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Diagrammatic perturbation theory is a powerful tool for the investigation of interacting many-body systems,
the self-energy operator � encoding all the variety of scattering processes. In the simplest scenario of correlated
electrons described by the GW approximation for the electron self-energy, a particle transfers a part of its
energy to neutral excitations. Higher-order (in screened Coulomb interaction W ) self-energy diagrams lead to
improved electron spectral functions (SFs) by taking more complicated scattering channels into account and
by adding corrections to lower order self-energy terms. However, they also may lead to unphysical negative
spectral functions. The resolution of this difficulty has been demonstrated in our previous works. The main
idea is to represent the self-energy operator in a Fermi golden rule form which leads to a manifestly positive
definite SF and allows for a very efficient numerical algorithm. So far, the method has only been applied to the
three-dimensional electron gas, which is a paradigmatic system, but a rather simple one. Here we systematically
extend the method to two dimensions including realistic systems such as monolayer and bilayer graphene. We
focus on one of the most important vertex function effects involving the exchange of two particles in the final
state. We demonstrate that it should be evaluated with the proper screening and discuss its influence on the
quasiparticle properties.
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I. INTRODUCTION

Numerous correlated electron calculations follow a canon-
ical scheme formulated by Hedin [1] in terms of dressed
propagators. It is now well established that the lowest-order
self-energy (SE) term, the so-called GW approximation, is the
major source of electronic correlations. Much less is known
about the next perturbative orders: there is no single standard
way of evaluating them despite the fact that there is a single
second-order self-energy diagram (Fig. 1). There are multiple
reasons for this. On one side, at the advent of many-body
perturbation theory (MBPT) the computational power was
insufficient to perform these demanding calculations, and one
was forced to use some drastic simplifications. On the other
side, there are several conceptual problems with the organi-
zation of many-body perturbation theory (MBPT) for inter-
acting electrons. For instance, it is known that higher-order
diagrammatic approximations for the electron self-energy in
terms of the screened Coulomb interaction W leads to poles in
the “wrong” part of the complex plane giving rise to negative
spectral densities. This observation has been made a long time
ago by Minnhagen [2,3], and in our recent works we provided
a general solution to this problem [4,5] yielding positive
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definite (PSD) spectral functions. The idea was to write the
self-energy in the Fermi golden rule form well known from
scattering theory.

One interesting conclusion of our theory is that the second-
order SE describes three distinct scattering processes that take
place in a many-body system [6]: (I) A correction to the first-
order scattering, involving the same final states as in GW . This
effect was numerically studied in Ref. [4], and has been shown
[6] to counteract the smearing out of spectral features in self-
consistent calculations [7]. (II) Excitation of two plasmons
(pl), or two particle-hole pairs (p-h), or a mixture of them
in the final state. Especially the generation of two plasmons is
a prominent effect spectroscopically manifested as a second
satellite in the photoemission spectrum [8]. This effect can
be obtained from the cumulant expansion [9,10], inspired by
the electron-boson model [11,12]. (III) A first-order scattering
involving the exchange of the two final state particles. This
latter scattering process is the focus of the present work.

Some manifestations of mechanism (III) have already been
studied, albeit without realizing its deep connection with the
full �(2). First of all, for the two bare interaction lines we get
the so-called second-order exchange contribution, which has
been shown to play an important role in correlated electronic
calculations for molecular systems as an ingredient of the
second-Born approximation (2BA) [13–15]. Second, it yields
a very important total energy correction for the homogeneous
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FIG. 1. A single second-order self-energy diagram and the asso-
ciated first-order vertex function in terms of the electron propagators
(arrows) and the screened interactions (wavy lines).

electron gas [16]. Third, the mechanism with screening has
been considered in the calculations of quasiparticle lifetimes.
Reizer and Wilkins predicted that this diagram yields a
50% reduction of the scattering rate in the two-dimensional
(2D) electron gas calling it “a nongolden-rule” contribution,
whereas Qian and Vignale [17] correctly pointed out that it is
“still described by the Fermi golden rule, provided one recog-
nizes that the initial and final states are Slater determinants,”
and that the coefficient is different. Fourth, the mechanism
is relevant for the scattering theory [18]. With bare Coulomb
interactions it represents the so-called double photoemission
(DPE) process, and if the interaction is screened—the plas-
mon assisted DPE [19,20]. Finally, the considered mechanism
has some features in common with the second-order screened
exchange (SOSEX) approximation [21,22]. However, there
are also important differences in the constituent screened
Coulomb interaction that will be explained below.

As can be seen from this list, the mechanism underlies var-
ious physical processes. However, it has not been sufficiently
emphasized that all of them can be derived from a single
�(2) diagram. Moreover, there are no systematic studies of its
impact on the quasiparticle properties other than the lifetimes.
These gaps are filled in here. Our theoretical derivations are
illustrated by calculations for four prominent systems: the
homogeneous electron gas in two and three dimensions and
the mono- and bilayer graphene. While the former two are
very well studied model systems [23,24], graphene is a real
material, and while the GW calculations for it exists [25–27],
MBPT has mostly been used in the renormalization group
sense [28]. Little is known about the frequency dependence
of higher-order self-energies.

Our approach consists of analytical and numerical parts.
For the quasiparticle (qp) electron Green’s function (G0) and
the screened interaction (W0) in the random phase approxi-
mation (RPA), the frequency integration of a selected set of
the electron self-energy (�[G0,W0]) diagrams is performed
in closed form using our symbolic algorithm implemented in
the MATHEMATICA computer algebra system. The remaining
momentum integrals are performed numerically in line with
our previous studies using the Monte Carlo approach [4–6,29]
showing excellent accuracy and scalability. First, we evaluate
the scattering rate function

�(k, ω) = i[�>
c (k, ω) − �<

c (k, ω)], (1)

and then the retarded self-energy via the Hilbert transform
(Appendix A)

�R(k, ω) = �x(k) +
∫

dω′

2π

�(k, ω′)
ω − ω′ + iη

, (2)

where �x(k) is the frequency-independent exchange self-
energy, and the meaning of greater > and lesser < compo-

FIG. 2. Half-diagrams for D(2), the constituent of the �<(1, 2)
SE. All vertices are on the C+ branch. Wavy lines stand for the
screened interaction W .

nents of the correlated self-energy �c is explained in the next
section. Via the Dyson equation (Appendix E), the retarded
self-energy determines correlated electronic structure.

Our work is structured as follows: we review our PSD
approach in Sec. II and illustrate it with a concrete set of
diagrams in Sec. III. Next we discuss the building blocks of
our diagrammatic perturbation theory and provide reference
G0W0 calculations for the four systems in Sec. IV. Efficient
evaluation of screening is an important ingredient. In Sec. V
we present our main numerical results: spectral features in
�(2), cancellations between the first- and the second-order
self-energies in the asymptotic regime, and quasiparticle prop-
erties such as quasiparticle peak strengths, effective masses,
velocities, and lifetimes. We finally present our conclusions
and outlooks in Sec. VI.

II. SUMMARY OF THE PSD APPROACH

Besides numerical difficulties, the major reason why the
MBPT calculations for the electron gas have not been system-
atically performed at higher orders is the fact that the resulting
expansions do not generate positive definite (PSD) spectral
functions at all frequency and momentum values. How to deal
with this obstacle is discussed in detail in Refs. [4,5].

Even though this is an equilibrium problem, our method
can most easily be formulated by using the nonequilib-
rium Green’s function (NEGF) formalism [30]. The main
distinction is that field operators [ψ̂ (x, z) and ψ̂†(x, z) for
electrons] evolve on the time-loop contour z ∈ C with one
forward chronologically ordered (C−) branch and one (C+)
branch with antichronological time ordering, C = C− ∪ C+.
Correspondingly, the two times Green’s functions generalize
to G(x1z1, x2z2) or Gαβ (x1t1, x2t2), where t1 and t2 are the
projections of z1,2 on the real-time axis, and α, β = +/−
indicate to which branches of the Keldysh contour they be-
long. In the following, we will explicitly deal with the lesser
self-energy �< ≡ �−+, which describes scattering processes
on the subspace of states below the Fermi level, i.e., holes. The
greater component (�> ≡ �+−) can be treated analogously.

The PSD property concerns the fact that the rate operator
(1) must be positive for all momentum k and frequency ω

values. �c with this property is diagrammatically constructed
starting from any given set of diagrams as follows.

In the first step pluses and minuses are assigned to the
diagram vertices in all possible combinations. They carry
information about the contour times. The resulting decorated
diagrams are called partitions. Since we have shown that at
zero temperature no isolated + or − islands can exist [4], the
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“cutting” procedure splits the diagrams for �<
c into halves that

have their vertices exclusively either on the (−) or on the (+)
branch (viz. Fig. 2). They are the building blocks of the PSD
construction. Subsequently, the half-diagrams are combined
in such a way that a sum of complete squares is formed.
This guarantees the positivity of the resulting set of diagrams.
In the language of scattering theory, the half-diagrams have
the meaning of S matrices describing various particle or hole
scattering processes in a many-body system. The resulting
PSD self-energies have then the Fermi golden rule form,
which always leads to positive scattering rates. Topologically
distinct S matrices will be denoted as D diagrams. Diagrams
that can be obtained by the cutting procedure applied to �c of
the first and second order in W0 are depicted in Fig. 2.

They are interpreted according to the standard diagram-
matic rules. Consider for instance the half-diagrams with all
the time arguments on the + branch (such as depicted in
Fig. 2). In addition to the initial one-hole (1h) state [with the
coordinate 2, where the composite position-spin and time vari-
ables are abbreviated as i ≡ (xi, ti )], the final state is denoted
by the two strings of numbers 𝓅 = (𝓅1, . . . ,𝓅N ,𝓅N+1) and
𝓆 = (𝓆1, . . . ,𝓆N ) that specify composite coordinates of the
outgoing N + 1 holes and N particles, respectively. We further
associate a single time-argument τ with (𝓅,𝓆). τ is the latest
time on the forward and the earliest time on the backward
contour branches. With these notations, D(a) reads

D(a)
𝓅1,𝓅2,𝓆1

(2) = −(−1)1
∫

d (4)W ++
0 (4, 2)g<(𝓅2τ, 2)

× g<(𝓅1τ, 4)g>(4,𝓆1τ ), (3a)

and its complex conjugate is given by[
D(a)

𝓅1,𝓅2,𝓆1
(1)
]∗ = +

∫
d (3)W −−

0 (1, 3)g<(1,𝓅2τ )

× g<(3,𝓅1τ )g>(𝓆1τ, 3), (3b)

where the extra minus sign (−1)1 in Eq. (3a) is due to the fact
that for each time integration associated with a vertex on C+:∫

C+
dzi · · · = −

∫ ∞

−∞
dti · · · . (4)

Equations (3) are expressed in terms of the bare electron
propagators g(x1, t1; x2, t2) and the RPA screened interaction

W0(1, 2) =
∫

d (3)v(1, 3) ε−1
0 (3, 2), (5)

where ε0 is the RPA dielectric function defined in terms of the
polarization bubble P0 and the bare Coulomb interaction v,

ε0(1, 2) = δ(1, 2) −
∫

d (3) v(1, 3)P0(3, 2), (6)

P0(1, 2) = −ig(1, 2)g(2, 1). (7)

In Eqs. (3) W −−
0 ≡ W T

0 and W ++
0 ≡ W T

0 stand for the time-
ordered and anti-time-ordered interactions, respectively. We
refer to Appendix B for the detailed definitions and Sec. IV
for explicit forms of the dielectric function for the four studied
systems. D(b) and D(c) are defined analogously. Our next goal
is to describe self-energies that are obtained by “gluing” the

FIG. 3. (a) The contributions to �<
PSD given by Eq. (8) and arising

from the first- and second-order (in screened interaction) self-energy
by virtue of the PSD procedure (Sec. II). Three subsets of these
diagrams that also fulfill the PSD property are given by Eqs. (A4).
(b) First-order vertex function Γ. (c) Random phase approximation
for the lesser component of the screened Coulomb interaction.

