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Crystal fields of lithium rare-earth tetrafluorides and multiplet splitting of the +3 rare-earth ions

Leila Mollabashi and S. Jalali-Asadabadi *

Department of Physics, University of Isfahan (UI), Isfahan 81746-73441, Iran

(Received 15 March 2020; revised 19 June 2020; accepted 30 June 2020; published 14 July 2020)

Construction of an effective Hamiltonian including crystal field parameters (CFPs) by an accurate ab initio
technique can provide a powerful approach for the measurements of tiny magnetic fields. Here, we first calculate
the crystal field parameters (CFPs) of trivalent rare-earth magnetic ions R3+ in lithium rare-earth tetrafluorides
LiRF4 (R = Tb, Dy, Ho, Er, Tm, and Yb) by the density functional theory plus the novel CFP scheme employing
open-core treatment and Wannier functions. The behaviors of the real and imaginary parts of the CFPs are studied
through the series of compounds. Then, by the calculated CFPs, we find the splittings of the energy levels of the
+3 rare-earth ions by constructing an effective Hamiltonian for each case. The multiplet splittings of the +3
rare-earth ions are found to be consistent with those predicted by group theory and Hund’s rules apart from
some multiplet splitting of the Tm3+ and Dy3+ ions. For the former case, we have compared our theoretical
results with the available empirical splittings of the multiplets. However, for the latter case due to the lack of
experimental splittings, we have first empirically obtained the splittings of the multiplets employing the available
experimental CFPs of the LiDyF3+:Dy3+ single crystal and then compared our empirical data with our ab initio
theoretical predictions. The deviations of these two ions from the predictions of group theory and Hund’s rules
are found to be consistent with the experimental data. This validates the results reported and the reliability of the
procedures performed to produce them. To simplify the effective Hamiltonian by reducing the number of CFPs,
it is sometimes possible to use the D2d symmetry for some systems having S4 symmetry. However, by evaluating
the matrix elements of the Stevens Hamiltonian term by term appeared in the Stevens CF Hamiltonian, it is
shown that the actual S4 symmetry may provide more reliable results than its successor D2d symmetry for the
systems under study having S4 symmetry. It can be predicted that this approach can be used for developing and
improving sensitive magnetometer devices which, in turn, can play a key role in diverse areas.
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I. INTRODUCTION

Electronic structures and magnetic properties of the
lanthanide-based compounds may be highly sensitive to their
crystalline environments [1]. These features can considerably
vary by their crystal electric fields (CEF) [1]. The ability
to measure fine and localized magnetic fields plays a key
role in developing sensitive magnetometer devices which are
important in a variety of areas such as physics, chemistry,
material science, and biology [2]. Furthermore, splittings of
energy levels of the +3 rare-earth ions due to their crystalline
electric fields are of significant importance for the determina-
tion of various physical properties such as magnetic, electric,
optical, and thermal properties [3]. These properties can be
effectively studied by simulating the crystal fields utilizing
an appropriate model Hamiltonian for a given system. To
this end, the crystal fields exerted on the 4 f electrons of the
rare earth elements immersed in a crystalline environment can
be simulated above the Kondo temperature by an effective
atomiclike Hamiltonian, including free ion interaction and
single-particle crystal field Hamiltonians [4]. Therefore, the
applications of the atomiclike Hamiltonian may be convenient
for the study of the physical properties of the rare-earth-based
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materials [5]. So far, different theoretical and semiempirical
Hamiltonians have been proposed to model the crystal field
Hamiltonian, such as point charge, superposition, and over-
lapping models [6–8]. A review of these models can be found
in Ref. [9]. The performance and reliability of these models
depend on their constituent terms which, in turn, themselves
depend on the crystal field parameters (CFPs) [5]. Therefore,
the CFPs play vital roles in the predictions of reliable physical
properties and would be determined accurately.

The CFPs can be determined by fitting to the experimen-
tal data or empirically by employing a model Hamiltonian
or theoretically by performing ab initio calculations. The
semiempirical models require initial values to estimate the
CFPs [10]. Furthermore, the semiempirical models suffer
from some difficulties such as selecting a suitable reference
system, fitting algorithms, and trapping into the local minima
during the fitting process [10]. Moreover, the experimental
data used in the semiempirical models may be insufficient to
determine all the CFPs (without employing machine learn-
ing algorithms) especially when the local symmetry is low.
In other words, this is a well-known overparameterization
drawback of experimental approaches. Michael Slota et al.
have presented a multitechnique approach to overcome the
latter experimental problem by a combination of various
experimental spectroscopic and magnetometric techniques
[11]. In addition, since the 1960s it has become clear that
not only is CEF a simple electrostatic effect, but CEF also
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includes a complicated quantum mechanics effect. Thus since
then, it has become common to perform ab initio CEF
calculations. So far, CFPs have been calculated for various
solid crystals, chemical molecules, and complexes in the last
decades [4,12–22]. Most of the ab initio CEF calculations
have been performed based on the density functional theory
(DFT) [23,24] since 1964. Although the regular DFT-based
methods have no longer needed the initial values to begin the
CEF calculations, they have suffered from their well-known
shortcoming in properly treating with the strongly correlated
systems [25–29]. Hence, the CFPs predicted by the regular
DFT-based methods could be far from the experimental data
without special treatments. To overcome the problems of ab
initio CFP’s calculations, recently Pavel Novák and coworkers
[4] proposed an approach by expressing the local Hamiltonian
in the basis of Wannier functions [30–33] and expanding it in
a series of spherical tensor operators using open-core [34–36]
treatment. This approach has been successfully applied to
calculate CFPs in rare-earth impurities, aluminates, cobaltites,
gallates, manganites, and fluorides [4,37–43].

One of the objectives of this work is then to systematically
explore the CFPs of trivalent rare earth magnetic ions (the +3
rare-earth) in lithium rare-earth tetrafluorides LiRF4 (R = Tb,
Dy, Ho, Er, Tm, and Yb) employing the latter advanced ab
initio CFP approach. Although the CFPs of these compounds
have been extensively reported by empirical methods [44–51],
the CFP method has not been yet applied to explore the
CFPs of LiRF4 (R = Tb, Dy, Ho, Er, Tm, and Yb) com-
pounds. Moreover, these complex fluorides LiRF4 compounds
have shown a variety of fascinating properties. For instance,
LiYF4 is well known as a host laser doped with trivalent
rare earths [52]. Quantum phase transition was reported by
Bitko and Rosenbaum [53] in LiHoF4 at T = 0.5 K. The
transverse susceptibility was measured by Rucker and Pflei-
derer [54] for LiHoF4 at a magnetic field where quantum
phase transition occurred. Uniaxial dipolar ferromagnetism in
LiTbF4 and LiHoF4 was observed and reported by Beauvillain
and coauthors [55]. Kraemer et al. established LiErF4 as
a model dipolar-coupled antiferromagnetic with planar spin
-anisotropy and a quantum phase transition performing accu-
rate neutron scattering, specific heat capacity, and magnetic
susceptibility measurements [56]. It is well known that NMR
of nuclei of Van Vleck paramagnetic systems can be measured
at low temperatures. LiTmF4 was reported to be a Van Vleck
paramagnetic material. Therefore, Abubakrirov et al. mea-
sured, for the first time, the magnetization of the single crystal
at the temperature range of 2–300 K [57]. Babkevich et al.
[58] measured ac susceptibility, specific heat, and neutron
scattering for a dipolar-coupled antiferromagnet LiYbF4. Ro-
manova and coworkers [59] studied temperature and magnetic
field dependences of the magnetization of LiDyF4 single
crystal employing a dc-SQUID magnetometer. Salaün et al.
measured IR and Raman active modes in LiRF4 (R = Ho, Er,
Tm, Yb) and LiYF4/a [60].

Furthermore, in this work, we also aim to study all the
ground-state crystal field multilevels and its excitation levels
by diagonalization of the effective Hamiltonian, including
crystal field, spin-orbit coupling, and 4 f -4 f interactions. The
site symmetry of the +3 rare-earth ions in these compounds is
S4 which results in seven independent parameters, where three

(two) of them are real (complex); each complex parameter
includes two real parameters, viz. 3 + 2 × 2 = 7. It is worth
mentioning that the semiempirical methods could not yield
all seven parameters, because of the inadequate experimental
data required by the empirical models [4]. To overcome
the problem, the S4 symmetry is commonly approximated
by the simpler D2d symmetry where D2d requires only five
parameters [44,49,61–64]. However, in this work, the actual
S4 symmetry is considered and all of its seven parameters
are obtained. It is shown that D2d is not an appropriate
approximation for the compounds in question. Our results,
in agreement with the available experimental data, show that
the CFP approach can provide a reliable method for further
studies of the crystal fields.

To achieve the above goals, here, we have extracted the
Wannier functions [30–33] required by the CFP approach
from the Bloch’s eigenstates calculated by DFT [23,24] em-
ploying a full-potential method applying open core [34–36]
calculations. By the open core [34–36] treatment, the 4 f
electrons are made totally localized and thence their hy-
bridizations to the valance states are ignored. To this end,
we calculate the electronic structures and project the results
into the 4 f -electrons subspaces. By this, we first confine the
4 f electrons into the core region. Therefore, the 4 f electrons
involve only the spherical part of the density of 4 f electrons
and the potential does not have any nonspherical compo-
nents of 4 f -states on the R sites. Thus, self-interaction error
and nonphysical interactions of 4 f electrons with nonspher-
ical potential produced are prevented to occur [4]. Second,
the 4 f electrons are released from the core region towards the
valence states after determining the relative locations of the
4 f states with respect to the other valance states. By this, 4 f
states are allowed to be hybridized with other valence states.
We extract the CFPs by expanding the local Hamiltonians
in terms of spherical harmonics. To improve the results, we
control the strength of the hybridization by a single � param-
eter, as implemented in the CFP scheme [4]. In order to reach
the objectives more promptly and straightforwardly as well as
to elucidate the key and necessary procedures applied, three
appendices are provided where details of various parts of the
works performed are represented and accordingly discussed.

II. THEORETICAL BACKGROUND

The underlying theory of the crystal field is compactly
reformulated here in such a way that it can be used to demon-
strate how our theoretically calculated Wybourne CFPs are
converted to the available experimental and empirical Stevens
CFPs. This is necessary for comparison and whence validity
of the scheme used and the data reported in this work.

The effective Hamiltonian, Ĥeff, including the free ion
interaction Hamiltonian, ĤA, and the single-particle crystal
field Hamiltonian, ĤCF, is defined as [65]:

Ĥeff = ĤA + ĤCF, (1)

where ĤA, consisting of a uniform shift of energy in a central
field for 4 f electrons and electron-electron as well as spin-
orbit interactions, is invariant under rotation and almost inde-
pendent of the material, see Ref. [65] for details. In contrast to
the ĤA, the ĤCF can be aspherical and thence strongly material
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dependent. In the Wybourne notation, ĤCF can be written as
[66]:

ĤCF =
kmax∑
k=0

k∑
q=−k

Bk
qĈk

q , (2)

where Ĉk
q , as the Racah spherical tensor operators of rank k

operating on 4 f electrons, can be expressed in terms of the
spherical harmonics Ŷ k

q as:

Ĉk
q =

√
4π

2k + 1
, Ŷ k

q . (3)

Regardless of the transition terms of ĤCF between states with
different angular momenta l’s, the crystal field parameters Bk

q
can be nonzero in Eq. (2) only if kmax = 2l . Thus, for our 4 f
cases with l = 3, kmax is 6. The values of q are also limited
by the site symmetry of the +3 rare-earth ions in Eq. (2).
The symmetry of our case is S4, see Appendix A. For the S4

symmetry, the crystal field Hamiltonian can be expanded as
follows:

ĤCF = B2
0Ĉ2

0 + B4
0Ĉ4

0 + B6
0Ĉ6

0

+ B4
−4Ĉ

4
−4 + B4

4Ĉ4
4 + B6

−4Ĉ
6
−4 + B6

4Ĉ6
4 . (4)

In general, the Bk
q (Ĉk

q ) are complex parameters (operators).
The Wybourne Bk

q parameters are not very suitable for per-
forming comparison with the Stevens parameters, because Bk

q
are complex while the Stevens parameters are real. Fortu-
nately, due to the hermiticity of the ĤCF which leads to Bk

−q =
(−1)qBk∗

q , the complex Bk
q parameters can be transformed to

a set of real Bk
q parameters by defining new Ĉk

q operators as
[67]:

Ĉk
±|q| =

{
Ĉk

q , if q = 0,
√±1

[
Ĉk

−|q| ± (−1)|q|Ĉk
|q|

]
, otherwise.

