈ 0.962424 is the solution of csch(�/2) = 2 [38].
In the opposite limit T � λ, m(T ) becomes much smaller
than T :

m(T ) ≈ T

√
λ

T
log

T

λ
. (31)

The crossover between the two regimes occurs at T ∼ λ, i.e.,
at T ∼ λ/

√
κ ∼ λ� 
 �.

We solved Eq. (27) numerically and show the result in
Fig. 4. At r = 0, the behavior of m(T ) can be reproduced, to a
surprisingly good accuracy, if we approximate the right-hand
side of Eq. (27) by expanding to second order in x = m(T )/T .
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FIG. 4. (a) Temperature dependence of the AFM mass m(T ) when the system is located at the QCP. The red dots here refer to the asymptotic
behavior of m(T ) obtained in Eq. (33). Notice that it matches perfectly the exact solution for the AFM mass. (b) When the distance r to the
QCP becomes finite, m(T ) approaches finite plateaus as the temperature decreases toward zero. These panels were obtained by setting λ = 0.2.

Namely, if we approximate the logarithm in that equation as

log

[
1

2
csch

(
x

2

)]
≈ log

(
1

x

)
− x2

24
, (32)

we obtain

m(T ) = T exp

{
−1

2
W

[
2T

λ

(
1 + λ

24T

)]}
, (33)

where W (x) is the so-called Lambert function. We plot this
dependence in Fig. 4(a) along with the exact solution. We see
that they are extremely close for all T = T/|�|. At the small-
est T , Eq. (33) yields m(T ) = �∗T , where �∗ ≈ 0.962161
is extremely close to the exact � ≈ 0.962424. In addition,
we show in Fig. 4(b) that as the QCP distance r is increased,
the AFM mass m(T ) becomes more flat, which indicates less
influence of mode-mode coupling.

Having determined the temperature dependence of the
AFM mass due to mode-mode coupling, we now move on to
investigate its effects on the behavior of the specific heat. Our
main results are presented in the phase diagram displayed in
Fig. 5. At the AFM-QCP and for temperatures T 
 λ|�|, the
specific heat behaves asymptotically as

CQCP(T ) = 6Nκ

π
√

ηxηyv
2
F

(
ϒ(�2) + �3

6

)
T 2, (34)

where, as defined before, ϒ(z) = √
z Li2(e−√

z ) + Li3(e−√
z )

and ϒ(�2) + �3/6 = 4ζ (3)/5 (see Ref. [49]). The second
term in parentheses comes from F0, defined after Eq. (16),
once we replace r in Eq by m2(T ). The numerical factor
ϒ(�2) + �3/6 = 4ζ (3)/5 in Eq. (34) agrees with the result
for the specific heat in Ref. [38] [note that in Ref. [38] the
free energy F is defined with an extra 1/2 compared to our
Eq. (15)].

By comparing this term with Eq. (21), we see that the effect
of mode-mode coupling here is to reduce the value of the
specific-heat coefficient; i.e., ζ (3) is replaced by ϒ(�2) +
�3/6. In addition, when the temperature evolves to T �
λ|�|, we still find that C(T ) depends on the temperature as
T 2, because of the rapid decay of m2(T )/T 2 obtained in that
situation [see Eqs. (31) and (33)].

Away from the AFM-QCP and below a certain temperature
scale T ∗∗ ≡ T ∗eW (r/λ) where the AFM mass is on the order of

m0, the leading contribution to the specific heat becomes

C(T ) = 6NκT 2

π
√

ηxηyv
2
F

K
[

m2
0

κT 2

]
, (35)

where m0 = √
κ m0 is obtained from Eq. (29). By using the

asymptotic expressions for m0 derived on both sides of the
crossover point r ∼ λ2, we also find

C(T ) =
⎧⎨
⎩

6NκT 2

π
√

ηxηyv
2
F
K
[ 4r2|�|2

κλ2T 2

]
, if r 
 λ2,

6NκT 2

π
√

ηxηyv
2
F
K
[ r|�|2

κT 2

]
, if r � λ2.