D diagrams. This is complementary to our earlier works [4,5],
where the half-diagrams were derived by the cutting rules.

III. SELF-ENERGY APPROXIMATIONS: PHYSICAL
MEANING OF DIAGRAMS

It is straightforward to see that by gluing three half-
diagrams D(i)(2) (i = a, b, c, Fig. 2) with their complex con-
jugates [D(i)(1)]∗ with or without permutations of internal
coordinates, one obtains the four classes shown in Fig. 3(a).
They are grouped into three terms covering three distinct
physical mechanisms:

�<
PSD(1, 2)

= �<
aa(1, 2) + [�<

cc(1, 2) + �<
cc̄(1, 2)] + �<

aā(1, 2). (8)

In Ref. [4] we have also shown that this is the minimal set of
diagrams covering all the first- and second-order self-energies
and possessing the PSD property. Let us discuss the involved
physical mechanisms and derive the working formulas.

A. �<
aa

�<
aa without vertex corrections is nothing else than the first-

order (GW ) self-energy. It results from gluing the simplest
half-diagram D(a) [Fig. 2(a)] with itself without permuting the
two hole lines (𝓅1 and 𝓅2):

�<
GW (1, 2) = i

∑
𝓅1,𝓅2,𝓆1

[
D(a)

𝓅1,𝓅2,𝓆1
(1)
]∗

D(a)
𝓅1,𝓅2,𝓆1

(2)

= ig<(1, 2)W <
0 (1, 2). (9)

In order to establish the second equality, we use the explicit
form of the half-diagrams (3), recall that ig<(1, 2) =∑

𝓅2
g<(1,𝓅2τ )g<(𝓅2τ, 2), ig<(3, 4) = ∑

𝓅1
g<(3,𝓅1τ )
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g<(𝓅1τ, 4), and −ig>(4, 3) = ∑
𝓆1

g>(4,𝓆1τ )g>(𝓆1τ, 3),
and that the lesser screened interaction can be written in the
form

W <
0 (1, 2) = −

∫∫
d (3, 4)W −−

0 (1, 3)P<
0 (3, 4)W ++

0 (4, 2),

with P<
0 (3, 4) = −ig<(3, 4)g>(4, 3) as shown in Fig. 3(c).

Now we use the diagrams in momentum and frequency
representation as indicated in Fig. 3, namely

k1 = k − q1, k2 = k − q2, k3 = k − q1 − q2, (10)

in order to derive a standard result for the GW self-energy:

�<
GW (k, ω) = i

∫
d1

∫
dν1

2π
g<(k1, ω − ν1)W <

0 (q1, ν1),

(11)

where
∫

d1 ≡ ∫ dd q1
(2π )d denotes an integral over a d-

dimensional momentum space, ω is the external frequency,
and k is the momentum. Since the electron gas is transla-
tionally and rotationally invariant, the electron self-energy
depends only on the modulus k = |k|, and the same holds true
for all other single-particle quantities. For graphene systems,
the integration additionally contains a sum over the bands and
a respective scattering matrix element. We will generally use
ωi and ki for the energy and momentum of fermionic lines,
and νi and qi for the interaction lines.

Introducing the spectral function of the screened interac-
tion C(q, ν) and using explicit formulas for the bare propaga-
tors in Appendix B and in particular

g<(k, ω) = 2π inF(k)δ[ω − ε(k)], (12)

W <
0 (q, ν) = −2π iθ (−ν)C(q,−ν), (13)

where nF(k) ≡ nF[ε(k)] is the fermion occupation number, we
obtain

�<
GW (k, ω) = 2iπ

∫
d1

∫ ∞

0
dν1 nF(k1)C(q1, ν1)

× δ(ω + ν1 − ε1), (14)

with εi ≡ ε(ki ). As long as the spectral function of neutral
excitations is positive, C(q,ν) > 0 (which is indeed the case
because we use RPA for W0 here [5]), the rate operator
[−i�<

GW (k, ω)] is positive too, as evident from Eq. (14), and
the nature of the final scattering state is revealed: it consists of
a hole with energy ε1 − ν1 and a neutral excitation such as a
p-h pair or a plasmon with momentum q1 and energy ν1.

Equation (9) can be extended by adding internal interac-
tion lines to D(a) and maintaining the external indices and
the way how the constituent half-diagrams are glued. The
b-half-diagram depicted in Fig. 2(b) represents the simplest
possibility

�<
aa(1, 2) = i

∑
𝓅1,𝓅2,𝓆1

[D(a) + D(b)]∗𝓅1,𝓅2,𝓆1
(1)

× [D(a) + D(b)]𝓅1,𝓅2,𝓆1 (2). (15)

D(b) has one extra interaction line and therefore by gluing it
with D(a) leads to two equivalent terms of the second order in
W0, and by gluing D(b) with itself to a term of third order. They

can conveniently be represented by introducing the vertex
function Γ depicted as yellow triangle in Figs. 3(a) and 3(b)
and familiar from the Hedin’s functional equations [1,31].
If one starts from higher-order diagrams, the diagrammatic
expansion of Γ becomes more complicated and starts to differ
from the standard vertex function.1 As in the case of �GW , the
electronic and the interaction lines connecting the + and −
islands are given by the lesser propagators g<(k1, ω − ν1) and
W <(q1, ν1). In view of the energy conservation, only these
two propagators depend on ν1, and the frequency integration
can likewise be performed. It is clear that the same functional
form proportional to nF(ω + ν1)δ(ω − ε1 + ν1) is obtained.
Therefore, we conclude that D(b) renormalizes the GW ex-
pression, but does not lead to new spectral features. Equation
(15) is a complete square, therefore �<

aa(1, 2) is PSD. It was
numerically evaluated in our earlier work [4].

B. �<
cc̄ and �<

cc

The same analysis can be applied to other diagrams. �<
cc̄

and �<
cc feature the − − ++ partition (in this notation the

vertices are traversed along the fermionic lines from 1 to 2 in
the order opposite to arrows) and contain two diagrams from
gluing the half-diagrams of the c type [Fig. 2(c)] [D(c)(1)]∗
and D(c)(2) with and without permutation of the dangling
fermionic lines, respectively:

�<
cc(1, 2) + �<

cc̄(1, 2)

= i
∑
𝓅,𝓆

[
D(c)

𝓅1,𝓅2,𝓅3,𝓆1,𝓆2
(1)

+ D(c)
𝓅2,𝓅1,𝓅3,𝓆2,𝓆1

(1)
]∗

D(c)
𝓅1,𝓅2,𝓅3,𝓆1,𝓆2

(2). (16)

An explicit derivation of this expression in momentum-energy
representation goes beyond the scope of this work. How-
ever, some physical insight can be gained by using the
plasmon-pole approximation C(q, ν) = C(q)δ[ν − (q)] for
the screened interaction (13). As can be seen from the di-
agrammatic representation (Fig. 3) of the self-energy (16),
there are three lesser propagators connecting the + and
− islands, which in the energy-momentum representation
read g<(k3, ω − ν1 − ν2)W <(q1, ν1)W <(q2, ν2). In view of
the energy conservation, these are the only propagators that
depend on the frequencies ν1,2. Therefore, the integrals can
be explicitly performed. A scattering process accompanied
by the generation of two plasmons can be inferred from
the resulting frequency dependence proportional to nF[ω +
(q1) + (q2)]δ[ω − ε3 + (q1) + (q2)], and is PSD per
construction.

This scattering mechanism is manifested as a second plas-
mon satellite in the electron spectral function. Its diagram-
matic treatment, especially within a self-consistent scheme, is
numerically very difficult [6]. However, plasmonic satellites
can be captured by the method of cumulant expansions [9,32]
at reduced computational cost. Recently, a lot of activities

1Since our theory maintains the Fermi golden rule form, Γ enters
symmetrically unlike in the Hedin’s theory. Not surprisingly, such an
object was introduced in the context of photoemission by Almbladh
[18].
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kk

W++(q2)W––(q1)

k1

k2

k3

k2

k1

k3

Σ
aa   

=-
<

Σ
SOSEX   

=
v(q1)

W(q2)

(a)

(b)

FIG. 4. (a) Gluing two D(a) half-diagrams with one permutation
of the two hole lines with momenta k1 = k − q1 and k2 = k − q2 and
a single hole line k3 = k − q1 − q2 (dashed line) yields �<

aā(k, ω).
The unpermuted configuration is not included, therefore the diagram
may lead to a negative electron spectral function. Wavy lines denote
screened Coulomb interactions. (b) �<

SOSEX contains different inter-
action lines and is thus distinct from �<

aā.

have been directed to extend the method towards the valence
states [33,34], plasmonic satellites have been observed [8,35]
and predicted [36] in a wide range of realistic systems and in
the homogeneous electron gas [37,38].

C. �<
aā

Finally we consider a rather complicated �<
aā resulting

from the − + −+ partition, Fig. 3(a):

�<
aā(1, 2) = −i

∑
𝓅1,𝓅2,𝓆1

[D(a) + D(b)]∗𝓅2,𝓅1,𝓆1
(1)

× [D(a) + D(b)]𝓅1,𝓅2,𝓆1 (2). (17)

It has a form very similar to Eq. (15), except that the hole
indices 𝓅1 and 𝓅2 are permuted (Fig. 4) leading to the
change of sign. The sign of a permutation can be conveniently
determined from the number of crossing of fermionic lines
connecting the half-diagrams [39]. Neglecting the D(b) di-
agrams, which only produces a correction to the scattering
of a hole state into a 2-holes–1-particle state, and using the
explicit form for D(a), Eqs. (3), the self-energy in coordinate
representation reads

�<
aā(1, 2) = −

∫∫
d (3, 4)W −−(1, 3)g<(1, 4)g>(4, 3)

× g<(3, 2)W ++(4, 2). (18)

Thus, there are two lesser and one greater propa-
gators connecting the + and the − islands. In the
momentum-frequency representation they are g>(k3, ω −
ν1 − ν2)g<(k1, ω − ν1)g<(k2, ω − ν2). They contain δ func-
tions, therefore, the integrals over the internal frequencies ν1,2

are simple. Collecting screened interaction dependent on these
frequencies, W −−(q1, ν1)W ++(q2, ν2), and using the explicit
form

g>(k, ω) = −2π in̄F(k)δ[ω − ε(k)], (19)

0 1 2 3
y

0

1

2

3

ξ

0 1 2 3
y

0

1

2

3

ξ

0 1 2 3
y

0

1

2

3

ξ

3B

2B

1B 2A

3A1A

HEG MLG BLG

I

II

FIG. 5. Domains in the momentum-energy plane in the defini-
tions of the dielectric functions of HEG, MLG, and BLG. Here
y = q/kF and ξ = ω/εF.

with n̄F(k) = 1 − nF(k), we can write the self-energy explic-
itly:

�<
aā(k, ω) = 2iπ

∫∫
d (1,2) nF(k1)nF(k2)n̄F(k3)

×W −−(q1, ω − ε1)W ++(q2, ω − ε2)

× δ(ω − ε1 − ε2 + ε3) (20)

= −2iπ
∫∫

d (1,2) nF(k1)nF(k2)n̄F(k3)

× Re[W T(q1, ω − ε1)(W T(q2, ω − ε2))∗]

× δ(ω − ε1 − ε2 + ε3). (21)

Because of the permutation of 𝓅1 and 𝓅2 indices, Eq. (17)
forms a complete square only in combination with the unper-
muted configuration, Eq. (15), and −i�<

aā is not PSD on its
own. At least for bare interactions, this can immediately be
seen from the equation above. In this case the second-order
exchange self-energy �2x is obtained.