(5)

In this case, Eq. (2) can be represented using Ĉk
q, as defined in

Eq. (5), and the real crystal field parameters Bk
q:

ĤCF =
kmax∑
k=0

k∑
q=−k

Bk
qĈ

k
q. (6)

Furthermore, if q in Bk
−q = (−1)qBk∗

q is even, as it is for S4

symmetry expressed in Eq. (4), there are �[Bk
q] = �[Bk

−q] and
�[Bk

q] = −�[Bk
−q] relations between the real part �[Bk

q] and
imaginary part �[Bk

q] of the complex Bk
q parameters for every

k. One can also see that Bk
q are real parameters for q = 0

and every k, viz. Bk
0 = (−1)0Bk∗

0 = Bk∗
0 or similarly �[Bk

0] =
−�[Bk

0] which gives �[Bk
0] = 0. Consequently, Eq. (4) can be

represented by:

ĤCF = B2
0Ĉ2

0 + B4
0Ĉ4

0 + B6
0Ĉ6

0 + �[
B4

4

](
Ĉ4

4 + Ĉ4
−4

)
− i�[

B4
4

](
Ĉ4

4 − Ĉ4
−4

) + �[
B6

4

](
Ĉ6

4 + Ĉ6
−4

)
− i�[

B6
4

](
Ĉ6

4 − Ĉ6
−4

)
, (7)

By considering Eq. (5), Eq. (7) can be represented in terms of
Ĉk

q:

ĤCF = B2
0Ĉ

2
0 + B4

0Ĉ
4
0 + B6

0Ĉ
6
0

+�[
B4

4

]
Ĉ4

4 + �[
B4

4

]
Ĉ4

−4

+�[
B6

4

]
Ĉ6

4 + �[
B6

4

]
Ĉ6

−4. (8)

By Eqs. (6) and (8), the complex crystal field parameters B̂k
q

can be related to the real crystal field parameters B̂k
q:

Bk
q =

⎧⎪⎨
⎪⎩

Bk
q, if q = 0,

�[
Bk

q

]
, if q > 0,

�[
Bk

q

]
, if q < 0.

(9)

Let us turn our attention to the Stevens notation [68]. The
crystal field Hamiltonian in Stevens notation can be written as
[1,5,6]:

ĤCF =
kmax∑
k=0

k∑
q=−k

Ak
q

〈
rk

〉
�k (J )Ôk

q(Jx, Jy, Jz, J ) (10)

≡
kmax∑
k=0

k∑
q=−k

B̃k
q(J )Ôk

q(Jx, Jy, Jz, J ), (11)

where B̃k
q(J ) ≡ Ak

q〈rk〉�k (J ) like Bk
q in Eq. (6) are real,

Ak
q〈rk〉 are the standard notations of the crystal field parame-

ters for k and q, �k (J ) which depend on the electronic charge
distribution are the Stevens factors for the ground multiplets
corresponding to the total angular momentum quantum num-
ber J usually denoted by αJ ,βJ and γJ for k = 2, 4 and 6,
respectively, and Ôk

q(Jx, Jy, Jz, J ) are the Stevens equivalent
operators [1]. In the Stevens equivalent notation [68], x, y,
and z of the crystal field potential energy were replaced by
their equivalent Cartesian components of the total angular
momentum operators Jx, Jy, and Jz, respectively, while, for
convenience, r2 was directly replaced by J (J + 1), as the
eigenvalues of J2 operator, instead of its equivalent J2 opera-
tor, where h̄ was assumed to be unity. Thus, J is just a constant
number, as explicitly indicated in the caption of Table VII in
the original Stevens’ paper [68]. However, Jx, Jy, and Jz are
still operators, e.g., see Eq. (1) in page 211 and the next equa-
tions in page 212 of his paper [68]. The expectation values
of these operators should be evaluated under |4 f ; L, S, J, Jz〉
or |4 f ; L, S, Sz, Jz〉 states, as performed in Tables 2 to 4 of
Ref. [68]. Details of the conversion between the Wybourne
and Stevens notations are represented elsewhere in Appendix
B employing the above formulation.

III. OBSTACLES AND CFP METHODOLOGY

There are two main problems to reliably predict the CFPs
by the density functional theory (DFT) calculations [23,24]
for the rare-earth-based compounds under study in this work.
The first problem is that the accuracy of the CFPs calculations
can considerably depend on the self-interactions of the 4 f
electrons. This dependency arises from the interactions of
the 4 f electrons with their own aspherical potentials in the
valence states. The second problem which can affect the
accuracy of the CFPs calculations is the separation energies of
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FIG. 1. Total and projected DOSs calculated by PBE-GGA during the first step of the CFP scheme employing (a) to (d) regular and (e) to
(f) open core treatments for LiErF4. Fermi levels are set to zero, as shown by the vertical dashed lines.

the 4 f orbitals of the rare earth ions with respect to the 2p and
2s orbitals of the fluorine ligands. The separation energies can
influence the degree of hybridization between the 4 f orbitals
of the rare earths and the 2p and 2s orbitals of the ligands
which in turn can play a key role in the determination of the
CFPs. This is a general problem that does not occur only for
the CFPs calculations. This lies in the heart of the effective
single-particle DFT approach and naturally occurs when it is
applied to study the strongly correlated systems employing
the standard local density approximation (LDA) [25,69,70]
or the generalized gradient approximation (GGA) [71–74]. In
this case, it usually fails to well predict the positions of the
densities of states (DOSs) in the strongly correlated systems.
For such systems, a variety of band correlated schemes such
as LDA+U [27,75–77] have been proposed. However, the
problem becomes more serious, if we note that LDA+U
cannot be applied to the 4 f electrons of our rare-earth-based
compounds for the study of their CFPs. Although the position
of the 4 f -DOS can be adjusted by the LDA+U method,
it cannot be used here because the number of electrons is
fixed in the crystal field optical excitations. On the contrary,
the LDA+U is specifically designed for the study of those
properties, including photoemission or inverse photoemission
spectroscopy in which the number of electrons changes.

The above problems can be fixed by the CFP scheme
developed by Pavel Novák et al. [4] to calculate CFPs. The
open-core treatment [4,34–36], which can be specifically used
by the augmented plane-waves (APW) based methods such as
APW plus local orbital (APW+lo) [78–80], constitutes the
first step of this scheme, as discussed in Appendix C. By
this treatment, the 4 f electrons can be transferred from the
valence region to the core region and confined there [compare
Figs. 1(a) to 1(d) with Figs. 1(e) to 1(h)]. The open core
DOSs show that the 4 f -Er states are completely absent from
the valence region, as should be due to the transportation
of the 4 f electrons from the valence to the core region, as
imposed by the open-core treatment. By such confinement,
the 4 f electrons cannot (can only) interact with the aspherical

(spherical) component of the electron charge density in the
valence (core) region, as can be seen from Figs. 1(e) to 1(h).
Therefore, the open-core method can solve the first problem,
as it prevents the nonphysical self-interactions of the 4 f
electrons with themselves.

Furthermore, Figs. 1(f)–1(h) show that the d-Er-DOS and
s-Li-DOS dominate in the conduction region, while the 2p-
F-DOS dominates in the valance region. Therefore, the 2p-F
states can be considered as more suitable candidates to be hy-
bridized by the 4 f -Er states after releasing the corresponding
4 f electrons from the core region towards the valence region,
as will be permitted in the following second step of the CFP
scheme. Similar behaviors to the DOSs of LiErF4 sample, not
shown here, can be observed for the other LiRF4 compounds
under study. Hence, the 2p-F states can remain more suitable
to hybridize with the 4 f electrons of the R ions in the other
LiRF4 compounds in question.

In the second step of the CFP scheme [4], the confined
4 f orbitals are released from the core region towards the
valence region and allowed to be hybridized with the 2p and
2s orbitals of the fluorine ligands, as discussed above. To solve
the second problem, a suitable repulsive orbital dependent
potential is properly constructed and applied, see Fig. 2(a).
The relative separation energies between the 4 f orbitals of the
rare-earth ions and the 2p and 2s orbitals of the ligands can be
adjusted, as shown in Fig. 2, by an adjustable parameter �,
as expressed by Eq. (12), engineered as the only controllable
parameter in the CFP method for this purpose. Consequently,
the second problem can be also solved, as the separation
energies can be changed and adjusted to control the degree
of hybridizations.

In practice, the orbital dependent potential and the ad-
justable � parameter in the CFP approach plays a role to
mimic the role of U parameter in the LDA+U functional
or α parameter in the hybrid functionals [81–84], though in
principle these approaches and their parameters are physically
different. Here, by the � parameter of the CFP scheme, the
charge transfer between the rare earth and ligand orbitals
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FIG. 2. Projected DOSs calculated by PBE-GGA in the second
step of the CFP scheme (a) after releasing the 4 f electrons from
the core and applying an orbital dependent potential to repel the
states towards deeper energies with respect to the Fermi surface
and (b) imposing an optimized � parameter to adjust the separation
energies and hybridization between 4 f -Er and the fluorine states, p-F
and s-F, in LiErF4.

can be controlled. In this work, we have optimized the �

parameter for all the cases under study to improve the results,
see Fig. 4.

Details of calculations are presented in Appendix C keep-
ing in mind the above problems and the CFP methodology to
resolve them. In this work, we will show that the CFP scheme
can be a suitable replacement for the inapplicable LDA+U to
study crystal field effects in the rare-earth based systems, see
Sec. IV and its subsections therein.

IV. RESULTS AND DISCUSSIONS

A. Effects of hybridization on CFPs

The calculated nonzero independent complex CFPs with
q � 0 in cm−1 unit are tabulated in Table I. These CFPs
are presented in Wybourne notation, as expressed by Eq. (2)
which is simplified to Eq. (4) for the S4 symmetry. The other
dependent CFPs with q < 0 can be straightforwardly obtained
from Bk

−q = (−1)qBk∗
q relation, as discussed in Sec. II. The

independent CFPs are obtained without and with different hy-
bridization degrees imposed by different � values following
the procedure discussed in Appendix C. From Table I, we
notice that by switching on the hybridization from |�| = 0.0
to 0.2 Ry, first the absolute values of the CFPs (|CFPs|)
decrease compared to when the hybridization switch is off in
all the cases with the exception of B2

0 in LiTmF4. After turning
on the hybridization, however, the results then show a reverse
behavior so that |CFPs| decrease as the |�| increases for all
the compounds except for B2

0 in LiYbF4 from |�| = 0.2 to
0.3 Ry. The size of the CFPs reduction decreases at each step
compared to its previous step. This implies that the effects
of the hybridizations on the CFPs are gradually reduced by
increasing the value of the � parameter. In Fig. 3, the real
and imaginary parts of the CFPs are plotted as functions of
the compounds. The CFPs shown in this figure are calculated
including the optimized hybridization parameter � = −0.5
Ry in Wybourne notation as formulated in Eq. (4). This figure
is presented to show the dependencies of the CFPs on the rare-
earths ions in the LiRF4 series of the compounds. The results,
as shown in Fig. 3, show that the B2

0 and B6
0 as well as the

imaginary parts of B4
−4 and B6

−4 are all positive, while the B4
0

TABLE I. Calculated complex independent crystal field parame-
ters (Bk

q with q � 0), as expressed by Eq. (4), in unit cm−1 without
and with different hybridization degrees, as imposed by different �

values in Ry, in Wybourne notation for the the +3 rare-earth ions in
LiRF4 compounds. The Bk

−q, as shown in Fig. 4, can be obtained by
Bk

−q = (−1)qBk∗
q and the data presented in this table.

LiRF4 � B2
0 B4

0 �[B4
4] �[B4

4] B6
0 �[B6

4] �[B6
4]

LiTbF4 0 514 −888 −783 −697 24.2 −781 −576
−0.2 570 −1114 −1033 −938 34.7 −1013 −739
−0.3 527 −926 −858 −773 26.8 −811 −597
−0.4 504 −817 −747 −672 21.7 −700 −510
−0.5 485 −728 −667 −599 19.0 −616 −448
−0.6 470 −658 −605 −543 17.3 −553 −400

LiDyF4 0 413 −891 −770 −630 73.3 −777 −541
−0.2 466 −1180 −1072 −897 114 −1079 −739
−0.3 432 −986 −885 −735 86.5 −862 −593
−0.4 409 −854 −765 −634 71.2 −731 −502
−0.5 393 −759 −681 −563 61.4 −641 −439
−0.6 381 −685 −617 −509 54.5 −573 −392

LiHoF4 0 424 −753 −683 −604 53.7 −663 −459
−0.2 480 −1048 −1007 −920 80.8 −999 −662
−0.3 445 −853 −813 −729 57.7 −763 −525
−0.4 425 −744 −698 −623 48.3 −643 −440
−0.5 409 −657 −617 −550 42.0 −557 −381
−0.6 398 −591 −557 −496 37.8 −495 −337

LiErF4 0 393 −743 −652 −537 64.3 −635 −432
−0.2 460 −1101 −1022 −877 110 −1037 −674
−0.3 421 −883 −812 −679 76.6 −772 −526
−0.4 400 −763 −691 −575 62.3 −644 −433
−0.5 383 −671 −608 −505 53.2 −554 −372
−0.6 371 −601 −547 −454 46.9 −489 −328

LiTmF4 0 329 −349 −338 −310 18.9 −281 −191
−0.2 229 −1268 −1157 −1348 440 −1913 −563
−0.3 449 −998 −916 −873 83.5 −956 −571
−0.4 408 −788 −727 −679 53.1 −698 −440
−0.5 384 −660 −615 −569 39.3 −559 −363
−0.6 370 −575 −541 −499 31.8 −474 −313

LiYbF4 0 359 −579 −570 −523 31.1 −509 −362
−0.2 374 −926 −948 −1019 98.3 −1014 −543
−0.3 392 −754 −770 −719 34.2 −694 −482
−0.4 370 −634 −645 −599 28.3 −561 −391
−0.5 355 −553 −562 −521 24.9 −477 −333
−0.6 345 −494 −504 −466 22.8 −419 −292

and the real parts of B4
±4, B6

±4 as well as the imaginary parts of
B4

4 and B6
4 are all negative, for all the compounds. The smallest

CFP is B6
0 in each of the compounds. The |�[B4(6)

±4 ]| CFPs
are slightly larger than |�[B4(6)

±4 ]| CFPs for all the compounds.
The positive values of �[B4

−4] and �[B6
−4] monotonically but

slowly decrease through the compounds apart from �[B4
−4]

which jumps up suddenly at LiTmF4. The negative values of
�[B4

4] and �[B6
4] monotonically but slowly increase through

the compounds apart from �[B4
4] which drops down suddenly

at LiTmF4 and �[B6
4] which a little bit falls down at LiDyF4.