(36)

FIG. 5. Schematic phase diagram derived from the behavior of
the AFM mass and the specific heat, when mode-mode coupling is
taken into account. Here, all dashed lines denote crossover tempera-
tures. In the region below T ∗∗, one finds m(T ) ∼ m0, where m0 is
the AFM mass at zero temperature, while above this temperature
scale, m(T ) is approximately described by Eq. (31). The specific heat
behaves as C(T ) = AT 2 for temperatures larger than T ∗, while it
displays an exponential decay in the opposite limit. Besides, TCSY

refers to the boundaries of a region described by the physics of
the two-dimensional nonlinear σ model [38]. Here, the temperature
dependence of the specific heat also changes from T 2 to an exponen-
tially suppressed behavior for r > 0; at the QCP, it becomes C(T ) =
BT 2 when T 
 λ|�|. In addition, the zero-temperature AFM mass
within this region behaves as m0 ∼ r/λ.
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The leading temperature dependence of C(T ) obtained here
follows closely the results obtained in Eqs. (22) and (23) and is
also indicated in Fig. 5. The only difference when mode-mode
coupling is taken into account is in the prefactor of C(T )
for the regime r 
 λ2. This region is the zero-temperature
projection of a crossover line TCSY, in which the behavior of
the system mimics that of a nonlinear σ model describing the
quantum-disordered regime of the two-dimensional Heisen-
berg model close to a QCP (Ref. [38]). However, the area
below TCSY in the phase diagram of our multiband model is
expected to be small, since it scales as λ3 (see Fig. 5).

Finally for temperatures larger than T ∗∗, we can safely use
the AFM mass obtained in Eq. (31) to evaluate the free energy
and then the specific heat. As already emphasized, m2(T )/T 2

decays rapidly as the temperature increases in that situation.
As a result, we also obtain C(T ) ∝ T 2. The main distinction
in the behavior of the specific heat for T ∗ < T < T ∗∗ and T >

T ∗∗ is therefore the value of its coefficient.

VI. CONCLUSIONS AND OUTLOOK

In summary, we showed that the specific heat of a fully
gapped superconductor acquires a power-law temperature de-
pendence at low T arising from the contributions of AFM
fluctuations associated with a QCP inside the SC dome.
Precisely at the QCP, a T 2 dependence persists down to zero
temperature. Away from the QCP, this T 2 dependence changes
at a crossover temperature T ∗ ∼ √

r|�| to an exponential sup-
pression. Importantly, T ∗ can be very small close enough to
the QCP. The fact that the T 2 dependence persists over a cer-
tain temperature range even away from the QCP is important,
because in some materials, such as Ba(Fe1−xCox )2As2, the
AFM transition line displays a back-bending once it crosses
the SC dome [10], making the AFM-QCP inaccessible from
the disordered phase just by lowering the temperature.

We also showed that the temperature variation of the AFM
mass due to mode-mode coupling does not change crucially
this behavior of the specific heat. However, we identified a
region close to the AFM-QCP, in which the properties of the
multiband model analyzed here are equivalent to those of the

nonlinear σ model describing the quantum-disordered side of
a two-dimensional Heisenberg model [38].

We argued that these findings are universal and do not
depend on microscopic considerations, as they follow from
the form of the AFM propagator inside the SC state, which
gives a nonanalytic contribution to the free energy. These
results provide an unambiguous method to detect an AFM-
QCP inside the SC dome, as the nontrivial T 2 dependence is
very different from the exponential e−|�|/T behavior expected
for a fully gapped superconductor without quantum critical
AFM fluctuations. In this context, it would be interesting
to experimentally revisit the phase diagram of known fully
gapped superconductors that coexist microscopically with
AFM. The main candidates are the BaFe2(As1−xPx )2 and
Ba(Fe1−xCox )2As2 iron-based superconductors, for which
London penetration depth measurements already suggest the
existence of an AFM-QCP inside the dome [22,24]. Another
interesting candidate is stoichiometric CaKFe4As4, which has
been proposed to be very close to a magnetic QCP [50],
with no accompanying nematic order [51]. Specific-heat mea-
surements would provide a clear thermodynamic signature
for such an AFM-QCP, avoiding some of the theoretical
issues arising from the interpretation of the penetration depth
measurements. In addition, we also expect that other fully
gapped superconductors in proximity to either a magnetic
or nonmagnetic QCP with dynamical exponent z = 2 will
exhibit much of the specific-heat phenomenology described
here.
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