Because �2x is a limit of �aā, one might denote the latter as
the second-order screened exchange (SOSEX) term. However,
this name is already taken as common nomenclature for a
different approximation and therefore we will use �aā to
contrast it with �SOSEX. So, what is the difference between the
two? �SOSEX has been derived by Freeman [40] and applied
to the computation of total energies by Grüneis et al. [21] and
spectral properties by Ren et al. [22]. The starting point is the
screened interaction in the RPA form

W (1, 2) = v(1, 2) +
∫

d (3, 4)v(1, 3)P0(3, 4)W (4, 2).

(22)

�SOSEX is obtained by inserting the second term in the GW
self-energy and interchanging the two electron propagators.
As can be seen from Fig. 4(b), one constituent interaction is
bare, whereas another one is screened. This is to be contrasted
with �aā, where both lines are screened. Notice, there is no
double counting because they belong to different branches of
the Keldysh contour.

IV. SYSTEMS AND REFERENCE RESULTS

In this section we present in a uniform way the four
studied systems. We focus on the dielectric function in the
momentum-frequency plane, Fig. 5. It is closely connected to
the irreducible polarization P (q, ω) and to the density-density
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FIG. 6. Static irreducible polarization P (q, 0) for the four stud-
ied systems normalized at the density of states at the Fermi level
N0 (a). N0 is given by ρσ (εF) for HEG and by ρσ,s(εF) for the two
graphene systems, y = q/kF and ξ = ω/εF. Integrand of the f -sum
rule for MLG (b) and BLG (c) demonstrating the divergence of the
f -sum in these systems.

response χ (q, ω),

χ (q, ω) = P (q, ω) + P (q, ω)v(q)χ (q, ω). (23)

They determine the microscopic dielectric function and its
inverse, respectively,

ε(q, ω) = 1 − gv(q)P (q, ω), (24)

ε(q, ω)−1 = 1 + gv(q)χ (q, ω). (25)

Here g is the degeneracy factor. For the homogeneous electron
gas there is only spin degeneracy, g = gs = 2, whereas for the
mono- and bilayer graphene the valley degeneracy addition-
ally appears g = gsgv . For these systems gv = 2, but it can
take larger values for other systems [41,42]. The density of
states at the Fermi energy N0 is a natural unit to measure P
and χ , because the static polarization P (q, 0) for small values
of q is exactly given by this quantity, Fig. 6(a).

The random phase approximation for the inverse dielectric
function Im ε0(q, ω)−1 is a very important ingredient of the
subsequent correlated calculations because this gives [up to
the Coulomb prefactor v(q)] the spectral function of the
screened interaction (Appendix B). A general overview of this
quantity is shown in Fig. 7. It is very fortunate that for all four
studied systems it can be found in analytic form facilitating
numerical calculations. Below, we collect all needed formu-
las and additionally present the exchange self-energy, which
enters Eq. (2).

In the following we express the electron density n, which
is the central control parameter, in SI units, in order to
make a connection with experiment. All other quantities are
expressed in atomic units. Some simplification of formulas is
possible to achieve by rescaling momenta and energies by the
Fermi momentum kF and energy εF, respectively. This will be
explicitly indicated.

A. 2D HEG

This is probably the best studied many-body system
[24,43]. There is only one relevant parameter—the Wigner-
Seitz radius rs. It is given in terms of electronic density n as
follows:

aBrs =
(

1

πn

)1/2

. (26)

FIG. 7. Imaginary part of the inverse dielectric function for the
four studied systems. Red lines indicate the collective plasmonic
mode. Blue lines separate different domains in the definition of polar-
izability such as shown in Fig. 5 and indicate removable singularities.

In the case of systems with an effective electron mass m0 and
a background dielectric constant κ = 4πεε0, one can redefine
the Bohr radius as

ãB = κ h̄2

m0e2
(27)

and still have the same relation between the density and rs.
The Coulomb potential v(q), the Fermi momentum kF, and
the density of states at the Fermi energy ρσ (εF) in atomic units
read

v(q) = 2π

q
, kF = 1

α2rs
, ρσ (εF) = 1

2π
, (28)

where we additionally defined the constant

α2 = 1/
√

2. (29)

Introducing scaled variables

y = q/kF, ξ = ω/εF, (30)

the dielectric function εR
0 (k, ω) ≡ εR

0 (y, ξ ) reads [44]

Re εR
0 (y, ξ ) = 1 + 2α2rs

y2
[y + fr (ξ/y − y) − fr (ξ/y + y)],

(31)

Im εR
0 (y, ξ ) = 2α2rs

y2
[ fi(ξ/y − y) − fi(ξ/y + y)], (32)

with

fr (z) = sgn(z)θ (1/4z2 − 1)
√

1/4z2 − 1,

fi(z) = θ (1 − 1/4z2)
√

1 − 1/4z2.
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For small momentum values, the expression in brackets of
Eq. (31) suffers from precision loss. Therefore, in this limit
the approximate formula

Re εR
0 (y, ξ ) = 1 − κTFy

ξ 2
, κTF = 4α2rs (33)

should be used entailing the small-momenta plasmon disper-
sion (y) ≈ √

yκTF. It can also be found analytically (see
Eq. 5.54 of Ref. [45]):

(y) =
√

y(2y + κTF)
√

y4 + y3κTF + κ2
TF

κTF
√

y + κTF
, (34)

where κTF is the Thomas-Fermi screening wave vector in
2D. The critical wave vector does not have a nice analytical
expression. However, one can show that kc ∼ √

κTF. Notice
that even though (y) > y(y + 2) for y > kc there is no plas-
mon above the critical vector because in reality the plasmon
becomes damped by entering the continuum, where the above
solution is not valid.

The f -sum rule reads in rescaled units

− 2

π

∫ ∞

0
dξ ξ Im

[
1

εR(y, ξ )

]
= α2r3

s y. (35)

The exchange part of the electron self-energy,

�x(k) = −
∫

|q|<kF

d2q

(2π )2

2π

κ|k − q| , (36)

can be expressed [45] in terms of the complete elliptic inte-
grals (see Sec. 8.112 in Ref. [46]):

�̄x(y) = − 2

π
α2rs f2D(y), �̄x = �x/εF, (37)

f2D(y) =
{

E (y), y � 1,

y
[
E
(

1
y

)− (
1 − 1

y2

)
K
(

1
y

)]
, y > 1.

(38)

B. 3D HEG

This system also depends on a single parameter—the
Wigner-Seitz radius

aBrs =
(

3

4πn

)1/3

. (39)

It has also been broadly studied [23]. The Coulomb potential
v(q), the Fermi momentum kF, and the density of states at the
Fermi energy ρσ (εF) read in atomic units

v(q) = 4π

q2
, kF = 1

α3rs
, ρσ (εF) = 1

2π2α3rs
, (40)

where the relevant constant is defined as

α3 =
(

4

9π

)1/3

. (41)

The dielectric function is (the Lindhard result)

Re εR
0 (y, ξ ) = 1 + α3rs

πy3

[
2y + fr

(
ξ

y
− y

)
− fr

(
ξ

y
+ y

)]
,

(42)

Im εR
0 (y, ξ ) = α3rs

y3

[
fi

(
ξ

y
− y

)
− fi

(
ξ

y
+ y

)]
, (43)

with

fr (z) = (
1 − 1

4 z2
)

log[(z + 2)/(z − 2)],

fi(z) = θ
(

1
4 z2 − 1

)(
1 − 1

4 z2
)
.

Notice a strong resemblance between the dielectric function
in 2D and 3D. This is due to the fact that the upper and
lower continuum frequencies are the relevant parameters in
both cases (Fig. 5). The shape of the continuum is more
complicated for MLG and BLG. However, we will see below
that they likewise enter expressions for εR

0 (y, ξ ).
The f -sum rule is particularly simple in 3D systems. This

is due to the form of the Coulomb interaction proportional to
q−2 (40). Rescaling the frequency and momentum in the usual
way (30) we get

− 2

π

∫ ∞

0
dξ ξ Im

[
1

εR(y, ξ )

]
= ω2

p, (44)

with the classical plasmon frequency (εF units)

ωp = 4

√
α3rs

3π
. (45)

The exchange part of the electron self-energy reads

�x(k) = −
∫

|q|<kF

d3q

(2π )3

4π

|k − q|2 . (46)

Analytical expressions are well-known [45]

�̄x(y) = − 4

π
α3rs f3D(y), �̄x = �x/εF, (47)

f3D(y) = 1

2
+ 1 − y2

4y
log

∣∣∣∣1 + y

1 − y

∣∣∣∣. (48)

C. 2D MLG

In the model approach to graphene, electronic states of the
π bands near a K point of the Brillouin zone are described
by the k · p equation Ĥ0F(r) = εF(r) [41,47], where the
Hamiltonian reads

Ĥ0 = vF

(
0 p̂x − i p̂y

p̂x + i p̂y 0

)
= vF(σx p̂x + σy p̂y), (49)

with p̂ = ( p̂x, p̂y) being the momentum operator and vF the
Fermi velocity (which can be expressed in terms of the
hopping integral and the lattice constant [48], the typically
adopted value is 106 m/s = 1/2.188 a.u.). The wave function
is then

Fs,k(r) = |s, k〉 1

L
eik·r, |s, k〉 = 1√

2

(
e−iθk

s

)
, (50)

where L2 is the area of the system, and kx = k cos θk , ky =
k sin θk , k = |k|. The corresponding energy dispersion reads

ε(k) = svFk, (51)

which is different from previous cases in two important ways:
(i) the well-known linear momentum dependence and (ii) the
presence of two bands indicated by the band index s = ±1
and, as a consequence, the presence of additional matrix
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(a () b)s1, k1, σ

s2ʹ, k2, σʹ s2, k2–q, σʹ

s1, k1+q, σ

v(q)

s, k, σ

s,ʹ k+q, σ

FIG. 8. Diagrammatic representation of (a) the Coulomb inter-
action (52) and (b) the polarization bubble in MLG. The latter
illustrates the appearance of the spin gs and band gv degeneracy
prefactors in the dielectric function, Eqs. (56) and (58). The overlap
matrix elements (62) are represented by shaded vertices.

elements in the Coulomb operator (Fig. 8)

V̂ = 1

2L2

∑
q,k1,k2

∑
s1,s2,s′

1,s
′
2

〈s′
1, k1 + q|s1, k1〉〈s2, k2 − q|s′

2, k2〉

×
∑
σ,σ ′

2π

κq
ĉ†

s′
1,k1+q,σ

ĉ†
s2,k2−q,σ ′ ĉs′

2,k2,σ ′ ĉs1,k1,σ . (52)

Thus, basis functions are labeled by the momentum k, band
index s, and spin σ . In view of the dispersion (51), the
noninteracting GF is diagonal in s and σ . We are interested in
the electron self-energy diagonal in the band indices. Further-
more, the calculations are typically performed at finite doping
(extrinsic graphene) and with a dielectric function modified
by the presence of the substrate. We will focus on the SiO2

substrate κ = (1 + εSiO2 )/2 = 2.45, consider the case of the
electron doping, i.e., that the Fermi level is above the Dirac
point, and follow the notations from the previous sections that

κ = 4πεε0, (53)

with ε0 being the vacuum electric permittivity. The Fermi
momentum and energy depend on the square root of the
electron density

kF = aB

√
4πn

g
= 1

〈r〉 , εF = vFkF, (54)

g = gsgv where gs = 2 is the spin and gv = 2 is the valley
degeneracy, respectively. 〈r〉 is the averaged interelectron
distance.