The similarity in behaviors between negative and positive
values confirms the relation Bk

−q = (−1)qBk∗
q due to the her-

miticity of the Hamiltonian discussed in Sec. II. Thus, it can
be more compactly stated that all the �[B4

−4] and �[B6
−4] as

045120-5



LEILA MOLLABASHI AND S. JALALI-ASADABADI PHYSICAL REVIEW B 102, 045120 (2020)

FIG. 3. Dependencies of the (a) real and (b) imaginary parts
of the CFPs expressed in Wybourne notation by Eq. (4) on the
rare earths R through the series of the LiRF4 compounds including
hybridization parameter � = −0.5 Ry.

well as |�[B4
4]| and |�[B6

4]| decrease through the series of
the compounds apart from the aforementioned exceptions.
Almost partially the same behaviors and exceptions can be
seen in the positive B2

0, B4
0, and B6

0 as well as real parts of the
negative B6

±4 and B4
±4.

B. Reduction of the number of CFPs

The reduction of the number of CFPs plays a crucial role
in the comparison of the theoretical CFPs calculated by the ab
initio methods with the CFPs extracted from the experimental
data by the empirical methods. This returns to the well-known
overparameterization shortcoming of the experimental data.
This means that for the systems with low symmetry, more
experimental data than the available measured data are often
needed for determining all the CFPs of the systems by means
of the semiempirical models.

In this work, we have calculated all seven CFPs of the
crystal field Hamiltonian with S4 symmetry in the Wybourne
notation in cm−1, see Table I. However, we have noticed that
only five or six of the CFPs have been often experimentally
or empirically determined at least for the cases in question.
Therefore, in order to compare our calculated CFPs with

the experimental and/or empirical CFPs, we have reduced
the number of CFPs. The reduction can be performed by
two different approaches. Here, only a summary needed to
discuss the results is presented below and the finer details
of the reduction procedures are left for Appendix B. We
have also noticed that most of the experimental data for the
cases under study have been reported in the Stevens notation.
Thus, before reducing the number of CFPs, we have converted
our Wybourne CFPs and the other few experimental CFPs
reported in Wybourne notation to Stevens notation. Due to the
similar reason, the Stevens CFPs are converted from cm−1 to
meV. For details of the conversion procedures, one may refer
to the latter Appendix.

In the first approach, we have used an appropriate uni-
tary Rudowicz transformation [85] in such a way that one
of the CFPs of the Hamiltonian is forced to be zero, see
Table X. This can be an exact analytical approach for the
CEF Hamiltonian considered in this study, namely Eq. (1).
To this end, we have determined the rotational angle ϕ by
Eq. (B9) for each case using the CFPs so that one of the CFPs
becomes zero in the rotated system. The converted Wybourne
CFPs in cm−1 to the Stevens CFPs in meV together with
the calculated corresponding rotational angles are tabulated in
Table XI. We have used the results presented in this table as an
intermediate step (and whence not shown here) for obtaining
the final CFPs, as to be presented and discussed subsequently
in Sec. IV E. The results presented in this intermediate ta-
ble show that the value of ϕ depends on the compound,
though the variations of ϕ are not too much throughout the
series. Despite the latter point about the slow variation of
the ϕ, however, since the rotational angle is generally case
dependent, ϕ should be evaluated for each case individually.
Furthermore, the results show that the angle ϕ increases when
the optimized � = −0.5 Ry parameter is included. It is worth
noticing that no approximation is used in this approach here
in this work. This can be considered as an advantage for this
method in the absence of external fields, dipolar interactions,
Zeeman coupling, and the other interactions because with
no approximation the number of CFPs of the S4 symmetry
can be reduced from 7 CFPs to 6 CFPs only by finding the
suitable rotational angle ϕ. In spite of this advantage in the
absence of the additional interactions, however, sometimes
more reductions in the number of CFPs are needed to be
performed. In this case, although the following approach is not
an exact method, it may be considered as another alternative
to overcome the lack of sufficient experimental data.

In the second approach, the main symmetry S4 is approxi-
mated by an auxiliary symmetry D2d for the cases considered
here. The symmetry group D2d can be a suitable successor
for this purpose because it is closer to and more symmetric
than the primary group S4. In fact, S4 is a subgroup of D2d.
Two terms with q < 0 in the Stevens CEF Hamiltonian for
the S4 symmetry, as written in Eq. (11), are not included
in the corresponding Stevens CEF Hamiltonian for the D2d

symmetry, as expressed in Eq. (B10). It is like the B̃4(6)
−4

parameters are eliminated from the effective Hamiltonian by
considering the successor D2d instead of the actual subgroup
S4. This is due to the higher symmetry of D2d than S4. Thus,
the number of CFPs of the auxiliary symmetry group is less
than that of the original symmetry group. The number of CFPs
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is five for D2d, which can be more suitable when there are not
enough experimental data to determine all 7 CFPs of the S4 or
6 CFPs of the rotated S4 used in the first approach. Although
this is an approximating method, it can be used for estimating
the CFPs in the absence of enough experimental data. The
accuracy of this approximation is subsequently verified in
Sec. IV C for the compounds under question.

Finally, it would be noticed that even the first approach
cannot be considered as an exact method in the presence of an
external magnetic field, dipolar coupling, Zeeman effect, and
so on. This is so because in the presence of additional inter-
actions the ϕ angle may not be straightforwardly determined.
However, there are no such limitations for the CFP scheme.

C. Matrix elements of Stevens Hamiltonian term by term

It can be seen from Table XI that the B̃2
0 is the largest

parameter in every compound. From this incomplete observa-
tion, at first glance, one may conjecture that the B̃2

0 parameter
can more significantly affect the physical properties derived
from the effective Hamiltonian than the other parameters. In
order to verify this conjecture, we analytically evaluate matrix
elements individually appearing in HCF which is defined
to be the matrix elements of the Stevens Hamiltonian op-
erator, viz. HCF =: 〈J, M ′

J | ĤCF(J+, J−, Jz, J ) |J, MJ〉 where
the Stevens Hamiltonian operator therein ĤCF is given by
Eq. (11). To this end, first, the matrix elements of the Stevens
equivalent operators Ok

q are obtained, where Ok
q stands for

〈J, M ′
J | Ôk

q(J+, J−, Jz, J ) |J, MJ〉. In evaluating Ok
q for every

given q, k, J , and MJ , the values of M ′
J are selected such

that the corresponding matrix elements Ok
q do not vanish,

see Table II. To obtain the matrix elements Ok
q , we have

utilized the Stevens equivalent operators Ôk
q(J+, J−, Jz, J ) as

tabulated in Table IX in terms of J+, J−, Jz operators and
X ≡ J (J + 1) eigenvalues. To act J+, J−, Jz operators on the
|J, MJ〉 states of the systems, we have used the correspond-
ing Clebsch-Gordan coefficients and assumed h̄ to be unity.
According to the Stevens equivalent notation, however, the
X ≡ J (J + 1) term, appearing in the Stevens operators Ôk

q
listed in Table IX, is treated only as a constant eigenvalue of
the J2 operator, see also the notes on the J+, J−, Jz operators
and J (J + 1) eigenvalue after Eq. (11) in Sec. II. Our derived
matrix elements with positive q are validated by Refs. [6,86].
The validity of our derived matrix elements with negative q
are verified by Refs. [87,88]. Second, we have multiplied the
obtained Ok

q by B̃k
q. The latter B̃k

q CFPs are taken from the
intermediate Table XI, where all the 7 CFPs are presented.
Ultimately, the matrix elements for each term of the Stevens
CEF Hamiltonian, namely B̃k

qO
k
q , are presented in Table II.

The results show that only the matrix elements |B̃6
0O

6
0 | are

approximately one order of magnitude smaller than the other
matrix elements for all the cases apart from LiTbF4:Tb3+. For
the latter case, |B̃6

0O
6
0 | is two orders of magnitude smaller

than the other matrix elements, see Table II. However, the
results of this table also show that the matrix elements
|B̃2

0O
2
0 | are almost of comparable order with those of |B̃4

0O
4
0 |

and |B̃4(6)
±4 O4(6)

±4 |. This shows that the conjecture may not be
generally correct. Indeed, both of the counterparts of the
product of B̃k

qO
k
q included in the CEF Stevens Hamiltonian

should be considered and not merely one of them, namely, B̃k
q

counterpart as imperfectly considered in the above conjecture.
Moreover, the results, as tabulated in Table II, also show

that the matrix elements |B̃4
−4O

4
−4| are of the same order of

magnitude with those of |B̃4
−4O

4
−4|. Our results show that

|B̃6
−4O

6
−4| are a little bit smaller than the other matrix ele-

ments only for the LiTbF4:Tb3+ case. For the other cases,
|B̃6

−4O
6
−4| are comparable with the other matrix elements. This

shows that ignoring the former matrix elements with q < 0
compared to the latter matrix elements having q > 0 may not
be completely correct, because at least they are in the same
order. Therefore, it can be cautiously stated that the actual S4

symmetry may be more reliable than the approximated D2d

symmetry for the LiRF4 (R = Tb, Dy, Ho, Er, Tm, and Yb)
systems having S4 symmetry.

From the discussions presented in Secs. IV B and IV C, it
would be seen that the ab initio CFP scheme used here can
be considered as a modern powerful technique. It is due to the
fact that the CFP scheme can reproduce all the crystal field
parameters of the systems under study with no need to rotate
the system by an angle or approximate the symmetry group of
the system by a simpler or a more symmetric successor group
of the main group.

D. Tuning of hybridization parameter

As discussed in Sec. III, one of the obstacles for the study
of the CEF in the rare-earth-based compounds using an ab
initio approach is that LDA+U method [27,75–77] cannot be
applied. To overcome this problem, we implement a recent
new theoretical-computational method, i.e., the so-called CFP
scheme [4]. In this method, there is a parameter � which can
be used for tuning the degree of hybridization. Such tuning
is arbitrary and can be performed at the end of the second
step of this method. All the steps of the CFP scheme [4], as
performed in this work, are discussed in detail elsewhere in
Appendix C. Here, we only concentrate on tuning the degree
of hybridization between the 4 f orbitals of the rare earths
and the 2p and 2s orbitals of the ligands. Even though such
tuning is optional, we show that it can play a crucial role in
the accuracy of the CFPs calculated for the compounds under
question by this scheme.

To tune the hybridization parameter, we first estimate the
� parameter as follows [4,39,41]:

|�| ≈ min[Eexc(4f n±1, N ∓ 1) − Egro(4f n, N)], (12)

where min stands for the minimum of, N = Nval − n is the
total number of valence electrons (Nval) excluded the number
of f electrons (n), Egro(4f n, N) is the total ground state energy,
and Eexc(4f n±1, N ∓ 1) is the total excited state energy for
which the upper (lower) sign shows that one of the Nval

electrons is added to (subtracted from) the 4 f orbital. In
contrast to the LDA+U scheme, it is worth it to recall that in
the CFP scheme the total number of valence electrons remains
unchanged after excitation, i.e., n ± 1 + N ∓ 1 = n + N =
Nval, compared to that of the ground state, i.e., n + N =
Nval, which is required for the CFPs calculations. This shows
that the CFP scheme can provide an appropriate applicable

045120-7



LEILA MOLLABASHI AND S. JALALI-ASADABADI PHYSICAL REVIEW B 102, 045120 (2020)

TABLE II. Matrix elements B̃k
qO

k
q appearing in the matrix elements of the Stevens Hamiltonian HCF for the +3 rare-earth ions in the

LiRF4 series of the compounds, where Ok
q =: 〈J, M ′

J | Ôk
q(J+, J−, Jz, J ) |J, MJ〉 and HCF =: 〈J, M ′

J | ĤCF(J+, J−, Jz, J ) |J, MJ〉. The Stevens
Hamiltonian operator ĤCF is expressed in Eq. (11) and the B̃k

q parameters are given in Table XI. Stevens equivalent operators Ôk
q(J+, J−, Jz, J )

in terms of J+, J−, Jz operators and X ≡ J (J + 1) eigenvalue are given in Table IX.

R3+ 〈J, MJ ||J, MJ〉 B̃2
0O

2
0 B̃4

0O
4
0 B̃6

0O
6
0 〈J, M ′

J ||J, MJ〉 B̃4
4O

4
4 |B̃4

−4O
4
−4| B̃6

4O
6
4 |B̃6

−4O
6
−4|

Tb3+ 〈6,±6||6, ±6〉 −20.1 −8.20 −0.03 〈6, 2||6, −2〉 −8.90 7.99 −1.82 1.32
〈6,±5||6, ±5〉 −10.3 4.97 0.07 〈6,±3||6, ∓1〉 −8.45 7.58 −1.20 0.87
〈6,±4||6, ±4〉 −1.82 7.95 −0.01 〈6, ±4||6, 0〉 −7.14 6.40 0.32 0.24
〈6,±3||6, ±3〉 4.56 4.47 −0.05 〈6,±5||6, ±1〉 −5.17 4.03 1.85 1.34
〈6,±2||6, ±2〉 9.12 −0.91 −0.03 〈6, ±6||6, ±2〉 −2.83 2.54 2.25 1.63
〈6,±1||6, ±1〉 11.9 −5.30 0.02

〈6, 0||6, 0〉 12.8 −6.96 −0.05
Dy3+ 〈15/2, ±15/2||15/2, ±15/2〉 −16.3 11.4 0.44 〈15/2, ±5/2||15/2, ∓3/2〉 10.2 8.43 6.20 4.24

〈15/2, ±13/2||15/2, ±3/2〉 −9.77 −3.80 −0.80 〈15/2, ±7/2||15/2, ∓1/2〉 9.54 7.88 3.47 2.38
〈15/2, ±11/2||15/2, ±11/2〉 −4.18 −9.23 −0.27 〈15/2, ±9/2||15/2, ±1/2〉 8.26 6.82 −1.00 0.69
〈15/2, ±9/2||15/2, ±9/2〉 0.465 −8.39 0.40 〈15/2, ±11/2||15/2, ±3/2〉 6.50 5.37 −5.52 3.78
〈15/2, ±7/2||15/2, ±7/2 4.185 −4.22 0.59 〈15/2, ±13/12||15/2, ±5/2〉 4.44 3.68 −8.08 5.53
〈15/2, ±5/2||15/2, ±5/2〉 6.98 0.96 0.31 〈15/2, ±15/2||15/2, ±7/2〉 2.32 1.91 −7.03 4.8
〈15/2, ±3/2||15/2, ±3/2〉 8.83 5.39 −0.17
〈15/2, ±1/2||15/2, ±1/2〉 9.76 7.89 −0.51

Ho3+ 〈8,±8||8, ±8〉 −6.76 7.40 −0.61 〈8, 2||8, −2〉 6.70 5.07 −10.4 7.14
〈8,±7||8, ±7〉 −4.22 −1.85 0.99 〈8,±3||8, ∓1〉 6.51 5.80 −8.44 5.77
〈8,±6||8, ±6〉 −2.03 −5.55 0.45 〈8, ±4||8, 0〉 5.94 5.29 3.08 2.11
〈8,±5||8, ±5〉 −0.17 −5.55 −0.38 〈8,±5||8, ±1〉 5.05 4.50 3.93 2.69
〈8,±4||8, ±4〉 1.35 −3.42 −0.75 〈8, ±6||8, ±2〉 3.91 3.48 10.1 6.94
〈±3, 8|| ± 3, 8〉 2.53 −0.43 −0.54 〈8, ±6||8, ±2〉 2.64 2.35 10.1 8.89
〈8,±2||8, ±2〉 3.38 2.42 −0.01 〈8,±8||8, ±4〉 1.36 1.21 10.59 7.25
〈8,±1||8, ±1〉 3.88 4.41 0.50

〈8, 0||8, 0〉 4.05 5.13 0.70
Er3+ 〈15/2, ±15/2||15/2, ±15/2〉 6.33 −7.57 0.77 〈15/2, ±5/2||15/2, ∓3/2〉 −6.83 5.68 −10.7 7.19

〈15/2, ±13/2||15/2, ±13/2, 〉 3.80 2.52 −1.38 〈15/2, ±7/2||15/2, ∓1/2〉 −6.38 5.31 6.01 4.03
〈15/2, ±11/2||15/2, ±11/2〉 1.63 6.13 −0.46 〈15/2, ±9/2||15/2, ±1〉 −5.53 4.60 −1.73 1.16
〈15/2, ±9/2||15/2, ±9/2〉 −0.18 5.57 0.70 〈15/2, ±11/2||15/2, ±3/2〉 −4.35 3.62 −9.55 6.41
〈15/2, ±7/2||15/2, ±7/2〉 −1.63 2.80 1.03 〈15/2, ±13/2||15/2, ±5/2〉 −2.97 2.47 −14.0 9.39
〈15/2, ±5/2||15/2, ±5/2〉 −2.71 −0.64 0.53 〈15/2, ±15/2||15/2, ±7/2〉 −1.56 1.29 −12.2 8.17
〈15/2, ±3/2||15/2, ±3/2〉 −3.44 −3.58 −0.30
〈15/2, ±1/2||15/2, ±1/2〉 −3.80 −5.24 −0.89

Tm3+ 〈6,±6||6, ±6〉 15.8 −9.92 −0.28 〈6, 2||6, −2〉 −10.9 10.1 −8.25 3.54
〈6,±5||6, ±5〉 7.92 6.01 0.71 〈6,±3||6, ∓1〉 −10.4 9.56 −5.44 2.33
〈6,±4||6, ±4〉 1.44 9.62 −0.10 〈6, ±4||6, 0〉 −8.76 8.08 1.47 0.63
〈6,±3||6, ±3〉 −3.6 5.41 −0.56 〈6,±5||6, ±1〉 −6.34 5.85 8.38 3.59
〈6,±2||6, ±2〉 −7.2 −1.10 −0.28 〈6, ±6||6, ±2〉 −3.47 3.20 10.2 4.37
〈6,±1||6, ±1〉 −9.36 −6.41 0.26

〈6, 0||6, 0〉 −10.1 −8.42 0.52
Yb+3 〈7/2, ±7/2||7/2, ±7/2〉 14.68 6.22 0.04 〈7/2, ±5/2||7/2, ∓3/2〉 13.1 12.2 4.47 3.12

〈7/2, ±5/2||7/2, ±5/2〉 2.10 −11.54 −0.18 〈7/2, ±7/2||7/2, ∓1/2〉 8.95 8.31 −6.54 4.57
〈7/2, ±3/2||7/2, ±3/2〉 −6.29 −2.66 0.32
〈7/2, ±1/2||7/2, ±1/2〉 −10.5 7.99 −0.18

approach for the CFP prediction compared to the inapplicable
LDA+U approach, since in the latter approach the Nval varies.

After estimating an initial value for the �, we then elabo-
rate to improve it as much as possible by varying the � param-
eter and comparing our results with the reliable experimental
values to reach the desired results. Since the � parameter can
be case dependent, we perform this procedure to optimize the
� parameters for all the compounds under study individually
as follows, see Table III.

The absolute values of the � parameters are estimated
by Eq. (12) and found that they are larger than 0.2 for all
the cases. The data given in Tables III and IV show that the
CFPs are in better agreement with the experimental and/or
empirical results, if the hybridization � parameter lies in the
[−0.6, −0.3 Ry] interval for Tb3+ ion, in the [−0.6, −0.4
Ry] interval for Dy3+, Ho3+, and Er3+ ions, in the [−0.5,
−0.5 Ry] interval for Tm3+, and in the 0.0 plus [−0.5, −0.4
Ry] interval for Yb3+ ion. To find an optimized value for the
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TABLE III. Transformed crystal field parameters (CFPs) as expressed by Eq. (B7) in meV for different degrees of hybridization �

parameters for the +3 rare-earth in LiRF4 compounds in Stevens notation.

LiRF4 � 103 × B̃2
0 103 × B̃4

0 103 × B̃′4
4 103 × B̃′4

−4 106 × B̃6
0 106 × B̃′6

4 106 × |B̃′6
−4|

LiTbF4 0 −322 −1.68 −16.6 0.00 −0.210 94.3 8.69
−0.2 −357 −2.11 −22.2 0.00 −0.302 122 13.1
−0.3 −330 −1.76 −18.3 0.00 −0.233 97.8 9.69
−0.4 −316 −1.55 −16.0 0.00 −0.188 84.0 8.68
−0.5 −304 −1.38 −14.2 0.00 −0.165 73.9 7.63
−0.6 −294 −1.25 −12.9 0.00 −0.150 66.2 6.99

LiDyF4 0 −163 0.817 7.64 0.00 0.588 −85.0 6.60
−0.2 −183 1.08 10.7 0.00 0.914 −117 11.3
−0.3 −170 0.904 8.83 0.00 0.693 −93.8 8.51
−0.4 −161 0.783 7.58 0.00 0.571 −79.5 7.66
−0.5 −155 0.696 6.78 0.00 0.492 −69.7 6.31
−0.6 −150 0.628 6.14 0.00 0.437 −62.3 5.61

LiHoF4 0 −58.4 0.389 3.93 0.00 −0.538 90.1 10.7
−0.2 −66.1 0.541 5.89 0.00 −0.810 133 20.8
−0.3 −61.3 0.440 4.72 0.00 −0.578 103 13.3
−0.4 −58.5 0.384 4.04 0.00 −0.484 87.0 11.2
−0.5 −56.3 0.339 3.57 0.00 −0.421 75.3 9.71
−0.6 −54.8 0.305 3.22 0.00 −0.378 66.8 8.73

LiErF4 0 61.8 −0.511 −4.86 0.00 1.03 −138 12.6
−0.2 72.4 −0.758 −7.79 0.00 01.76 −221 30.7
−0.3 66.3 −0.608 −6.10 0.00 1.23 −167 16.5
−0.4 63.0 −0.525 −5.18 0.00 0.999 −139 14.2
−0.5 60.3 −0.462 −4.55 0.00 0.853 −120 12.2
−0.6 58.4 −0.414 −4.09 0.00 0.752 −105 10.8

LiTmF4 0 206 −0.883 −9.71 0.00 −0.821 164 24.0
−0.2 143 −3.21 −37.6 0.00 −19.7 1 816 529
−0.3 281 −2.25 −26.8 0.00 −3.63 530 120
−0.4 255 −1.99 −21.0 0.00 −2.31 395 75.8
−0.5 240 −1.67 −17.7 0.00 −1.71 320 55.2
−0.6 232 −1.45 −15.6 0.00 −1.38 264 35.6

LiYbF4 0 707 15.5 174 0.00 35.7 −7981 997
−0.2 736 24.9 313 0.00 113 −14014 4797
−0.3 771 20.2 237 0.00 39.2 −10768 1563
−0.4 728 17.0 198 0.00 32.5 −8720 1227
−0.5 699 14.8 172 0.00 28.5 −7420 1031
−0.6 679 13.3 154 0.00 26.1 −6514 902

� parameter, however, the consistency of the splittings with
the experimental data should be also considered. From the
calculated splittings of the energy levels, as shown in Fig. 4,
it can be seen that the sensitivity of the splittings to the �

parameter for Yb3+ ion is less than that for Tm3+ ion but more
than that for Tb3+, Dy3+, Ho3+, and Er3+ ions, especially
in higher multiplets. Furthermore, the splittings calculated by
� = −0.5 Ry show good agreement with the experimental
data for Tb3+, Ho3+, Er3+, Tm3+, and Yb3+ ions, see Fig. 4.
Moreover, the splittings are also consistent with the experi-
mental data even in the absence of hybridization for the Yb3+

ion.
Taking all the above points deduced from Tables III and IV

as well as Fig. 4 into consideration, we conclude that the most
suitable hybridization parameter can be � = −0.5 Ry for all
the compounds in this study. Therefore, in the subsequent
sections, the optimized value of −0.5 Ry is imposed for
the hybridization � parameter for obtaining the final results
presented in this work.

E. Comparison to experimental CFPs

The CFPs of the +3 rare-earth ions in the LiRF4 series of
the compounds are transformed using the Czeslaw Rudowicz
transformation relations employing the first approach dis-
cussed in Sec. IV B, for more details see also Appendix B. The
results are represented in Table IV excluding and including the
optimized hybridization � parameters for all the compounds
in the Stevens notation as expressed by Eq. (B7). As can be
seen from Table IV, all the B̃′4

−4 CFPs are zero, as expected
from the first approach discussed in Sec. IV B. This shows
the CFPs are correctly transformed which in turn implies that
rotational angles ϕ are properly calculated. The experimental
and/or empirical data are also given for comparison in Ta-
ble IV.

Our calculated CFPs for the Tm3+ ion in its own home-
crystal LiTmF4 are found in agreement with the experi-
mental results reported by Jenssen et al. [98] for Tm3+

ion in the so-called YLF single crystal, i.e., LiYF4, see
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TABLE IV. Transformed crystal field parameters (CFPs) of the +3 rare-earth in meV without and with the optimized hybridization �

parameters for LiRF4 compounds in Stevens notation as expressed by Eq. (B7) together with the experimental and empirical results. The
results calculated in the present work are denoted by *. The transformations are performed by considering the Stevens CFPs and the case
dependent ϕ rotational angle, as tabulated in Table XI, as well as the transformation relations represented in Table X.

LiRF4 � 103 × B̃2
0 103 × B̃4

0 103 × B̃′4
4 103 × B̃′4

−4 106 × B̃6
0 106 × B̃′6

4 106 × |B̃′6
−4| Ref.