The parameter characterizing the level of correlations in
the system is given by the ratio of the Coulomb EC and the
kinetic EK energies, as is therefore the counterpart of rs for
the homogeneous electron gas

α = EC

EK
= 1

κ 〈r〉
1

vFkF
= 1

κvF
 2.188

κ
, (55)

for instance, α = 2.188 for MLG in vacuum and α = 0.875
for the SiO2 substrate. The dielectric function has been
computed by Hwang and Das Sarma [49] and by Wunsch et al.
[50]. We will use the latter form:

Re εR
0 (y, ξ ) = 1 + gα

y
+ gα f (y, ξ )Gr (y, ξ ), (56)

Im εR
0 (y, ξ ) = gα f (y, ξ )Gi(y, ξ ), (57)

f (y, ξ ) = 1

8

y√
|ξ 2 − y2| , (58)

The functions Gr and Gi are defined in Appendix C. The
density of states at the Fermi level reads

ρσ,s = (2πvF)−1. (59)

The static polarizability normalized at this number is plotted
in Fig. 6(a). Due to the presence of an infinite sea of electrons
below the Dirac point, the f -sum rule diverges as demon-
strated by Hwang, Throckmorton, and Das Sarma [51]. The
integrand of the f -sum is illustrated in Fig. 6(b).

Due to this fact, a momentum cut-off kc needs to be
introduced for the momentum integrals. In a realistic system
this is not a problem because of the bands flattening due to
lattice effects [52]. For the idealistic model that we consider
here, kc is an explicit parameter of the theory. We adopt

kc = yckF = 10kF. (60)

The exchange self-energy can be written in the form

�x,s(k) = −
∑

s′=±1

∫
d2q

(2π )2
nF,s′ (|k − q|)2π

κq
Fs,s′ (k, k − q).

(61)

In this equation, Fs1,s2 (k1, k2) takes into account the probabil-
ity for an electron with momentum k1 in the band s1 to scatter
into the state with momentum k2 in the band s2. It depends on
the relative angle θ12 between the two momenta,

〈s2, k2|s1, k1〉 = 1
2 (1 + s1s2eiθ12 ), (62)

Fs1,s2 (k1, k2) = |〈s2, k2|s1, k1〉|2 = 1
2 (1 + s1s2 cos θ12).

(63)

Using the Fermi energy and momentum units, dividing into
intrinsic (present in pristine graphene) and extrinsic (due to
carriers injection by doping or gating) contributions, shifting
by the constant so that the self-energy is zero at the Dirac point
[�x,±1(0) = 0] we obtain for Eq. (61)

�̄x,s(y) = �̄int
x,s(y) + �̄ext

x,s (y) + α

2
(1 + yc), (64)

with

�̄int
x,s(y) = −αyc

π

[
π

2
− sg

(
y

yc

)]
, (65)

�̄ext
x,s (y) = −α

π

[
f2D(y) + sh(y)

]
. (66)

The function f2D(y) has already been defined for the 2D HEG
(38). The former intrinsic part results from the integration over
the s′ = −1 band from zero to the momentum cut-off kc =
yckF. Functions h(y) and g(y) have a representation (correcting
g(y) in the original derivation by Hwang, Hu, and Das Sarma
[53]):

h(y) = y

{
π
4 log 4

ye1/2 − ∫ y
0

dx
x3

[
K (x) − E (x) − πx2

4

]
y � 1,∫ 1/y

0 dx [K (x) − E (x)] y > 1;
(67)
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g(x) = 1

4

∫ 1

0
dy
∫ 2π

0
dθ

x − y cos θ√
x2 + y2 − 2xy cos θ

= π

2
Re

{
3F2

(
−1

2
,

1

2
,

1

2
; 1,

3

2
;

1

x2

)}
. (68)

D. 2D BLG

Consider now two parabolic energy bands

ε(k) = sk2/(2m0). (69)

Unlike MLG, the dispersion is an idealization of several
materials with different number of valleys gv and with large
flexibility in the properties control with the help of doping and
the background dielectric constant. Here we focus on the gv =
2 case pertinent to the bilayer graphene (a minimal two-band
model for the Bernal AB stacking [28]). We have the following
relations determining the Fermi energy and momentum, and
the Wigner-Seitz radius [54]:

kF

aB
=
√

4πn

gsgv

, εF = k2
F

2m0
, rs = gm0

κkF
, ρσ,s(εF) = m0

2π
.

(70)

One may also define the Wigner-Seitz radius as the ratio of
two energies

r̃s = EC

EK
= 1

κ〈r〉
2m0

k2
F

= m0

κ

gsgvaB

(4πn)1/2
, aB〈r〉 =

(
1

πn

)1/2

.

Sensarma, Hwang, and Das Sarma [54] derived the polariz-
ability of this system separating the intra(inter)-band contribu-
tions � = �1 + �2. The former originates from the intraband
(s = s′) and the latter from interband (s = −s′) transitions,
Fig. 8(b),

�1(y, ξ ) = 1

π

∫ 1

0
dx
∫ π

−π

dφ
x

ξ + iη − 2xy cos(φ) − y2

×
[

1 − y2 sin2(φ)

x2 + 2xy cos(φ) + y2

]
, (71)

�2(y, ξ )

= − 1

π

∫ 1

0
dx
∫ π

−π

dφ
x

ξ + iη + 2x2 + 2xy cos(φ) + y2

× y2 sin2(φ)

x2 + 2xy cos(φ) + y2
. (72)

The retarded polarizability is given by

ReP (y, ξ ) = Re �(y, ξ ) + Re �(y,−ξ ), (73)

Im P (y, ξ ) = Im �(y, ξ ) − Im �(y,−ξ ). (74)

�1 is fully defined in the paper [54]. There are, however,
some misprints in the extrinsic part that are corrected here in
Appendix D. The dielectric function is given by

εR
0 (y, ξ ) = 1 − rs

y
P (y, ξ ). (75)

The static polarizability was derived by Hwang and Das
Sarma [55] and is plotted here for comparison with other

FIG. 9. Solution of the Dyson equation for the Fermi level
k = kF. Intersection of straight line y = ω − εF − �μ and y =
Re �R(kF, ω) (thick black curve) yields the real part of the quasi-
particle energy. The chemical potential shift �μ is selected (see
Appendix E) as to have the imaginary part zero in accordance with
the Fermi liquid assumption. Red curves stand for 1

2 �(kF, ω) =
− Im �R(kF, ω). In the case of MLG and BLG thick/thin curves
correspond to �R

s=±1(kF, ω).

systems in Fig. 6(a). The f -sum rule diverges for this system
for the same reasons as for MLG. The integrand of the f -sum
is illustrated in Fig. 6(c). The exchange self-energy is the same
as for MLG (66).

E. G0W0 calculations

Before presenting calculations with vertex functions, we
review the electron self-energy in the simplest G0W0 approx-
imation, Eq. (14). The self-energy is depicted in Fig. 9, the
respective electron spectral function

A(k, ω) = −2 Im GR(k, ω) (76)

is shown in Fig. 10.

1. HEG

The homogeneous electron gas systems have a long history
of studies: Lundqvist [23], Hedin [1], and self-consistent GW
calculations by von Barth and Holm [7,56] in 3D and Giuliani
and Quinn [57], Santoro and Giuliani [24], Zhang and Das
Sarma [58], and Lischner et al. [59] in 2D. Because of the
way the 2D HEG is engineered (its properties can be tuned
by doping and the electron concentration), it is easy to go to
the strongly correlated regime and still have a homogeneous
system. Therefore, correlations beyond G0W0 have been in-
cluded almost from the beginning. Thus, Santoro and Giuliani
included the many-body local fields G± in the calculation
of screening and employed the plasmon-pole approximation.
This yields a self-energy resembling the 3D case and results
in a more pronounced plasmon peak as compared to the G0W0

calculations.
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FIG. 10. The electron spectral function from the solution of the
Dyson equation with self-energy in G0W0 approximation. For MLG
and BLG, the spectral function is a matrix in the band indices, the
trace of it is shown here.

2. Graphene

There are two peculiarities in the case of MLG and BLG
systems. (i) The electron dispersion and self-energies addi-
tionally carry the valley index s resulting in the following
modification of Eq. (14):

�<
GW,s(k, ω) = 2iπ

∑
s′=±1

∫ q1�kc

0

d2q1

(2π )2

∫ ∞

0
dν1 Fs,s′ (k; k1)

× nF,s′ (k1)C(q1, ν1)δ(ω + ν1 − ε1), (77)

where the scattering matrix element Fs,s′ is given by Eq. (63).
(ii) Due to the presence of an infinite electron sea below the
Dirac point the diverging momentum integrals need to be
regularized with the help of cut-off (60). One can also intro-
duce a frequency cutoff without compromising the accuracy.

Hwang and Das Sarma [25] and Polini et al. [26] performed
calculations for MLG, and more extensive investigations for
a range of momenta are in Refs. [60–63]. Respective calcu-
lations for BLG have been performed by Sensarma, Hwang,
and Das Sarma [27] and Sabashvili et al. [64].

V. �aā: SCATTERING ACCOMPANIED BY THE
GENERATION OF A ph PAIR WITH EXCHANGE

�aā is the main objective of this work. It describes the
simplest second-order process in which a particle scatters
giving rise to an additional particle-hole pair in the final state,
Fig. 4. It is obtained by gluing two half-diagrams D(a) with
a permutation, and therefore does not lead to a PSD spectral
functions on its own. However, the inclusion of an unpermuted
configuration gives rise to �aa restoring the PSD property.
In this work �aā is computed according to Eq. (20), which
needs some modifications in the case of graphene in order to
account for the band indices. After discussing this technical
point in Sec. V A, we consider the influence of screening on
�aā in Sec. V B, the cancellations between �aa and �aā in
the asymptotic regime in Sec. V C, and finally focus on the
resulting quasiparticle properties in Sec. V D.