LiTbF4 0.0 −322 −1.68 −16.6 0.00 −0.210 94.3 8.69 *
−0.5 −304 −1.38 −14.2 0.00 −0.165 73.9 7.63 *

−279 −1.44 −17.8 0.00 −0.0347 74.2 59.4 [89]
−304 −0.843 −18.4 0.00 −0.747 90.9 31.0 [61]
−250 −1.53 −16.4 0.00 0.278 69.0 21.1 [90]
−384 −1.65 −17.7 0.00 0.356 71.8 0.00 [64]a

LiDyF4 0.0 −163 0.817 7.64 0.00 0.588 −85.0 6.60 *
−0.5 −155 0.696 6.78 0.00 0.492 −69.7 6.31 *

−130 0.646 7.19 0.00 −0.565 −54.8 8.34 [96]
−126 0.609 7.25 0.00 −0.590 −55.4 6.27 [59]
−142 0.676 7.22 0.00 −0.280 −63.0 0.00 [64]b

LiHoF4 0.0 −58.4 0.389 3.93 0.00 −0.538 90.1 10.7 *
−0.5 −56.3 0.339 3.57 0.00 −0.421 75.3 9.71 *

−64.8 0.426 4.54 0.00 0.100 85.6 16.9 [49]
−52.2 0.323 3.59 0.00 0.522 68.5 0.00 [44]
−73.6 0.478 4.69 0.00 0.100 86.1 11.8 [61]
−60.0 0.350 3.60 0.00 0.400 70.0 9.80 [97]
−57.9 0.309 3.51 0.00 0.540 63.1 17.1 [47]
−53.2 0.325 3.63 0.00 0.331 77.3 0.00 [64]c

LiErF4 0.0 61.8 −0.511 −4.86 0.00 1.03 −138 12.6 *
−0.5 60.3 −0.462 −4.55 0.00 0.853 −120 12.2 *

67.8 −0.678 −6.83 0.00 −0.080 −133 24.3 [49]
49.2 −0.390 −4.14 0.00 −0.899 −92.6 0.00 [44]
76.3 −0.568 −6.37 0.00 −1.72 −132 23.4 [61]
47.8 −0.53 −5.39 0.00 −0.961 −120 0.00 [62]
60.2 −0.120 −4.33 0.00 −1.90 −85.0 22.7 [56]
58.1 −0.536 −5.53 0.00 −0.0063 −106 23.8 [47]
51.2 −0.515 −5.84 0.00 −0.305 −114 0.00 [64]d

LiTmF4 0.0 206 −0.883 −9.71 0.00 −0.821 164 24.0 *
−0.5 240 −1.67 −17.7 0.00 −1.71 320 55.2 *

225 −1.54 −17.9 0.00 7.52 307 0.00 [98]e

230 −1.81 −19.4 0.00 2.78 300 57.6 [91]
231 −1.82 −17.9 0.00 2.82 302 0.0236 [57]
212 −1.59 −19.3 0.00 1.69 285 0.00 [64]f

LiYbF4 0.0 707 15.5 174 0.00 35.7 −7981 997 *
−0.5 699 14.8 172 0.00 28.5 −7420 1031 *

737 16.5 176 0.00 −18.4 −4070 0.00 [95]g

720 16.4 177 0.00 −18.4 −5150 0.00 [63]h

457 7.75 196 0.00 0.00 −9780 0.00 [47]
878 15.0 189 0.00 −26.4 −6693 0.00 [64]i

aLiYF4:Tb.
bLiYF4:Dy.
cLiYF4:Ho.
dLiYF4:Er.
eLiYF4:Tm.
fLiYF4:Tm.
gLiYF4:Yb.
hLiYF4:Yb.
iLiYF4:Yb.

Table IV. They [98] first analyzed the corresponding ab-
sorption and fluorescence spectra and then determined the
energy levels of the ground state 4 f 12 electronic configura-
tion at temperatures between 5 to 77 K using the electric-
dipole selection rules in the D2d symmetry to consider

some of the missing lines and the relative intensities of
the observed lines. Eventually, they [98] extracted the CFPs
by fitting the Hamiltonian to the corresponding experimen-
tal data and allowing us to vary the parameters of the
Hamiltonian to reach a least-root-mean-square deviation of
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FIG. 4. Splittings of energy levels of the +3 rare-earth ions relative to the lowest energies of the multiplets calculated by considering
different degrees of hybridizations imposing different � parameters versus indexes of eigenstates n for (a) LiTbF4, (b) LiDyF4, (c) LiHoF4,
(d) LiErF4, (e) LiTmF4, and (f) LiYbF4 compounds compared to the experimental data taken from (a) Refs. [48,49,89,90], (c) Refs. [44,47,49],
(d) Refs. [44,47,62], (e) Refs. [47,91], and (f) Refs. [47,63,92–95].

16.9 cm−1 between the calculated and experimental energy
levels.

Similarly, our results are found comparable with the
results reported by Cheng Jun et al. [64]. They [64],
using a parametric effective Hamiltonian and employing

the f-shell program package, analyzed the energy level
parameters by the least-squares linear and/or second-
order polynomial fitting to the experimental energy level
data sets across the lanthanide ions in the YLF single
crystal.
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These consistencies with the above experimental data
[64,98] show that although, for example, the crystal LiTmF4

(LiTbF4) used in present work differs from the host crystal
YLF used in Ref. [98] (Ref. [64]) for the Tm3+ (Tb3+) ion,
the results are comparable to each other. This might show that
the crystalline environment of the host crystal LiYF4 for the
guest ion Tm3+ (Tb3+) may not be probably very different
from that of the LiTmF4 (LiTbF4) for the Tm3+ (Tb3+) ion.

For most of the other compounds, as included in Table IV,
almost the same consistency can be seen. The other pieces of
evidence would be also seen taking the Yb case into account.
Dong et al. [95] and Feng et al. [63] calculated CFPs using
optical spectra reported by Miller et al. [93] and Uehara et al.
[92] for LiYF4:Yb3+ with D2d site symmetry. These reconfirm
that the YLF might be a suitable fluoride laser host for the +3
rare-earth ions when the +3 rare-earth ions occupy the Y site.

In addition to the above agreement with the experimental
measurements taking the +3 rare-earth as the guest ions in
the host crystal YLF, the calculated CFPs are also compared
and found consistent with the available experimental data
measured for the +3 rare-earth ions in their own home-
crystal LiRF4 [44,47,49,56,57,59,61,61,62,89–91,96,97], see
Table IV. At the end of this subsection, it is worth pointing
out that we have obtained the whole set of seven crystal
field parameters, a “new” agreement with experimental and
empirical data, and we have also provided a comprehensive
comparison to results in the literature.

F. Electronic configuration

Electronic configurations of the ions play a key role like
a toolbox for the splitting discussion presented in the next
subsection. Therefore, electronic configurations, to be readily
accessible, are tabulated in Table V using the Hound’s laws
for the ground and excited states of the +3 rare-earth ions
in the LiRF4 compounds, since we frequently refer to this
table in Sec. IV G. This table includes the +3 rare-earth ions,
numbers of 4 f electrons (N4f), total spin angular momentums
(S), total orbital angular momentums (L), total angular mo-
mentums (J = L + S), term values (2S+1XJ ), and irreducible
representations (�) of the ions in the LiRF4 compounds. The
numbers of the 4 f electrons are obtained after removing three
electrons from the neutral atoms. For example, the number
of 13 4 f electrons for the Yb3+ ion is obtained by ionizing
the Yb:[Xe]4f146s2 neutral atom to the Yb3+:[Xe]4f136s0

positively charged ion, as indicated in the last or before the
last row of the second column of Table V. The values of
S, L, and J are determined in agreement with the values
reported in Ref. [47]. The term values are then determined
employing the latter S, L, and J . For instance, the 2S+1XJ

for Yb3+ are obtained to be 2F5/2 and 2F7/2, where X ≡
F symbol stands for L = 3, and 2S + 1 = 2 × 1/2 + 1 = 2,
as well as 5/2 = |3 − 1/2| = |L − S| � J � |L + S| = |3 +
1/2| = 7/2 ⇒ J = 5/2 and 7/2. All the S, L, J , and term
values are similarly determined using the above procedure for
the other ions indicated in Table V.

G. Comparison to experimental spectra

The splittings of the energy levels are calculated for all the
compounds using a variety of � parameters. The effects of

TABLE V. Electronic configurations of the ground and excited
states of the +3 rare-earth ions in the LiRF4, including the +3
rare-earth ions, numbers of 4 f electrons (N4f), total spin angular
momentum numbers (S), total orbital angular momentum numbers
(L), total angular momentum numbers (|L − S| � J � |L + S|), term
values (2S+1XJ ), and irreducible representations (�).

R3+ N4f S L J 2S+1XJ �

Tb3+ 8 3 3 6 7F6 3�1 + 4�2 + 3�3,4

5 7F5 3�1 + 2�2 + 3�3,4

4 7F4 3�1 + 2�2 + 2�3,4

3 7F3 �1 + 2�2 + 2�3,4

2 7F2 �1 + 2�2 + �3,4

1 7F1 �1 + �3,4

0 7F0 �1

Dy3+ 9 5/2 5 15/2 6H15/2 4�5,6 + 4�7,8

13/2 6H13/2 3�5,6 + 4�7,8

11/2 6H11/2 3�5,6 + 3�7,8

9/2 6H9/2 3�5,6 + 2�7,8

7/2 6H7/2 2�5,6 + 2�7,8

5/2 6H5/2 �5,6 + 2�7,8

3 11/2 6F11/2 3�5,6 + 3�7,8

9/2 6F9/2 3�5,6 + 2�7,8

7/2 6F7/2 2�5,6 + 2�7,8

5/2 6F5/2 �5,6 + 2�7,8

3/2 6F3/2 �5,6 + �7,8

1/2 6F1/2 �7,8

Ho3+ 10 2 6 8 5I8 5�1 + 4�2 + 4�3,4

7 5I7 3�1 + 4�2 + 4�3,4

6 5I6 3�1 + 4�2 + 3�3,4

5 5I5 3�1 + 2�2 + 3�3,4

4 5I4 3�1 + 2�2 + 2�3,4

Er3+ 11 3/2 6 15/2 4I15/2 4�5,6 + 4�7,8

13/2 4I13/2 3�5,6 + 4�7,8

11/2 4I11/2 3�5,6 + 3�7,8

9/2 4I9/2 3�5,6 + 2�7,8

Tm3+ 12 1 5 6 3H6 3�1 + 4�2 + 3�3,4

5 3H5 3�1 + 2�2 + 3�3,4

4 3H4 3�1 + 2�2 + 2�3,4

Yb3+ 13 1/2 3 7/2 2F7/2 2�5,6 + 2�7,8

5/2 2F5/2 �5,6 + 2�7,8

the � parameters on the splittings of the energy levels can be
observed in Fig. 4, as discussed in Sec. IV D. However, here
for the current spectral discussion, we would only concentrate
on the results calculated by the optimized parameter � =
−0.5 Ry, as shown in Figs. 6 and 7. Therefore, the results
obtained from the other (unoptimized) delta values are not
included any more here in Figs. 6 and 7. Instead, rather
than the removed unoptimized results, we have included (in
Figs. 6 and 7) the other important features which can provide
useful insights for the spectral applications, as to be discussed
below in parts “Energy Gap” and “Singlets & Doublets.”
In addition to our pure theoretical prediction, we have also
included our empirical results for the Dy3+ ion in LiDyF4, as
to be discussed subsequently in part “LiDyF4” and shown in
Fig. 6(a).

The LiRF4 (R = Tb, Dy, Ho, Er, Tm, and Yb) series of
the compounds are divided into Kramers and non-Kramers
classes based on the J quantum numbers of their rare-earth

045120-12



CRYSTAL FIELDS OF LITHIUM RARE-EARTH … PHYSICAL REVIEW B 102, 045120 (2020)

ions, as determined in Table V: the Kramers class contains
LiDyF4, LiErF4, and LiYbF4 crystals, and the non-Kramers
class consists of LiTbF4, LiHoF4, and LiTmF4 crystals. In
the Kramers class, the total angular momentum numbers J
of the +3 rare-earth ions are half-integers, while they are
integers in the non-Kramers class, see Table V. In the Kramers
category, the +3 rare-earth ions having half-integer J total an-
gular quantum numbers and odd parities satisfy the Kramers’
theorem, which implies that all the states can be divided into
doubly degenerate �5,6 and �7,8 states. In the non-Kramers
category, the energy levels of the +3 rare-earth ions with
integer J total angular quantum numbers and even parities can
be divided into nondegenerate �1 and �2 states for even MJ

and a doubly degenerate �3,4 state for odd MJ . The splittings
of the energy levels versus indexes of eigenstates together
with the available experimental data [44,47,62,63,92–95] are
shown in Fig. 6 for the Kramers class. The splittings of the
non-Kramers class are also compared with the corresponding
experimental data [44,47–49,89–91] in Fig. 7. In Figs. 6 and 7,
the splittings are measured with respect to the lowest energies
of the multiplets which are shifted to the zero level, as to be
discussed in part “Energy Shift.”

The energy levels can be split by both the spin-orbit cou-
pling (SOC) and the crystal electric field (CEF). The number
of splittings and irreducible representations can be qualita-
tively predicted by group theory for a specified symmetry.
However, much more elaborations should be performed to
calculate the eigenvalues quantitatively in the presence of
the SOC and CEF. Therefore, in this work, we quantitatively
calculate the splittings for all the compounds in question.
We notice that the strength of the spin-orbit (SO) interaction
is much larger than that of CEF interaction in the rare-
earth-based compounds. Thus, following the procedure of the
perturbation theory, we first include the larger term, i.e., SOC
Hamiltonian, and find the splitting only due to the SOC in the
absence of CEF.

To clarify what we have performed for all the compounds
in this work, let us begin the splitting discussion with the
LiYbF4 compound as a first sample among the series of our
selected compounds, see Fig. 5. The LiYbF4 is considered
for the following discussion because the number of multiplets
of the Yb3+ ion and their splittings are smaller and thence
its discussion can be presented more promptly than the other
ions, see Table V, Figs. 5 and 6(c) as well as part “Energy
Shift.”

1. LiY bF4

For this case, as discussed in Sec. IV F, the term value is
2F for the ground state of the Yb3+ ion in the free space, i.e.,
in the absence of both the SOC and CEF, see Table V. The
eigenvalue of the 2F state is 14-fold degenerate, see Fig. 5
where the degeneracy degree is shown as (14) right below
the energy level; viz. for the free Yb3+ ion in the absence of
SO interaction the number of degeneracy is obtained as (2L +
1)(2S + 1) = (2 × 3 + 1)(2 × 1/2 + 1) = 7 × 2 = 14. Now,
let us first turn on the SO interaction. We observe that the
14-fold degenerate 2F ground state splits into the ground
2F7/2 and excited 2F5/2 states in the presence of the SOC
but still in the absence of the CEF, as shown in Fig. 5.