A. Computation for MLG and BLG systems

In the case of graphene, Eq. (20) additionally gets a sum
over three internal band indices and an additional factor,
which is a product of the four wave-function overlaps,

Fs0,s1s2s3 (k0; k1, k2, k3) = 〈s0, k0|s1, k1〉〈s1, k1|s3, k3〉
× 〈s3, k3|s2, k2〉〈s2, k2|s0, k0〉

= 1

8

⎧⎨⎩1 +
∑
i< j

sis j cos θi j + s0s1s2s3 cos(θ01 + θ32)

⎫⎬⎭,

(78)

where θi j is the angle between the respective momenta. The
second-order exchange then takes a form

�<
2x,s(k, ω) = − 2iπ

∑
s1,s2,s3

∫∫
d (1,2) Fs,s1s2s3 (k; k1, k2, k3)

× v(q1)v(q2)nF(k1)nF(k2)n̄F(k3)

× δ(ω − ε1 − ε2 + ε3), (79)

where the momenta are defined by Eq. (10) and depicted in
Fig. 3(a). It should be noted that our original PSD construc-
tion was formulated for the systems free of the ultraviolet
divergences. Here it is applied to graphene, for which the
momentum integrals are regularized with the wave-vector
cutoff kc with the justification that the regularization can be
implemented on the level of the Hamiltonian.

B. �2x results for 3D HEG

The corresponding imaginary part is plotted in Fig. 11. The
Hilbert transform (Appendix A) yields the real part. In the
inset we see a very good agreement of our numerical result
with the analytical expression

ε2x = Re �2x(kF, μ)/εF = α2r2
s

2π2

(
2π2

3
ln(2) − 3ζ (3)

)
,

that is known due to the calculations of Glasser and Lamb
[65] and Ziesche [16] or from the second-order correction to
the total energy computed by Onsager et al. [66]. According
to the Hugenholtz-van Hove-Luttinger-Ward theorem they are
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FIG. 11. �2x at different momentum values. The inset shows the
real self-energy part (solid line) obtained from the Hilbert transform
of �aā(kF, ω). Its on-shell value [ε2x (kF, μ) = 0.204976] has only
2.4% deviation from the indicated analytic result (0.210073).

equal. Despite claims [67], it seems impossible to get the
respective expression in analytic form for the 2D HEG [68].

Going away from k = kF, the self-energy first develops
an additional sharp peak in the vicinity of ω = μ as seen
for k = 0.85kF, 1.25kF, which eventually becomes smeared
out, Fig. 12. This is a rather disturbing fact because large
negative values need to be compensated by �aa, which does
not have any singularities in this energy range. Thus, a better
understanding of the origin of this peak is needed.

In Fig. 13 we replot i�<
aā computed with a bare Coulomb

interaction for different momentum values paying attention to
the kinematic aspects. In particular, we are interested in the

Γ(k,ω)

−3

−2

−1

0

1

2

3
HEG 3d, rs=4.0
bare Coulomb

FIG. 12. The momentum- and energy-resolved scattering rate
computed with the bare Coulomb interaction for rs = 4. It is negative
and possesses a strong peak due to the small-momentum forward
scattering. Screening greatly reduces its magnitude, whereas �aa

compensates for the negative values.

FIG. 13. �2x at different momentum values resolved with respect
to forward (red) and backward (blue) scattering mechanisms. For a
hole in the center of the Fermi sphere k � kF, backward scattering
dominates, while for a hole close to the Fermi surface k ≈ kF,
forward scattering with a small momentum transfer gives rise to a
sharp peak.

distribution of momenta carried by the two interaction lines
q1,2 and, correspondingly, in the configuration of the final state
formed by two holes with momentum k1,2 = k − q1,2 and a
particle k3 = k − q1 − q2, Fig. 4. It is, of course, difficult
to depict all the multitude of possibilities taking place in
our Monte Carlo simulations. However, a useful classification
of the involved physical processes can be found: we distin-
guish the forward and the backward scatterings scenarios.
The former is defined as a process in which q1 and q2 are
antiparallel to the initial hole momentum, i. e., the scalar
products (k, q1) and (k, q2) are negative. In this case the initial
hole state with momentum k gets transformed into two-hole
states with momenta in the same Fermi hemisphere (red). For
the backward scattering both of these products are positive
and, correspondingly, the final hole states are in the opposite
hemisphere. From the scheme depicted in Fig. 13 it becomes
evident that there is a very limited phase space for the forward
mechanism if the initial hole is in the vicinity of Fermi sphere
k → kF. In order to guarantee that k1,2 � kF and k3 > kF the
interaction momenta q1,2 must be small and almost collinear
with k. As a result we have a “hot spot” in the momentum
space where all the permitted configurations contribute in
a very narrow energy interval giving rise to a pronounced
forward peak. If the initial state is closer to the center of
the Fermi sphere, there are less restrictions on the possible
scattering angles. Therefore, the forward peak broadens, and
for larger energy transfers the backward scattering dominates.
It is interesting to notice that the mixed mechanism, i.e.,
where one hole is in the forward and another in the backward
direction, has a rather small contribution and takes place at
intermediate energies.
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v

FIG. 14. �aā computed with full RPA screenings W0 (total), plas-
mon pole approximation for W0 (pl), and bare Coulomb interaction
(v). Screening, which is operative at small momentum transfers, is
responsible for the cancellation of singularity.

From our analysis it follows that small momentum trans-
fers q1,2 are important for the appearance of the forward
peak. In this regime the Coulomb interaction is screened
by plasmons suggesting that the inclusion of screening may
reduce the peak. Therefore, we performed three calculations
for k = 0.85kF with (i) bare Coulomb lines, (ii) with only
plasmon screening, and (iii) using the fully screened RPA
W0. They indeed demonstrate that the plasmonic contribution
to �aā is essential for compensating the singularity in the
bare Coulomb term (Fig. 14). Notice that they both appear
with the same sign because the interactions enter quadratically
in the expression for �aā. As a result, a smooth frequency
dependence free of any singularities is obtained for the sum
of all contributions.

C. Cancellations between �<
aa and �<

aā in the asymptotic regime

The asymptotic regime ω → ±∞ is important because
there �aa approaches zero, and a failure of the PSD construc-
tion would be evident. It is convenient to perform derivations
using scaled variables xi = ki/kF, yi = qi/kF, ζ = ω/εF.

1. 3D HEG

The G0W0 self-energy scales in the high-frequency limit
[29] as

i

2
�

>

aa(x, ζ ) ≡ i

2
�>

aa(k/kF, ω/εF)/εF
ζ→∞−→ c1

α2
3r2

s

ζ 3/2
, (80)

c1 = 16
√

2

3π
. (81)

Conversely, this determines the short-time behavior of the
electron GF. Unexpectedly, Vogt et al. [69] have demonstrated
that the second-order exchange �2x asymptotically scales in
the same way, but with an additional −1/2 prefactor. This
result can be further generalized and derived as follows.

The generalization concerns the fact that in the high fre-
quency limit, the screening is not important and the screened
interactions in the expression for �aā can be replaced with the

FIG. 15. Asymptotic behavior of i�>
aa (only p-h excitations) and

−i�>
2x for large momentum values plotted on the logarithmic scale.

The latter quantity is negative and therefore is multiplied with −1.
A scheme on the right illustrates momentum configuration of p →
p + p + h scattering at large energy and momentum transfer, i.e., in
the asymptotic regime ω � k2/2 � εF. In this limit k3 � k and can
be integrated over.

bare Coulomb, i.e., W −−(q1, ω − ε1) → v(q1), W ++(q2, ω −
ε2) → v(q2). This means that �aā asymptotically behaves as
�2x. Using the momenta flow as in Fig. 3(a), the second-order
exchange reads

i

2
�

>

2x(x, ζ ) = −α2
3r2

s

π3

∫∫
d3y1

y2
1

d3y2

y2
2

n̄F(x1)n̄F(x2)nF(x3)

× δ(ζ − ε1 − ε2 + ε3). (82)

In the asymptotic case ζ � x2/2 � 1 we have x3 � x1,2. We
change the variables

y1,2 = 1
2 x ± z = x2,1

and integrate over x3 within the Fermi sphere (from the
scheme in Fig. 15 it is evident that to a good approximation
the integrand is independent of x3) yielding the 4π/3 prefactor
to the following remaining integral:

i

2
�

>

2x(x, ζ )

≈ −4α2
3r2

s

3π2

∫
d3z∣∣ 1

2 x − z
∣∣2∣∣ 1

2 x + z
∣∣2 δ

(
ζ − 1

2
x2 − 2z2

)

= −8α2
3r2

s

3π

tanh−1
( x

√
2ζ−x2

ζ

)
ζx

= −8
√

2

3π

α2
3r2

s

ζ 3/2
+ O(x2). (83)

In the last step we exploit the high-frequency assumption
ζ � x2/2 and perform a series expansion in x to get the

conjectured scaling i�
>

2x(x, ζ )
ζ→∞−→ c2α

2
3r2

s ζ
−3/2. The scaling

is verified numerically in Fig. 15 confirming that the constant
c2 computed from Eq. (83) is momentum independent. It is
important, however, that c2 = − 1

2 c1 ensuring the PSD prop-
erty in the high-frequency limit.
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FIG. 16. Top: Asymptotic behavior of the rate functions i�>
aa

(only p-h excitations) and −i�>
2x for large momentum values plotted

on the logarithmic scale for 2D HEG. As in the 3D HEG, they posses
the c1,2/ω scaling, respectively, with c2 = −1/2c1. (b) and (c) The
rate function of the two graphene systems is plotted for different
momentum values. There is no universal scaling.

2. 2D HEG

The derivation follows the same line:

i

2
�

>

2x(x, ζ ) ≈ −2
∫

d2z∣∣ 1
2 x − z

∣∣∣∣ 1
2 x + z

∣∣δ
(

ζ − 1

2
x2 − 2z2

)

= − 4

|ζ − x2|K

(
x
√

x2 − 2ζ

ζ − x2

)

= −2π

ζ
+ O(x2), (84)

where K is a complete elliptic integral. As in the case of
the 3D HEG, there is a universal (momentum-independent)
asymptotic scaling, see Fig. 16(a), and the ratio of the prefac-
tors is the same. This is yet another exact analytical statement
about the second-order self-energy.

3. Graphene systems

The situation is much more complex in the case of
graphene, Figs. 16(b) and 16(c). Besides the usual scattering
processes considered above, �aā contains processes in which
particles change the band, Fig. 17. For instance, for k > kF

our calculations indicate that �2x(k, ω) is dominated by the
process with s3 = −s1 = −s2 = 1 for ω < 0, and with −s3 =
s1 = s2 = 1 for ω > 0, see Eq. (78). This leads to scattering
rates that do not tend to zero as ω → ±∞. They are cut-off
dependent and should be treated as in the case of the first-order
exchange.

FIG. 17. Second-order exchange in the BLG system for k =
3kF. Besides common scattering channels, the ω → ∞ behavior is
dominated by processes (blue line) with one hole in the lower band,
s3 = −1 (inset b), for ω → −∞ a mechanism with two holes in the
lower band s1 = s2 = −1 is dominating (inset a).

D. Quasiparticle properties

All four considered systems possess very distinct spectral
functions. In the vicinity of the quasiparticle peak they can be
represented by the Lorentzian form

A(k, ω) = Zqp
1/τ (k)

[ω − εqp(k)]2 + 1/[2τ (k)]2
, (85)

where the peak position εqp(k), the inverse lifetime 1/τ (k),
and the quasiparticle renormalization factor Zqp can be deter-
mined by solving the Dyson equation with the given retarded
self-energy operator (see Sec. 13.1 in Ref. [30]). In general,
one has to take care whether the spectral density can really be
written in this form with finite Zqp. For instance, this might
be not the case in undoped graphene [70,71], or 2D systems
with short-range repulsive interactions [72], but is the case for
the systems considered here. As can be seen from Fig. 18,

FIG. 18. Electron spectral functions for quasiparticle states at the
Fermi surface (k = kF) for different interaction strengths. Dashed
lines stand for the G0W0 results, full lines—additionally include �aā.
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the second-order self-energy has a rather small impact on the
shape of the quasiparticle peak and its satellites. Therefore, in
order to quantify the effect we compute the quasiparticle peak
strength:

Zqp(k) =
(

1 − ∂

∂ω
Re�R(k, ω)|ω=εqp(k)

)−1

. (86)

We further characterize the quasiparticle dispersion in terms
of the effective mass:

1

m∗ = 1

kF

dεqp(k)

dk

∣∣∣∣
k=kF

, (87)

and the Fermi velocity (for MLG)

v∗
F = dεqp(k)

dk

∣∣∣∣
k=kF

. (88)

Finally, the inverse quasiparticle lifetime is computed,

τ (k)−1 = Zqp(k)�[k, εqp(k)], (89)

1
2�(k, ω) = − Im �R(k, ω). (90)

We are mostly interested in the correlated regime rs � 1.
However, the asymptotic results rs → 0 are also shown when
available in order to demonstrate that they are valid in a rather
very narrow density interval. Our main comparison is with
three classes of theories. As benchmarks for the homogeneous
electron gas, the quantum Monte Carlo results of Holzmann
et al. [73] (2D) and [74] (3D) are used. The second class
of methods has been advocated by Giuliani and co-workers:
Ref. [75] (2D) and Ref. [76] (3D). They improve upon G0W0

by using parametrized data from QMC calculations in terms
of the charge and the spin static local fields factors G+(q) and
G−(q), respectively. In their method, the self-energy is in the
GW form, however, the screened interaction is replaced by
the Kukkonen-Overhauser effective interaction [77]. Further-
more, a diagrammatic approach based on the Bethe-Salpeter
equation for the improved screened interaction by Kutepov
and Kotliar [78] is also used for comparison. Unfortunately,
none of these theories are available for graphene systems.

We start by compiling the data for homogeneous electron
gases in 2D and 3D and the bilayer graphene. In these systems
rs is the relevant parameter that can be controlled by doping
or other means. In MLG, there is only an indirect possibility
to control α by changing the background dielectric constant
and κ . This system will be considered later.

1. rs as a control parameter

In Fig. 19 the quasiparticle renormalization factor Zqp(kF)
as a function of the density parameter rs is shown. As ex-
pected, the agreement between different methods deteriorates
with increasing rs, moreover the quantum Monte Carlo results
are not available for BLG. Therefore, it is hard to say with
absolute certainty what is the “right” value. On the positive
side, we see a very nice convergence of all methods towards
the linear asymptote

Zqp = 1 −
(

1

2
+ 1

π

)
α2rs, 2D, (91)

Zqp = 1 − c

π2
α3rs, 3D. (92)

FIG. 19. Quasiparticle renormalization factor for k = kF and dif-
ferent interaction strengths: �G0W0 dashed line, �G0W0 + �aā solid
lines. For 2D HEG, the variational Monte Carlo (VMC) results
are taken from Ref. [73], and the VMC calculations using Slater-
Jastrow (SJ) wave functions and backflow (BF) reptation Monte
Carlo (RMC) for 3D HEG from Ref. [74]. G+(q) and G+(q)&G−(q)
denote methods based on the local structure factors from Ref. [75]
(2D) and Ref. [76] (3D). GW � is a scheme D of Ref. [78], it includes
the first-order vertex function in the finite temperature formalism. For
BLG, † Ref. [64], ‡ Ref. [79].

with c = − ∫ π/2
0 log(1 − x cot x) dx ≈ 3.353. The 3D result

is by Daniel and Vosko [80], and the 2D asymptote together
with temperature corrections is due to Galitski and Das Sarma
[81]. For BLG, the effect of �aā is negligible, and our calcu-
lations accurately reproduce the corrected results of Sensarma
et al. [79], whereas the one-shot and the self-consistent GW
calculations of Sabashvili et al. [64] deviate. For the HEG
in 2D and 3D, the inclusion of �aā slightly increases the
value of Zqp. It is interesting to notice that the same trend is
observed when the charge local field factor G+(q) is included.
For the 2D HEG, the additional inclusion of both local fields
reduces Zqp in agreement with variational MC calculations.
At variance, for the 3D HEG the effect of the spin local field
is less pronounced [76], and is nearly the same as in our
calculations with �aā. The effect of the vertex function in
Ref. [78] is rather small, therefore, it would be interesting if
these calculations could be extended towards larger rs, where
even variational and backflow reptation MC results are in
disagreement.

Less accurate are the predictions of different theories for
the effective mass, Fig. 20. The situation gets complicated
due to different methods of its determination adopted in
the literature [58,75]. In order to avoid any ambiguities, the
masses in our approach are obtained per definition, that is by
solving the Dyson equation for εqp(k) and using Eq. (87), and
not by using the self-energy representation

1

m∗ = Z−1
qp

1 + 1
kF

dRe�R(k,εF )
dk

∣∣
k=kF

. (93)

For weakly interacting systems, rs → 0 (high-density
limit), we compare with asymptotic expansions. A general
form [58] valid for 2D and 3D homogeneous electron gases
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FIG. 20. Effective mass for different interaction strengths: �G0W0

dashed line, �G0W0 + �aā solid lines. For 2D HEG, the variational
Monte Carlo (VMC) results are taken from Ref. [73], and the DMC
calculations from Ref. [82]. G+(q) and G+(q) and G−(q) denote
methods based on the local structure factors from Ref. [75] (2D) and
Ref. [76] (3D). GW � is a scheme D of Ref. [78], it includes the
first-order vertex function in the finite temperature formalism. For
BLG, † Ref. [64], ‡ Ref. [79].

reads

m∗ = 1 + ars(b + log rs). (94)

The coefficients a and b in three dimensions can be inferred
from the well-known result of Gell-Mann [83] for the specific
heat. The correction in the linear temperature-dependent term
due to the electron-electron interaction is entirely attributed to
the mass renormalization [84], and therefore

m∗ = 1 + 1

2

α3rs

π

(
log

α3rs

π
+ 2

)
. (95)

In two dimensions, the original derivation is due to Janak [85],
whereas the corrected formula 2 can be found in Saraga and
Loss [88]

m∗ = 1 + α2rs

π

(
log

α2rs

2
+ 2

)
. (96)

The asymptotic expressions are derived with the help of ad-
ditional approximations (e.g., static screening), which quickly
invalidates them as rs increases, see dotted lines in Fig. 20.

Let us now inspect the influence of �aā on the effective
mass, which is the difference between the full and the dashed
lines. One impressive observation is that for the 3D HEG, our
calculations agree again very well with results of Simion and
Giuliani [76], where both local field factors are taken into ac-
count. The charge local field alone tends to underestimate the
effective mass for both systems. A rather poor performance
of the Monte Carlo methods is evident for the 2D HEG as
well, further calculations of effective masses and extensive
comparisons can be found in Drummond and Needs [82].

2There has been some controversies in this derivation. For instance,
some mistakes in the original result were pointed out Refs. [86,87],
but not explicitly corrected; wrong coefficients a and b can be seen
in Refs. [58,81].

FIG. 21. Renormalized Fermi velocity and the quasiparticle
renormalization factor of the monolayer graphene for different values
of the momentum cut-off � = kc/kF as a function of dielectric
constant. The log-log plots are compared with the scalings from
Ref. [90] (dotted lines). † Data from Ref. [63].

However, the difficulties to extract excited state properties
from these methods are understandable, and the work of Eich,
Holzmann, and Vignale [89] provides some justification.

For BLG, the mass renormalization substantially deviates
in comparison with Sensarma et al. [79]. This might be due
to a different procedure based on Eq. (93) adopted in this
work. Large and negative mass renormalization indicates that
for rs � 1 the system goes into a correlated regime.

2. κ as a control parameter

Let us recapitulate first that we focus on the extrinsic
monolayer graphene system here, that is kF > 0. This is
essentially a classical Fermi liquid in marked contrast to the
more complicated intrinsic graphene kF = 0. For the latter we
refer to a comprehensive summary by Tang et al. [91]. While
many conceptual problems do not arise in the extrinsic case,
some important insight can be obtained from the intrinsic
graphene. Consider for instance the expression for the Fermi
velocity renormalization derived in Ref. [90] and plotted in
Fig. 21 (left) as dotted lines:

v∗
F − vF

vF
= −α

π

(
5

3
+ log α

)
+ α

4
log

(
kc

kF

)
. (97)

Here the first part is extrinsic. It describes scattering pro-
cesses in which the initial and the final state belong to the
same band s = s′ = 1 and contains no adjustable parameters.
The second part is intrinsic, it includes scattering processes
changing the band s = −s′ = 1 and therefore depends on the
momentum cutoff. In going to higher perturbative orders, such
as including �aā, more and more processes involve interband
scatterings and the role of intraband scattering is diminishing
(as explicitly demonstrated for BLG, Fig. 17).

Let us inspect the qualitative dependence of the renormal-
ized velocity on the interaction parameter α  2.2/κ (55). At
higher α, the dependence deviates from linear. This is already
evident from the extrinsic part in Eq. (97). The intrinsic part
shows a similar trend when computed beyond the leading
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FIG. 22. Inverse quasiparticle lifetime (90) as a function of mo-
mentum. In the two insets, the values at the band bottom τ (k = 0)−1

is shown for different rs. Red lines additionally show the on-shell
approximation (99) without (dashed) and with (full) �aā.

order [91]. By consistently including other terms, one can im-
prove the agreement of asymptotic theory with our numerical
results.

Generally, it is believed that G0W0 results are already
very accurate [63]. However, higher-order diagrams have been
treated in Ref. [71] and quantum Monte Carlo calculations
were performed in Ref. [91]. All of them are concerned with
the intrinsic case, which is still relevant to some extent as
stated above, however cannot be used for a direct compari-
son. They predict a slightly larger velocity renormalization,
whereas we observe here that the inclusion of �aā leads to
smaller values, Fig. 21.

3. Quasiparticle lifetime

1/τ (k) is an essential ingredient of the quasiparticle spec-
tral function (86). We determine it by solving the Dyson
equation in the complex frequency plane. Also, it can be
obtained from the Fermi golden rule as advocated by Qian
and Vignale [17]. From the discussion in Sec. II we know that
the two are completely equivalent.