FIG. 5. Energy level splitting of the free Yb3+ ion by the spin-
orbit interaction and then followed by the electric field of the LiYbF4

crystal. The degeneracy degrees are shown by the numbers enclosed
in parentheses for each energy level. The values of the energy level
splittings in meV calculated in this work with taking no hybridization
into account are quantitatively represented nearby the vertical energy
axis; see also Fig. 6(c).

This is in agreement with the prediction of group theory, see
Table V. The separation energy between the ground 2F7/2

and the excited 2F5/2 states, not indicated here, is of the
order of eV. The 2F7/2 and 2F5/2 states remain still eightfold
and sixfold degenerate, respectively, viz. 1 × 8 + 1 × 6 = 8 +
6 = 14, where 8 = 2J + 1 = 2 × 7/2 + 1 and 6 = 2J + 1 =
2 × 5/2 + 1, see Fig. 5. Then, let us add the second smaller
CEF term to find further splittings due to this term. In this
case, the 2F5/2 and 2F7/2 states are split into three and four
levels, respectively, by the SO plus CEF interactions, see
Fig. 5. Although the number of degeneracy is reduced by SOC
+ CEF, each of the levels of the 2F7/2 and 2F5/2 states still re-
mains twofold degenerate, viz. 4 × 2 + 3 × 2 = 8 + 6 = 14,
see Fig. 5 and Table V. This means that all the calculated states
are doublet. This is not only consistent with group theory
prediction but also with the Kramers’ theorem for half-integer
J . This time, the separation energy between the states split
by the SOC + CEF is of the order of meV which is three
orders of magnitudes smaller than that split by SOC only. The
energy level splittings are quantitatively calculated without
considering hybridization � parameter for the Yb3+ ion in
the LiYbF4 crystal. The values of the energy level splittings in
meV are quantitatively represented nearby the vertical energy
axis shown in Fig. 5.

2. Energy shift

Although the above traditional presentation for the +3
rare-earth in the LiYbF4, as shown in Fig. 5, is more phys-
ically understandable, it needs a lot of space for presenting
the results of all the cases. The space problem will be more
serious when more data would be reported, including the
splittings calculated by various � parameters and/or available
experimental and empirical data as well as spectral informa-
tion. Therefore, to fix the space problem, the splittings of
the energy levels calculated by the optimized hybridization
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FIG. 6. Splittings of energy levels of the +3 rare-earth ions
calculated by imposing optimized �(= −0.5 Ry) parameter relative
to the lowest energies of the multiplets versus indexes of eigenstates
n for the Kramers compounds (a) LiDyF4, (b) LiErF4, and (c) LiYbF4

compared to the experimental data taken from (b) Refs. [44,47,62],
and (c) Refs. [47,63,92–95]. The lowest energy of each multiplet in
meV calculated by imposing optimized �(= −0.5 Ry) is indicated
at the bottom (starting point) of each multiplet. In addition to our
calculated data theoretically, our calculated data empirically using
the CFPs reported in Refs. [59] and [96] for the Dy3+ ion in LiDyF4

are also included for comparison due to the lack of empirical data for
this case. All the states shown in the whole of this figure are doubly
degenerate.

parameter along with the experimental and/or empirical data
are all more compactly presented for all the compounds under
study in Figs. 4 and 7 as well as 6. To this end, the energy
levels are also rescaled by setting the starting points of the
energy levels to zero for the ground and excited states in
Figs. 4 and 7 as well as 6. These energy shifts are performed,
because the energy levels separated by the SOC are three
orders of magnitude larger than those by separated CEF, and
thereby they cannot be illustrated on the same scale in a single
figure.

3. Energy gap

Although the space problem is managed by the above
strategy, the energy gap between the adjacent multiplets is
still missed in Fig. 4 which includes a lot of unoptimized
results. However, the gap between the highest energy level of
a multiplet and the lowest energy level of the adjacent (higher)
multiplet is quite an important feature, particularly here in
Sec. IV G for understanding the relevance of multiplet mixing.
Therefore, to deduce this crucial quantity from represented
spectra, the lowest energy of each multiplet is indicated at the
bottom (starting point) of each multiplet individually only in
Figs. 6 and 7 after excluding the unoptimized results which
should be included in Fig. 4.

4. Singlets and doublets

Another important feature that is again missing in Fig. 4
is the possibility to distinguish singlets from doublets. Al-
though the sequence of the (singlet, doublet) structure can be
obtained for each multiplet of each compound from the data
given in this paper, it would be helpful, if it can be deduced
illustratively from the presented spectra, as well. However,
this vital feature is not included in Fig. 4 containing many
unoptimized results. Therefore, here, in order to illustrate the
sequence of the structure so that it can be straightforwardly
seen from the spectra, we have used solid symbols for doublets
and empty symbols for singlets in Figs. 6 and 7 which are made
free from the unoptimized results. Furthermore, we have also
distinguished them by indicating D besides the solid symbols
for doublets and S besides the empty symbols for singlets in
these figures.

5. LiDyF4

For this case, all the calculated states are doubly degenerate
in agreement with the Kramers’ theorem. It is observed that
our calculated 6H9/2 multiplet is mixed to 6F11/2 multiplet
resulting in a mixed multiplet of 6H9/2 + 6F11/2, see fourth
excited multiplet in Fig. 6(a). Furthermore, the 6H7/2 multiplet
is also mixed to 6F9/2 multiplet leading to another mixed
multiplet as 6H7/2 + 6F9/2, see fifth excited multiplet in see
Fig. 6(a). These observations clearly contradict the predic-
tion of group theory and Hund’s rules [compare Fig. 6(a)
with Table V]. Interestingly, these predicted mixed multi-
plets, 6H9/2 + 6F11/2 and 6H7/2 + 6F9/2, are found consistent
with the experimental measurements reported in Tables 1
and 2 as well as Fig. 2 of Ref. [99] for the dysprosium
ion in KPb2Cl5:Dy3+ and YLF:Dy3+, where YLF stands for
LiYF4. From this consistency, one may conjecture that the
CFP scheme can satisfactorily predict extraordinary cases,
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FIG. 7. Splittings of energy levels of the +3 rare-earth ions
calculated by imposing optimized �(= −0.5 Ry) parameter relative
to the lowest energies of the multiplets versus indexes of eigen-
states n for the non-Kramers compounds (a) LiTbF4, (b) LiHoF4,
and (c) LiTmF4 compared to the experimental data taken from
(a) Refs. [48,49,89,90], (b) Refs. [44,47,49], and (c) Refs. [47,91].
The lowest energy of each multiplet in meV calculated by imposing
optimized �(= −0.5 Ry) is indicated at the bottom (starting point)
of each multiplet. Singlet (doublet) states are shown by empty (solid)
symbols with the indicators of S (D).

as well. However, it should be noted that although the point
group symmetry for Dy3+ ion in YLF:Dy3+ is also S4, this
is not the case for Dy3+ ion substituting K+ or Pb2+ ions
in KPb2Cl5. Therefore, an explicit conclusion inferred from
the comparison of LiDyF4:Dy3+ and KPb2Cl5:Dy3+ requires
more elaborations than that of LiDyF4:Dy3+ and YLF:Dy3+.

Anyway, since the above conclusion is solely inferred
based on the experimental data reported for the other Dy-
based materials [99], for sure in addition to our pure ab initio
theoretical results, we have also empirically extracted the mul-
tiplets of the Dy3+ ion in the LiDyF4 from two different sets of
experimental CFPs, as well. The first set of the experimental
CFPs is taken from Ref. [59] reported by Romanova et al., and
the second set is taken from Ref. [96] reported by Davidova
et al. To this end, we have solved the eigenvalue problem for
the effective Hamiltonian expressed in Eq. (1) using the RECFP

code [4] as a modified version of the LANTHANIDE code [100]
implemented into the CFP code [4]. Our obtained empirical
splittings are also included in Fig. 6(a) for comparison. The
comparison of our ab initio theoretical splittings predicted by
the CFP scheme with our empirical splittings extracted from
the two sets of the experimental data [59,96] show that all the
splittings are in agreement with each other, see Fig. 6(a). This
assures that the deviation from the prediction of group theory
is not only consistent with our theoretical prediction but also
it is in complete accord with our empirical predictions and
whence with the experimental data [59,96].

6. LiTbF4

Let us turn now our attention to the splittings of Tb3+ ion
in the LiTbF4 as one of our selected non-Kramers system.
The splittings of the energy levels of the Tb3+ ion in LiTbF4

compound, as shown in Fig. 7(a), shows that the 7F6 multiplet
splits into three doublet and seven singlet states. The next
7F5 multiplet splits into three doublet and five singlet states.
The other multiplets including 7F4, 7F3, 7F2, 7F1, and 7F0 are
also shown in Fig. 7(a). These results are in agreement with
the experimental data reported in Refs. [48,49,89,90]. The
ground state term value of the free Tb3+ ion is 7F in the
absence of the SOC and CEF, see Table V. The eigenvalue
of the 6F state is 49-fold degenerate; viz. (2L + 1)(2S + 1) =
(2 × 3 + 1)(2 × 3 + 1) = 7 × 7 = 49. The 49-fold degener-
ate 7F state of Tb3+ ion splits by SO interaction into seven
multiplets. The seven multiplets of Tb3+ ion are 7F6, 7F5,
7F4, 7F3, 7F2, 7F1, and 7F0, see Table V. The multiplet 7F6 is
13-fold degenerate; viz. 2J + 1 = 2 × 6 + 1 = 13. The next
five multiplets, 7F5, 7F4, 7F3, 7F2, 7F1, are 11-fold, 9-fold, 7-
fold, 5-fold, 3-fold degenerate, respectively. The last multiplet
7F0 is nondegenerate (nd). The sum of the degeneracies of
the multiplets in the presence of the SOC is equal to the
degeneracy of the free ion in the absence of the SOC; viz.
13 + 11 + 9 + 7 + 5 + 3 + 1 = 49. Now let the Tb3+ ion in
addition to the SOC feel the crystal electric field imposed
by the S4 symmetry inside the LiTbF4 crystal. In this case,
the 7F6 multiplet splits into three nondegenerate (3nd) �1,
four nondegenerate (4nd) �2, and three doubly degenerate

(3dd) �3,4 irreducible representations; viz. 7F6 -multiplet
splits−−→
CEF

3�1(nd ) + 4�2(nd ) + 3�3,4(dd )-irreducible representations.
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The sum of the degeneracies of the irreducible representations
is 13; viz. 3 × 1 + 4 × 1 + 3 × 2 = 13. Therefore, from the
above discussion on Tb3+ ion under both of the SO and
CEF interactions, the splittings of all the multiplets and their
corresponding numbers of degenerate and nondegenerate irre-
ducible representations (N�) can be compactly read as:

7F
6

multiplet
splits−−→
CEF

3�1(nd ) + 4�2(nd ) + 3�3,4(dd ),

N
7F6
� = 3 × 1 + 4 × 1 + 3 × 2 = 13,

7F
5

multiplet
splits−−→
CEF

3�1(nd ) + 2�2(nd ) + 3�3,4(dd ),

N
7F5
� = 3 × 1 + 2 × 1 + 3 × 2 = 11,

7F
4

multiplet
splits−−→
CEF

3�1(nd ) + 2�2(nd ) + 2�3,4(dd ),

N
7F4
� = 3 × 1 + 2 × 1 + 2 × 2 = 9,

7F
3

multiplet
splits−−→
CEF

�1(nd ) + 2�2(nd ) + 2�3,4(dd ),

N
7F3
� = 1 × 1 + 2 × 1 + 2 × 2 = 7,

7F
2

multiplet
splits−−→
CEF

�1(nd ) + 2�2(nd ) + �3,4(dd ),

N
7F2
� = 1 × 1 + 2 × 1 + 1 × 2 = 5,

7F
1

multiplet
splits−−→
CEF

�1(nd ) + �3,4(dd ),

N
7F1
� = 1 × 1 + 1 × 2 = 3,

7F
0

multiplet
splits−−→
CEF

�1(nd ),

N
7F0
� = 1 × 1 = 1,

NTotal
� = N

7F6
� + N

7F5
� + N

7F4
� + N

7F3
� + N

7F2
� + N

7F1
� + N

7F0
� ,

NTotal
� = 13 + 11 + 9 + 7 + 5 + 3 + 1 = 49.

(13)

From the above expression, it can be noticed that NTotal
� in the

presence of both the SO and CEF interactions is obtained to
be consistently identical to the sum of the degeneracies of the
multiplets in the presence of the SOC only and whence equal
to the degeneracy of the free ion in the absence of the SOC.
This confirms that the splittings of the multiplets are correctly
performed.

The above splittings deduced from the results presented
in Fig. 7(a) and the information given in Table V are in
agreement with the expected splittings of the non-Kramers
systems having integer J . For the non-Kramers systems, a
level can split into nondegenerate states if MJ is even and
doubly degenerate states if MJ is odd. As can be seen from
Fig. 7(a), 7F0 is singlet with MJ = 0 which is even. The results
also show that the 7F1 multiplet splits into a singlet with
MJ = 0 which is an even number and a doublet with MJ = ±1
which are odd numbers. Similar consistencies can be seen for
the other multiplets in which their splittings under SOC+SCF
interactions are discussed above and shown in Fig. 7(a). More
importantly, our theoretical results are in agreement with
the experimental data. This shows that the splittings can be

reproduced successfully not only for the Kramers systems
but also for the non-Kramers systems by the CFP scheme.
Moreover, these consistencies with the experimental data
without applying LDA+U for strongly correlated systems
show that the correlations among 4 f electrons can also be
well reproduced. Gaining insights from the above discussions
presented for the Yb3+ and Dy3+ ions in the Kramers LiYbF4

and LiDyF4 crystals, respectively, as well as for the Tb3+ ion
in the non-Kramers LiTbF4 crystal, the following points can
be promptly concluded from Figs. 6(b) and 6(b) and 6(c) for
the remaining compounds.