In Fig. 22 we summarize our finding for τ (k) computed
for 0 < k < 2kF. In many studies, the “on-shell” imaginary
self-energy is taken as a measure of the inverse lifetime

τ (k)−1 = − Im �R[k, ε(k)], (98)

where ε(k) is the bare dispersion relation. Apart from miss-
ing the Zqp prefactor, this approach is reasonable for k ≈
kF, where the difference between the “true” εqp(k) and the
bare ε(k) spectrum is small. For ξk = |ε(k) − εF|/εF � 1 the
difference between Eq. (89) and the on-shell approximation
(98) is substantial, as can be seen by comparing black and
red lines in Fig. 22. We find, for instance for MLG, that
the approximation incorrectly yields vanishing scattering rates
at the Dirac point (k = 0). One consequence of this is the
diverging inelastic mean free path at zero temperature pre-
dicted in Ref. [92]. On the other hand, Eq. (89) yields a finite
value. It is worth noting that for the two HEG systems the
correction upon the on-shell value is mostly associated with

FIG. 23. Top row: Determination of the ratio τ (ex)(k)−1/τ (d)(k)−1

for the homogeneous electron gas in 2D and 3D illustrating numeri-
cal difficulties of taking the k → kF limit. Bottom row: Comparison
with analytical results of Ref. [17]: ζ (ex)

n (rs )/ζ (d)
n (rs ), see Eqs. (101)

and (102).

the quasiparticle strength Zqp renormalization, whereas for
graphene systems (MLG and BLG) the deviation of εqp(k)
from ε(k) also plays a role.

Only for the two HEG systems the impact of �aā is
appreciable as depicted in the insets of Fig. 22 for τ (0)−1 for
different rs values. The dependence is not always monotonic.
For ξk � 1 we can compare with the asymptotic expressions
from Ref. [45]:

1

τ (k)
= 1

4π
ζ2(rs)ξ 2

k log

(
4

ξk

)
, 2D, (99)

1

τ (k)
= π

8
ζ3(rs)ξ 2

k , 3D. (100)

They have shown that the inclusion of exchange modifies the
density-dependent prefactors ζn without affecting the func-
tional form. However, the fitting of small values with this
form is not a trivial task because of (i) numerical issues and
(ii) our insufficient knowledge of the subleading terms.3 We
follow Qian and Vignale [17], where the coefficients ζn(rs)
are derived:

ζ2(rs) =
[

1 + 1

2

α2
2r2

s

(1 + α2rs)2

]
−
[

1

4
+ 1

2

α2rs

1 + α2rs

]
, (101)

ζ3(rs) = 1

2λ

[
tan−1 λ + λ

1 + λ2

]
− 1

2λ

[
1√

2 + λ2
cot−1 1

λ
√

2 + λ2

]
, (102)

with λ = π1/2/(α3rs)1/2. Here the first brackets originate from
the direct (d) processes and the second from the exchange
(ex). In Fig. 23 we determine the ratio of exchange to direct
scattering rates using the on-shell approximation (99) with
�aā and �G0W0 , respectively. In 3D the agreement with the
analytical results (100) is very good, whereas in 2D we find

3In 2D, there are disagreements in the subleading terms [17,93,94].
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FIG. 24. Imaginary self-energy part of MLG for different inter-
action strengths. The on-shell value is only weakly dependent on κ

in agreement with the analytical result of Polini and Vignale [95].

that the ratio is smaller. One possible explanation of this dis-
crepancy could be the absence of the plasmonic contributions
to the direct scattering in Ref. [17]. Besides ratios, we
also compared absolute values with analytical predictions and
found systematic underestimates. However, this should not be
a surprise because the theory only yields the leading terms.

For MLG, the inverse lifetime follows the same asymptotic
with famous logarithmic correction [57] as for the HEG 2D,
Eq. (99) [92]. Polini and Vignale provided a very pedagogical
derivation of this fact [95], however, exchange contributions
were not included. Our simulations show that they are indeed
small for MLG and BLG systems, Fig. 22. One interesting
conclusion of Ref. [95] is that the scatterings are dominated by
the “collinear scattering singularity,” that is, the momenta of
electrons involved in the scattering are mostly parallel to each
other. We find it interesting because of its apparent similarities
with the scattering processes shaping �2x, see our analysis
in Sec. V B. Another interesting conclusion of the analytical
formula is that the lifetime is independent of the dielectric
constant. While our numerics shows that its only approxi-
mately true for full-fledged calculations using Eq. (89), an
illustration on why this is the case for the on-shell τ−1 is
provided in Fig. 24. There we plot the imaginary self-energy
part for k = 1.6kF and three different dielectric constants
κ = 0.5, 1.0, 2.5 resolving plasmonic and p-h contributions.
Approaching the “on-shell” frequency marked as a vertical
dashed line, the curves essentially fall on top of each other.
The figure also illustrates the difficulties of the numerical
determination of the asymptotic prefactors in Eq. (99) (for
MLG they also depend on the momentum cutoff).

VI. CONCLUSIONS

Hedin’s set of functional equations allows us to expand
the electron self-energy in terms of dressed G and W . The
first term of such an expansion—the GW approximation—
has been successfully applied to many systems. However,
there are cases when this approximation is insufficient and
higher-order terms need to be taken into account. One such

approximation has been derived in our previous work starting
from the first- and second-order SE [4]. �aa + [�cc + �cc̄] +
�aā describes three distinct scattering processes in many-body
systems, comprises all the first- and second-order terms and a
subset of third and fourth order terms, and, crucially, has the
PSD property [6]. In this work we focused on �aā, relevant
for small energy transfers, and evaluated it in the quasiparticle
approximation for the electron GF and RPA for the screened
interaction. We found that screening is important and must be
determined consistently. For inconsistent screening, unphysi-
cal singularities have been observed in �2x, which is the bare
Coulomb limit of �aā. Nonetheless, �2x provides important
corrections to the total energy in full agreement with analytic
results of Onsager et al. [66].

We conducted a comprehensive investigation of the impact
of �aā on quasiparticle properties of the homogeneous elec-
tron gas in 2D and 3D, and of the mono- and bilayer graphene.
The quasiparticle renormalization factor Zqp(kF), the effective
mass m∗, the Fermi velocity v∗

F, and the quasiparticle lifetime
τ (k) have been computed for a range of interaction strengths
controlled by the density rs or the dielectric function κ . In
the weakly correlated limit (rs � 1 or κ � 1) we compared
with asymptotic expansions, and in the correlated regime with
results of other theories such as quantum Monte Carlo and
perturbative calculations including local field factors.

It is known that exchange processes encoded in �aā reduce
the quasiparticle scattering rate. This has been shown in the
asymptotic limit ω → ∞ by Vogt et al. [69] and in the vicinity
of kF by Qian and Vignale [17]. Besides confirming this
finding using a completely different methodology (asymptotic
results in Fig. 15, quasiparticle lifetimes in Fig. 22), we also
observed an appreciable effect of �aā on the effective mass
m∗ and quasiparticle strength Zqp in the 3D HEG.

However, the effect of �aā is rather small in the 2D HEG
(see Figs. 19 and 20). This is rather unexpected. Together
with the high indeterminacy of the Monte Carlo simulations
[73,82] for this system and the high relevance of this model
for prospective materials [36,96], it calls for further inves-
tigations. We have also shown that the effect is small for
extrinsic graphene systems. However, this was anticipated on
the basis of other studies [28,41,48]. There are currently no
calculations for graphene with local field factors. Given their
good performance and robustness for the 2D [75] and 3D [76]
HEG and connections with the density-functional concept
[97], it would be interesting to see how these methods perform
for MLG and BLG.

We further note that �aā is only one of many scattering pro-
cesses taking place in correlated many-body systems. Being
operative in the vicinity of a quasiparticle peak, it is important
for the description of transport properties such as the effective
mass m∗ and quasiparticle lifetimes. Other diagrams, for in-
stance �cc̄, are important for the off-shell spectroscopic prop-
erties, e.g., second plasmonic satellites [8,10,32,35]. Dedi-
cated methods based on the cumulant expansion [33,34,37,38]
can describe them at the reduced numerical cost. The very fact
that different diagrams are operative in distinct spectral ranges
[6,29] and contribute additively to the scattering rate �(k, ω)
makes it possible to separately consider these effects.

Although we have focused on one particular scattering
process, the PSD diagrammatic construction is versatile and
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applicable to realistic multiband systems. Furthermore, the
PSD diagrams remain PSD upon replacement of the zero-
temperature Green’s function with the finite-temperature [98]
or any excited-state Green’s function. This latter possibility
opens the way towards the systematic inclusion of vertex
corrections in the spectral function of systems in a (quasi)
steady state. Investigations in the field of, e.g., molecular
transport and time-resolved (tr) and angle-resolved photoe-
mission spectroscopy (ARPES), are therefore foreseeable in
the near future. The spectral function is indeed a key quantity
to determine the conductance of atomic-scale junctions, and
MBPT calculations have so far been limited to the GW
[99–103] and second-Born [102,103] approximation. Simi-
larly, the tr-ARPES signal is related to the transient spectral
function [104,105] which in semiconductor or insulators can
be evaluated using a steady-state approximation (provided
that the carrier relaxation time is much longer than the probe
pulse). In this context [106] the PSD diagrammatic construc-
tion may provide a powerful tool in the field of light-induced
exciton fluids, whose incoherent plasma phase [105,107,108]
and coherent condensed phase [96,109–114] are currently
under intense investigations.
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APPENDIX A: HILBERT TRANSFORM
AND SPECTRAL FUNCTIONS

The Hilbert transform is an important part of our numerical
procedure. We define

H[x](t ) = 1

π
P
∫ ∞

−∞
dτ

x(τ )

t − τ
. (A1)

It has the properties H[H[x]](t ) = −x(t ), H−1[x](t ) =
−H[x](t ), and is computed using FFT. In particular we need
the relation between the real part of the correlation self-energy
and the rate function �(k, ω), Eq. (1), which in our approach
is computed by the Monte Carlo method,

Re �R
c (k, ω) = 1

2 H[�(k)](ω), (A2)

1
2�(k, ω) = − Im �R

c (k, ω). (A3)

There are the following possibilities to obtain positive spectral
functions starting from the second-order self-energy:

∓i�≶
aa(k, ω) � 0, (A4a)

∓i(�≶
cc + �

≶
cc̄ )(k, ω) � 0, (A4b)

∓i(�≶
aa + �

≶
aā)(k, ω) � 0. (A4c)

Consequently, the sum of all contributions given by Eq. (8)
is also PSD. By using the method from our earlier work [4],
these results can also be generalized to any dressed GFs that
possess a positive spectral function.