7. LiHoF4

For this non-Kramers case with integer J , Fig. 7(b) shows
that the ground 5I8 multiplet splits into four doublet (1st, 6th,
9th, and 12th states) and nine singlet states in agreement with
the prediction of group theory and Hund’s rules as well as
empirical data [47], see the nine empty and four solid stars
in this figure. For this multiplet J is eight leading to 17 MJ

numbers with nine odd MJ and 8 = 2 × 4 even MJ numbers.
The first excited 5I7 multiplet splits into four doublets and
seven singlets, see seven empty and four solid stars. The
second excited 5I6 multiplet splits into four doublet and five
singlet states. The third excited 5I5 multiplet splits into three
doublet and five singlet states. The fourth excited 5I4 multiplet
splits into two doublet and five singlet states, as shown by
two solid and five empty stars. The splittings calculated by
� = −0.5 Ry are in agreement with the Hund’s rules and
empirical data reported in Refs. [44,49,61].

8. LiTmF4

For the case of non-Kramers crystal LiTmF4 with integer
J , Fig. 7(c) shows that the ground state 3H6 multiplet splits
into three doublet and seven singlet states in agreement with
the empirical data reported in Ref. [47]. The ground state is
not degenerate. The first excited state is 3H4 in contrast to the
Hund’s rules but in agreement with the experimental results
reported in Ref. [91]. Thus, in addition to the Dy3+ ion, the
Tm3+ ion can also be considered as an extraordinary case
that is successfully predicted by the CFP scheme. The next
3H4 multiplet splits into two doublet and five singlet states.
The 3H5 multiplet splits into four doublet and singlet states.
The calculated results using � = −0.5 Ry are in agreement
with the empirical results reported in Refs. [47,91]. For the
3H4 multiplet, J is 4, as indicated in Table V, and thereby
MJ varies from −4 to 4 by step 1 resulting in 9 MJ ; viz.
2J + 1 = 2 × 4 + 1 = 9. Therefore, in the interval [−4, 4],
there are five even numbers MJ , i.e., −4, −2, 0, 2, 4, and four
odd numbers MJ , i.e., −3, −1, 1, 3. Interestingly, our ab initio
results clearly confirm that there are four doublets and five
singlets by showing up two solid stars and five empty stars in
Fig. 7(c). The two solid stars refer to the two doublets leading
to four states for the four even MJ , and the five empty starts
indicate five singlets for the five odd MJ . Such consistencies
between the prediction of group theory and our first-principle
results can be seen in the other multiplets.
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9. LiErF4

For the case of Kramers compound LiErF4 with half-
integer J , Fig. 7(b) shows that all the states are doubly
degenerate due to the Kramers degeneracy theorem. The
ground 4I15/2 multiplet splits into eight double states in agree-
ment with empirical results reported in Ref. [47]. The next
4I13/2 and 4I11/2 as well as 4I9/2 multiplets split into seven and
six as well as five double states, respectively, in agreement
with the empirical results reported in Refs. [44,62].

10. Summary

The following points can be concluded from the splittings
presented in Figs. 6 and 7: We notice that the multiplets and
their splittings are in complete accord with the prediction of
group theory and Hund’s rules for all the +3 rare-earth ions
with the exception of Dy3+ ion in the Kramers LiDyF4 crystal
and Tm3+ in the non-Kramers LiTmF4 crystal (compare
Figs. 6 and 7 with Table V). Interestingly, our theoretical
predictions for both of these exceptional cases which violate
the Hund’s rules are in complete accord with the experimental
data. The calculated energy levels of the multiplets show that
if J is an integer number, the multiplets of the non-Kramers
systems contain two nondegenerate �1 and �2 states for even
MJ as well as a doubly degenerate �3,4 for odd MJ , see
Figs. 7(a) to 7(c) as well as Tb3+, Ho3+, and Tm3+ ions
in Table V. However, if J is a half-integer number, all the
levels of the Kramers systems are doubly degenerate and their
corresponding irreducible representations are �5,6 and �7,8,
see Figs. 6(a) to 6(c) as well as Dy3+, Er3+, and Yb3+ ions in
Table V. These pieces of evidence qualitatively show that the
calculated splittings are consistent with the character table of
the double group of the S4 symmetry and the Kramers’ theo-
rem. Furthermore, the calculated splittings are compared with
the experimental data given in Figs. 7 and 6. The comparison
shows that the splittings of the multiplets are in agreement
with the experimental data.

V. CONCLUSION

In this work, with the hope of introducing a new powerful
ab initio technique for measuring small and localized mag-
netic field which, in turn, can play a key role in various fields
in particular bio- and nanotechnology, we have calculated
the crystal field parameters (CFPs) in LiRF4 (R = Tb, Dy,
Ho, Er, Tm, and Yb) using a combination of the density
functional theory (DFT), CFP scheme, open-core treatment,
and Wannier functions. On one side, we have noticed that
these compounds due to their 4 f electrons may behave as
strongly correlated systems. On the other side, however, we
have found that the conventional band correlated schemes
like LDA+U may not be applicable for this purpose due
to the fixed number of electrons in the crystal field optical
transitions. To this end, we have used the CFP scheme recently
proposed by Pavel Novák and coworkers. To overcome the
nonphysical self-interaction problem, the 4 f electrons are
treated by the open-core scheme. We have then extracted the
Wannier functions from the Bloch’s eigenstates calculated by
the DFT to derive the CFPs.

The behaviors of the real and imaginary parts of the CFPs
are studied through the series of compounds. Employing the
calculated CFPs, we find the splittings of the energy levels of
the +3 rare-earth ions in the compounds by constructing an ef-
fective Hamiltonian for each case. Our calculated splittings of
the multiplets of the +3 rare-earth ions using the CFP scheme
are compared with the predictions of group theory and Hund’s
rules. The comparison shows that they are consistent with
each other except for the Dy3+ and Tm3+ ions. The configura-
tions of the multiplets of the latter ions show some deviation
from the theoretical predictions of group theory and Hund’s
rules. It is interestingly explored that these deviations are in
agreement with the available experimental data. This shows
that the predictions made by the CFP scheme can reliably
reproduce experimental measurements. To better improve the
results, we optimize the adjustable single � parameter of the
CFP scheme to control the degrees of hybridizations between
4 f states of the rare-earth ions and the 2p and 2s states of the
fluorine ligands. We find that hybridizations are important and
should be considered.

It can be predictable that constructing an effective Hamil-
tonian including crystal field parameters in the presence of an
external magnetic field by advanced ab initio techniques can
provide a powerful approach for this purpose. The symmetry
of the LiRF4 series of compounds considered here is S4. To
simplify the effective Hamiltonian of some cases with S4

symmetry, this symmetry can be approximated by D2d sym-
metry. In this work, by evaluating matrix elements including
in the crystal field Stevens Hamiltonian, however, we have
shown that this approximation may be case dependent and it
is better to use the rightful S4 symmetry than the auxiliary D2d

symmetry for the compounds in question.
In essence, we have obtained the whole set of seven crystal

field parameters, a new agreement with the experimental and
empirical data, and we have also provided a comprehensive
comparison to the results in the literature. This may be po-
tentially fruitful for further investigations in the active fields
of the rare-earth compounds. The recent new theoretical-
computational method is successfully implemented for the set
of fluorides each of which is defined by hosting a different
species of rare-earth ions. Such a CFP method is interesting
and it challenges the very well known LDA+U in estimating
the crystal-field (CF) parameters, as the experimental data
are reproduced by the CFP scheme for these rare-earth-based
compounds without LDA+U .
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APPENDIX A: CRYSTAL STRUCTURE

LiRF4 compounds crystallize in the body-centered tetrag-
onal Scheelite CaWO4 structure with space group C6

4h(I41/a)
[47,60]. The primitive unit cell of LiRF4, as shown in
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FIG. 8. (a) Primitive and (b) conventional unit cells of LiRF4

crystal.

Fig. 8(a), contains three nonequivalent, namely Li, R, and
F, ions. These are arranged along two equivalent Li sites,
two equivalent R sites, and eight equivalent F sites. The
conventional unit cell of the LiRF4 is shown in Fig. 8(b).
The site symmetry is S4 (4̄) for the Li and R ions [105]
whereas the F ions do not occupy a specific site symmetry
and thence the F ions have not an inversion center [60]. These
compounds can be diluted by the other rare-earth ions than
the R ion already existed in LiRF4 or by some nonmagnetic
ions such as Y and Lu. The lattice parameters are calculated
using the Perdew-Burke-Ernzerhof generalized gradient ap-
proximation (PBE-GGA) [73] excluding and including spin
polarization. The PBE-GGA is a semilocal functional which
has been extensively used for a variety of cases successfully.
It is worth it to emphasize, however, that the accuracy of the
DFT plus PBE-GGA calculations depends on the localization
degrees of the 4 f electrons in the rare-earth-based compounds
[82]. To increase the accuracy of the DFT cancellations,
the band correlated methods such as LDA+U [27,75–77]
is usually used for the study of strongly correlated systems
[34–36,81,82]. However, the LDA+U approach cannot be
applied for the CFPs calculations of the rare-earth-based sys-
tems [4]. Therefore, we do not use this approach in this work.
Fortunately, lattice parameters, as reported here in this section,
are less sensitive to the correlation effects compared to the
other properties such as magnetic properties and electric field
gradients (EFGs) [34–36,81,82]. For the CFPs calculations,
the open-core treatment is used to treat satisfactorily with
the 4 f electrons of the compounds, as discussed in detail in
Appendix C. The results together with the experimental data
are tabulated in Table VI. The results show that the lattice
parameters are also not very sensitive to the spin polarization,
in agreement with our previous work on the other rare-earth-
based compounds [82].

APPENDIX B: CONVERTING BETWEEN WYBOURNE
AND STEVENS NOTATIONS

The CFPs are traditionally presented in two frequently used
notations, i.e., Wybourne and Stevens notations. Our results
are calculated in the Wybourne notation, whereas some of the

TABLE VI. Calculated lattice parameters in Å using PBE-GGA
functional excluding and including spin polarization (SP) together
with the experimental data.

Compound a c SP Expt.

LiTbF4 5.246 11.007 No
5.260 11.029 Yes
5.200 10.900 [101]

LiDyF4 5.227 10.926 No
5.232 10.921 Yes
5.185 10.830 [102]

LiHoF4 5.237 10.884 No
5.237 10.901 Yes
5.200 10.796 [103]

LiErF4 5.211 10.842 No
5.202 10.843 Yes
5.168 10.709 [103]

LiTmF4 5.080 10.581 No
5.145 10.640 [60]

LiYbF4 5.133 11.026 No
5.189 10.728 Yes
5.118 10.567 [104]

experimental and/or empirical results are given in Stevens
notation. There may be several ambiguities in converting
between these two notations which can make questionable the
results. Therefore, here, the theoretical background presented
in Sec. II is used to clarify in a transparent manner how our
results are converted from the framework of Wybourne to that
of Stevens by keeping in mind Eqs. (6) and (10), where their
coefficients are real and therefore comparable with each other.
To this end, as Eqs. (6) and (10) imply, it is necessary to know
the ratios Bk

q/(Ak
q〈rk〉) = ξ k

q and the Stevens factors �k (J ).
Therefore, for convenience and being readily accessible, the
ratios ξ k

q are represented in Table VII [5] and the Stevens
factors are also given in Table VIII [1] for the rare earth ions
under study in this work only. Furthermore, both the complex
Wybourne operators Ĉk

q and the complex Stevens equivalent
operators Ôk

q(Jx, Jy, Jz, J ) should be known for every given q

and k. The former operators, Ĉk
q, have already been given by

Eqs. (3) and (5). Those of the latter operators Ôk
q(Jx, Jy, Jz, J )

used for our cases are selected and also tabulated in Table IX
[1,6], for being readily available. Now everything is ready to
convert Wybourne CFPs to Stevens CFPs by:

B̃k
q,Stev.(J ) = Bk

q,Wyb. × �k (J )/ξ k
q , (B1)

TABLE VII. The ratios Bk
q/(Ak

q〈rk〉) := ξ k
q of the real CFPs

parameterized by Wybourne in Eq. (6), Bk
q, and Stevens in Eq. (10),

Ak
q〈rk〉 [5].

k q ξ k
q = Bk

q/(Ak
q〈rk〉)

2 0 2 = 2.00
4 0 8 = 8.00
4 4 4

√
70/35 = 0.956

6 0 16 = 16.00
6 4 8

√
14/21 = 1.425

045120-18



CRYSTAL FIELDS OF LITHIUM RARE-EARTH … PHYSICAL REVIEW B 102, 045120 (2020)

TABLE VIII. The Stevens factors �k (J ) of the rare earth ions
under question for k = 2, i.e., α j = �2(J ), and k = 4, i.e., β j =
�4(J ), as well as k = 6, i.e., γ j = �6(J ) together with the total
angular quantum number J determined for each ion [1].