APPENDIX B: EQUILIBRIUM PROPAGATORS

We define the bare electron propagators as averages of the
field operators in the Heisenberg picture over the noninteract-
ing state

g<(1, 2) = i〈ψ̂†
H (2)ψ̂H (1)〉0,

g>(1, 2) = −i〈ψ̂H (1)ψ̂†
H (2)〉0,

fulfilling the symmetry relations

ig≶(1, 2) = [ig≶(2, 1)]∗. (B1)

Analogously, the density-density correlators are defined with
respect to the interacting ground state

χ>(1, 2) = −i〈�n̂H (1)�n̂H (2)〉,
χ<(1, 2) = −i〈�n̂H (2)�n̂H (1)〉,

with the density deviation �n̂H (1) = n̂H (1) − 〈n̂H (1)〉. They
fulfill the symmetries

iχ≶(1, 2) = [iχ≶(2, 1)]∗. (B2)

Because the screened interaction is directly related to χ ,

W (1, 2) = v(1, 2) +
∫∫

d (3, 4) v(1, 3)χ (3, 4)v(4, 3),

(B3)

all the symmetry and analytic properties also hold for W .
For homogeneous systems the momentum-energy repre-

sentation is useful, which we formulate here in Fermi units
(kF, εF). The Kubo-Martin-Schwinger conditions allow us to
write the lesser/greater propagators in terms of the retarded
ones,

g<(x, ζ ) = −2inF(ζ ) Im gR(x, ζ ), (B4a)

g>(x, ζ ) = −2i(nF(ζ ) − 1) Im gR(x, ζ ); (B4b)

W <
0 (y, ξ ) = +2inB(ξ ) Im W R

0 (y, ξ ), (B4c)

W >
0 (y, ξ ) = +2i[nB(ξ ) + 1] Im W R

0 (y, ξ ). (B4d)

nF/B are the Fermi/Bose distribution functions, which at zero
temperature reduce to simple step-functions

nF(ζ ) = θ (1 − ζ ), n̄F(ζ ) = 1 − nF(ζ ); (B5a)

nB(ξ ) = −θ (−ξ ) = θ (ξ ) − 1, nB(ξ ) + 1 = θ (ξ ). (B5b)

For the bare propagators we furthermore have

gR(x, ζ ) = 1

ζ − ε(x) + iη
, (B6)

and we use a spectral representation of the screened interac-
tion

W R
0 (y, ξ ) = v(y) +

∫ ∞

0
dω

2ωC(y, ξ )

(ξ + iη)2 − ω2
, (B7)
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where v(y) is the bare Coulomb interaction. It fulfills the
symmetry property[

W R
0 (y, ξ )

]∗ = W R
0 (y,−ξ ). (B8)

Comparing it with the Hilbert transform of the inverse dielec-
tric function

1

εR(y, ξ )
= 1 −

∫ ∞

0

dω

π
Im

[
1

εR(y, ω)

]
2ω

(ξ + iη)2 − ω2
,

(B9)

we have for the spectral function of the continuous spectrum

C(y, ω) = v(y) Im

[
− 1

π

1

εR(y, ω)

]
, (B10)

and for plasmons C(y, ω) = C(y)δ[ω − (y)] with

C(y) = v(y)

[
∂Re εR(y, ξ )

∂ξ

∣∣∣∣
ξ=(y)

]−1

. (B11)

The time-ordered (W T
0 ≡ W −−

0 ) and the anti-time-ordered
(W T

0 ≡ W ++
0 ) screened interactions read

W T
0 (y, ξ ) = v(y) +

∫ ∞

0
dω

2ωC(y, ω)

ξ 2 − (ω − iη)2
, (B12)

W T
0 (y, ξ ) = −[W T

0 (y, ξ )
]∗

, (B13)

with W T
0 (y,−ξ ) = W T

0 (y, ξ ).

APPENDIX C: POLARIZABILITY OF MLG

The dynamical polarization of graphene at finite doping
has been computed by Hwang and Das Sarma [49] and by
Wunsch et al. [50]. We present here for completeness the
functions Gr ,

Gr (y, ξ ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 1A
π + G<(z1) 2A
π + G<(z1) + G<(z2) 3A
−G>(z2) + G>(−z1) 1B
−G>(z2) 2B
−G>(z2) + G>(z1) 3B

(C1)

and Gi,

Gi(y, ξ ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

G>(z2) − G>(−z1) 1A
G>(z2) 2A
0 3A
0 1B
π + G<(z1) 2B
π 3B

(C2)

that define the dielectric function in Eqs. (56) and (58) with

z1 = ξ − 2

y
, z2 = ξ + 2

y
, (C3)

and

G>(z) = z
√

z2 − 1 − arccosh(z), (C4)

G<(z) = z
√

1 − z2 − arccos(z). (C5)

Notice that A domains are for ξ < y and B domains are for
ξ > y as shown in Fig. 5.

APPENDIX D: POLARIZABILITY OF BLG

We start by defining the four critical lines

r1 = y2 + 2y + ξ + 2; r2 = y2 + ξ ;

r3 = y2 − 2y + ξ + 2; r4 = y2

2
+ ξ .

Furthermore, we introduce some auxiliary functions:

q1 = y2 − 2ξ

4ξ
log 2 + r4

2ξ
log |r4| − r2

2ξ
log |r2|θ (y − 1)

+
(

r2

4ξ
log |1 + ξ | + y2

4ξ
log |y2|

)
sgn(y − 1), (D1)

q2 =
[ |r2|

4ξ
log

∣∣∣∣ (2 + ξ )
√

r2r2 + ξ
√

r1r3

(2 + ξ )
√

r2r2 − ξ
√

r1r3

∣∣∣∣
−1

4
log

∣∣∣∣ √
r1r3 + 2 + ξ√

r1r3 − (2 + ξ )

∣∣∣∣][θ (−r1) − θ (r3)], (D2)

p1 =
[

r2

2ξ
arctan

(
(2 + ξ )r2

ξ
√−r1r3

)
+1

2
arccos

(
2 + ξ

y
√−2r4

)]
θ (−r1r3), (D3)

p2 = πr2

4ξ
sgn(r2)θ (−r1r3) + πr4

ξ
θ (y − 2)θ (−r4)θ (r3)

− πy2

2ξ
θ (−r1). (D4)

With the help of these definitions

Re �2(y, ξ ) = q1 + q2; Im �2(y, ξ ) = p1 + p2. (D5)

APPENDIX E: SOLUTION OF THE DYSON EQUATION

Let us recapitulate possible approaches to the solution of
the Dyson equation

G(k, ω) = g(k, ω) + g(k, ω)�(k, ω)G(k, ω) (E1)

following Ref. [30]. In the preceding sections the self-energy
is computed using bare propagators (B4) � = �[g,W0]. This
approach has an inherent problem that the k = kF state is no
longer a sharp quasiparticle state. We still can improve the
one-shot calculations by applying some rigid shift �μ to all
poles,

G0(k, ω) = 1

ω − ε0(k) − �μ + iη
= g(k, ω − �μ). (E2)

The respective self-energy then reads

�[G0,W0](k, ω) = �[g,W0](k, ω − �μ), (E3)

allowing us to rewrite the quasiparticle approximation for the
Dyson’s equation

ε(k) = ε0(k) + �[g,W0][k, ε(k) − �μ], (E4)

ε̃(k) = ε0(k) − �μ + �[g,W0][k, ε̃(k)], (E5)

Thus, the quasiparticle approximation for G reads

G(k, ω) = 1

ω − ε̃(k)
. (E6)
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Now we demand that the solution of the Dyson equation at
k = kF takes the form

G(kF, ω) = 1

ω − μ + iη
= G0(kF, ω) (E7)

and coincides with the improved propagator G0 (E2) repre-
senting a sharp quasiparticle peak at the chemical potential.
The consistency condition (E7) provides the interpretation of
�μ as the correlation shift of the chemical potential

�μ = μ − εF, (E8)

and allows us to determine it. To this end we insert Eq. (E7)
into Eq. (E4) leading to

μ = εF + Re �[G0,W0](kF, μ). (E9)

This point and the connection of μ to the total energy per elec-
tron is explained in Ref. [115] (p. 82). Combining Eq. (E8)
with Eq. (E9) we obtain

�μ = Re �[g,W0](kF, εF). (E10)
Thus, �μ is expressed solely in terms of the self-energy for
k = kF and ω = εF. In the case of MLG and BLG having two
bands, one additionally sets the band index s consistent with
the doping (typically the chemical potential is above the Dirac
point implying s = +1).

[1] L. Hedin, Phys. Rev. 139, A796 (1965).
[2] P. Minnhagen, J. Phys. C 7, 3013 (1974).
[3] P. Minnhagen, J. Phys. C 8, 1535 (1975).
[4] G. Stefanucci, Y. Pavlyukh, A.-M. Uimonen, and R. van

Leeuwen, Phys. Rev. B 90, 115134 (2014).
[5] A.-M. Uimonen, G. Stefanucci, Y. Pavlyukh, and R. van

Leeuwen, Phys. Rev. B 91, 115104 (2015).
[6] Y. Pavlyukh, A.-M. Uimonen, G. Stefanucci, and R. van

Leeuwen, Phys. Rev. Lett. 117, 206402 (2016).
[7] B. Holm and U. von Barth, Phys. Rev. B 57, 2108 (1998).
[8] J. M. Riley, F. Caruso, C. Verdi, L. B. Duffy, M. D. Watson,

L. Bawden, K. Volckaert, G. van der Laan, T. Hesjedal, M.
Hoesch, F. Giustino, and P. D. C. King, Nat. Commun. 9, 2305
(2018).

[9] B. Holm and F. Aryasetiawan, Phys. Rev. B 56, 12825 (1997).
[10] M. Guzzo, J. J. Kas, L. Sponza, C. Giorgetti, F. Sottile, D.

Pierucci, M. G. Silly, F. Sirotti, J. J. Rehr, and L. Reining,
Phys. Rev. B 89, 085425 (2014).

[11] D. C. Langreth, Phys. Rev. B 1, 471 (1970).
[12] Y. Pavlyukh, Sci. Rep. 7, 504 (2017).
[13] K. Balzer, S. Bauch, and M. Bonitz, Phys. Rev. A 82, 033427

(2010).
[14] E. Perfetto, A.-M. Uimonen, R. van Leeuwen, and G.

Stefanucci, Phys. Rev. A 92, 033419 (2015).
[15] M. Schüler and Y. Pavlyukh, Phys. Rev. B 97, 115164 (2018).
[16] P. Ziesche, Ann. Phys. 16, 45 (2007).
[17] Z. Qian and G. Vignale, Phys. Rev. B 71, 075112 (2005).
[18] C.-O. Almbladh, J. Phys.: Conf. Ser. 35, 127 (2006).
[19] Y. Pavlyukh, M. Schüler, and J. Berakdar, Phys. Rev. B 91,

155116 (2015).
[20] M. Schüler, Y. Pavlyukh, P. Bolognesi, L. Avaldi, and J.

Berakdar, Sci. Rep. 6, 24396 (2016).
[21] A. Grüneis, M. Marsman, J. Harl, L. Schimka, and G. Kresse,

J. Chem. Phys. 131, 154115 (2009).
[22] X. Ren, N. Marom, F. Caruso, M. Scheffler, and P. Rinke,

Phys. Rev. B 92, 081104(R) (2015).
[23] B. I. Lundqvist, Phys. Kondens. Mater. 7, 117 (1968).
[24] G. E. Santoro and G. F. Giuliani, Phys. Rev. B 39, 12818

(1989).
[25] E. H. Hwang and S. Das Sarma, Phys. Rev. B 77, 081412(R)

(2008).
[26] M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-

Barnea, and A. H. MacDonald, Phys. Rev. B 77, 081411(R)
(2008).

[27] R. Sensarma, E. H. Hwang, and S. Das Sarma, Phys. Rev. B
84, 041408(R) (2011).

[28] V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H.
Castro Neto, Rev. Mod. Phys. 84, 1067 (2012).

[29] Y. Pavlyukh, A. Rubio, and J. Berakdar, Phys. Rev. B 87,
205124 (2013).

[30] G. Stefanucci and R. van Leeuwen, Nonequilibrium Many-
Body Theory of Quantum Systems: A Modern Introduction
(Cambridge University Press, Cambridge, 2013).

[31] G. Strinati, Riv. Nuovo Cimento 11, 1 (1988).
[32] F. Aryasetiawan, L. Hedin, and K. Karlsson, Phys. Rev. Lett.

77, 2268 (1996).
[33] J. J. Kas, J. J. Rehr, and L. Reining, Phys. Rev. B 90, 085112

(2014).
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