R3+ J �2(J ) �4(J ) �6(J )

Tb3+ 6 −1
32×11

2
33×5×112

−1
34×7×112×13

Dy3+ 15/2 −2
32×5×7

−23

33×5×7×11×13
22

33×7×112×132

Ho3+ 8 −1
2×32×52

−1
2×3×5×7×11×13

−5
33×7×112×132

Er3+ 15/2 22

32×52×7
2

32×5×7×11×13
23

33×7×112×132

Tm3+ 6 1
32×11

23

34×5×112
−5

34×7×112×13

Yb3+ 7/2 2
32×7

−2
3×5×7×11

22

33×7×11×13

where Bk
q,Wyb. are the Wybourne CFPs as defined in Eq. (6),

B̃k
q,Stev.(J) are the Stevens CFPs as defined in Eq. (11), �k (J )

are the Stevens factors as tabulated in Table VIII, and ξ k
q are

the ratios Bk
q/(Ak

q〈rk〉) as tabulated in Table VII for the given
q, k, and J .

It would be worthwhile to indicate the following three tech-
nical points: First, the unit of our calculated Wybourne CFPs
is cm−1 by default, while it is meV in some references. In
such cases, if any, for convenience our calculated Wybourne
CFPs are multiplied by 0.123984 meV

1 cm−1 for converting from cm−1

to meV. Second, in some references [47,56,97], the crystal
field Hamiltonian expressed in Eq. (11) for the S4 symmetry
of the systems in question is represented as follows:

ĤCF =
∑

k=2,4,6

B̃k
0Ôk

0 +
∑

k=4,6

B̃k
4(c)Ôk

4(c) +
∑

k=4,6

B̃k
4(s)Ôk

4(s),

(B2)

where the argument c (s) stands for positive (negative) q so
that Ôk

4(c) (Ôk
4(s)) operators used in the above equation are

identical to Ôk
4 (Ôk

−4) operators used in Eq. (11) for k = 4
and 6 [6]. By considering the latter relations, like Eq. (11)
as discussed above, Eq. (B2) can be straightforwardly used
for converting between Wybourne and Stevens CFPs, as well.

TABLE IX. The Stevens equivalent operators Ôk
q(Jx, Jy, Jz, J ),

where J± ≡ Jx ± iJy and X ≡ J (J + 1) [1,6].

k q Ôk
q(Jx, Jy, Jz, J )

2 0 3J2
z − X

4 0 35J4
z − (30X − 25)J2

z + 3X 2 − 6X

4 −4 1
2i (J4

+ − J4
−)

4 4 1
2 (J4

+ + J4
−)

6 0 231J6
z − (315X − 735)J4

z

+(105X 2 − 525X + 294)J2
z − 5X 3 + 40X 2 − 60X

6 −4 1
4i [(11J2

z − X − 38)(J4
+ − J4

−)

+(J4
+ − J4

−)(11J2
z − X − 38)]

6 4 1
4 [(11J2

z − X − 38)(J4
+ + J4

−)

+(J4
+ + J4

−)(11J2
z − X − 38)]

Third, the experimental data are not usually sufficient to
obtain all the seven CFPs of the S4 point symmetry. Thus, in
such a case, it can be tried to reduce the number of CFPs. To
this end, there are two custom ways:

(i) The first way [5,47,85] is to apply the following unitary
transformation on the Stevens Hamiltonian ĤCF expressed in
Eq. (11) so that one of the CFPs can be neglected:

Ĥ ′
CF := Û †ĤCFÛ =

∑
k=2,4,6

B̃k
0Û †Ôk

0Û

+ B̃4
−4Û

†Ô4
−4Û + B̃4

4Û †Ô4
4Û

+ B̃6
−4Û

†Ô6
−4Û + B̃6

4Û †Ô6
4Û , (B3)

where Ĥ ′
CF is the transformed Stevens Hamiltonian and Û =

exp(−iϕJz ) is the unitary rotation operator about the Cartesian
z axis by a suitable angle ϕ. By this unitary transformation,
the Stevens Ôk

0 operators remain unchanged, because the
Ôk

0 operators commute with Û , viz. [Ôk
0, Û ] = 0 or equiv-

alently Û †Ôk
0Û = Ôk

0. The other remaining operators, i.e.,
Ô4

−4 and Ô4
4 as well as Ô6

−4 and Ô6
4, are changed according to

the transformation relations derived by Czeslaw Rudowicz
[85], which are tabulated in Table X for k = 4, 6 and q = ±4.
Hence, using Û †Ôk

0Û = Ôk
0 and the transformation relations

given in Table X, Eq. (B3) can be read as:

Ĥ ′
CF =

∑
k=2,4,6

B̃k
0Ôk

0

+ B̃4
−4

[+ cos(4ϕ)Ô4
−4 + sin(4ϕ)Ô4

4

]
+ B̃4

4

[− sin(4ϕ)Ô4
−4 + cos(4ϕ)Ô4

4

]
+ B̃6

−4

[+ cos(4ϕ)Ô6
−4 + sin(4ϕ)Ô6

4

]
+ B̃6

4

[− sin(4ϕ)Ô6
−4 + cos(4ϕ)Ô6

4

]
(B4)

:=
∑

k=2,4,6

B̃k
0Ôk

0

+ B̃4
−4Ô′4

−4 + B̃4
4Ô′4

4 + B̃6
−4Ô′6

−4 + B̃6
4Ô′6

4 , (B5)

where Ô′k
q are defined to be Û †Ôk

qÛ as tabulated in Table X.
Therefore, Eqs. (B4) and (B5) can be rearranged as:

Û †ĤCFÛ =
∑

k=2,4,6

B̃k
0Ôk

0

+ [
cos(4ϕ)B̃4

−4 − sin(4ϕ)B̃4
4

]
Ô4

−4

+ [
sin(4ϕ)B̃4

−4 + cos(4ϕ)B̃4
4

]
Ô4

4

+ [
cos(4ϕ)B̃6

−4 − sin(4ϕ)B̃6
4

]
Ô6

−4

+ [
sin(4ϕ)B̃6

−4 + cos(4ϕ)B̃6
4

]
Ô6

4 (B6)

:=
∑

k=2,4,6

B̃k
0Ôk

0

+ B̃′4
−4Ô4

−4 + B̃′4
4 Ô4

4 + B̃′6
−4Ô6

−4 + B̃′6
4 Ô6

4, (B7)

where B̃′k
q can be straightforwardly defined by comparing

Eqs. (B6) and (B7), see Table X. From Eq. (B5), the Stevens
Ôk

q operators can be interpreted as tensors which are rotated
to Ô′k

q about the z axis by an angle ϕ while the B̃k
q CFPs are

kept fixed. Interestingly, by considering Eq. (B7), however,
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TABLE X. The Rudowicz transformation relations [85] of the Stevens operators. The rotated CFP tensors as defined by comparing
Eqs. (B6) and (B7).

k q Û †Ôk
qÛ := Ô′k

q B̃′k
q

4 −4 + cos(4ϕ)Ô4
−4 + sin(4ϕ)Ô4

4 cos(4ϕ)B̃4
−4 − sin(4ϕ)B̃4

4

4 4 − sin(4ϕ)Ô4
−4 + cos(4ϕ)Ô4

4 sin(4ϕ)B̃4
−4 + cos(4ϕ)B̃4

4

6 −4 + cos(4ϕ)Ô6
−4 + sin(4ϕ)Ô6

4 cos(4ϕ)B̃6
−4 − sin(4ϕ)B̃6

4

6 4 − sin(4ϕ)Ô6
−4 + cos(4ϕ)Ô6

4 sin(4ϕ)B̃6
−4 + cos(4ϕ)B̃6

4

the crystal field parameters B̃k
q can be conversely interpreted

as tensors which are rotated to B̃′k
q about the z axis in the

opposite direction by an angle −ϕ while this time the Stevens
Ôk

q operators are kept fixed. These interpretations originate
from the existed symmetry between the appearance of B̃k

q and
Ôk

q as their product B̃k
qÔk

q in the Hamiltonian ĤCF. For sure,
both of the above interpretations are identical. However, the
second one can be more preferable, since in this way the
number of CFPs can be reduced by choosing a suitable ϕ

angle. To this end, B̃′4
−4 in Eq. (B7) can be forced to be zero:

cos(4ϕ)B̃4
−4 − sin(4ϕ)B̃4

4 = 0, (B8)

which yields the ϕ angle as:

ϕ = 1

4
tan−1

(
B̃4

−4

B̃4
4

)
. (B9)

This equation implies that ϕ is case dependent and should
be determined for every compound individually by Eq. (B9).
After setting ϕ by this equation, only six CFPs (among the
seven CFPs of the S4 point symmetry) will remain to be
determined for each compound. In this work, we do not have
any limitations and can determine all seven Stevens B̃k

q CFPs
by converting our calculated Wybourne Bk

q real CFPs using
Eq. (B1), as discussed earlier. To compare our converted
Stevens CFPs with the experimental references where only
six nonzero CFPs are reported, however, we should also
inevitably utilize Eq. (B9) to set B̃′4

−4 = 0 and determine the
ϕ angle. Then, using the determined ϕ, we transform our
converted Stevens CFPs from B̃4

4, B̃
6
4, B̃

6
−4 to B̃′4

4 , B̃′6
4 , B̃′6

−4
using the relations given in Table X.

(ii) The second way to reduce the number of CFPs is to
consider the higher point symmetry D2d for the +3 rare-earth
rather than the lower point symmetry S4 [44,49,61–64]. This
way also works, because the D2d is not only close to S4

symmetry but also requires only five CFPs to be determined.
For D2d symmetry, the crystal field Hamiltonian reads:

ĤCF =
∑

k=2,4,6

B̃k
0Ôk

0 +
∑

k=4,6

B̃k
4Ôk

4, (B10)

where the two terms with q < 0 are not presented any more;
viz. in the language of Eq. (B2) B̃k

4(s) = 0 for both k = 4
and 6. Therefore, it appears that this might be a reasonable
approximation, if by considering the S4 symmetry the B̃k

4(s)
CFPs are much less than those of the other terms. In Sec. IV C,
however, the validity of this approximation is examined for the
cases under study by considering their actual S4 symmetry.
To this end, for sure, the matrix elements of the Stevens

Hamiltonian are analytically derived term by term and accord-
ingly discussed in Sec. IV C, see Table II.

Using the information represented in this Appendix, first,
the Wybourne CFPs are converted to the Stevens notation
according to Eqs. (B1), (6), (11) as well as Tables VII and
VIII, as discussed above and Sec. II. Second, the unit of the
CFPs is converted from cm−1 to meV using the conversion
factor aforementioned in this Appendix. The converted CFPs
are tabulated in Table XI both in the absence and presence of
the hybridization for all the compounds. The hybridization is
applied by the optimized � = −0.5 Ry parameter. Third, the
Stevens CFPs are transformed using the Czeslaw Rudowicz
transformation relations [85], as discussed in this Appendix
and represented in Table X. In order to apply the Rudow-
icz transformation, the rotational angles ϕ are obtained by
Eq. (B9), as discussed above in this Appendix. The angles ϕ

are also tabulated in Table XI.

APPENDIX C: COMPUTATIONAL DETAILS

The band structure calculations are performed in the frame-
work of the density functional theory (DFT) [23,24] using
the APW plus local orbital (APW+lo) method [78–80] em-
ploying the PBE-GGA functional [73] as implemented in the
WIEN2K code [106,107] for all the cases under study. Spin
dependencies of the CFPs were reported to be negligible for
PrO2 [9] and SmCo5 [14]. Furthermore, the CFPs of the
rare-earth aluminates were also recently reported in agreement
with the experiments without considering spin polarization
[4]. Therefore, based on the practical evidence and the CFP
recipe [4,38,39,41] on the approximately negligible effects of
spin polarization on the values of CFPs, non-spin-polarized
CFPs calculations are performed, though the CFPs can prin-
cipally depend on spin configurations. The muffin-tin radii
(R MT’s) in a.u. are tabulated in Table XII, as selected for Li,
R, and F ions in LiRF4 compounds. For the calculations of the
structural properties, a mesh of 200 special k points is consid-
ered in the irreducible wedge of the first Brillouin (1BZ) zone
which corresponds to the grids of 5 × 5 × 5 in the Monkhorst-
Pack scheme [108]. For the crystal field calculations, a denser
k mesh including 1000 special k points is considered in the
irreducible wedge of the 1BZ corresponding to the grids of
10 × 10 × 10. The cutoff parameter of Kmax = 8/RMT (lmax =
10) inside the muffin-tin spheres (interstitial region) is used
for the expansions of the wave functions in terms of the
lattice harmonics (plane waves). The periodic charge density
and potential are Fourier expanded up to Gmax = 13 Bohr−1.
The DOSs are regularly calculated for 4 f electrons using
the PBE-GGA, as shown in Figs. 1(a)–1(d) for LiErF4. By
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TABLE XI. Converted Wybourne crystal field parameters (CFPs) to Stevens CFPs, as expressed by Eq. (11), in meV for the +3 rare-earth
in LiRF4 compounds without and with the optimized hybridization � parameters. The case dependent angle ϕ is calculated by Eq. (B9) for
each case. The conversions from Wybourne to Stevens notation are performed by considering Eq. (B1) and the ratios ξ k

q given in Table VII as
well as the Stevens factors �k (J ) represented in Table VIII.

LiRF4 � 103 × B̃2
0 103 × B̃4

0 103 × B̃4
4 103 × B̃4

−4 106 × B̃6
0 106 × B̃6

4 106 × B̃6
−4 ϕ (rad)

LiTbF4 0 −322 −1.68 −12.4 −11.1 −0.210 76.2 56.2 0.182
−0.5 −304 −1.38 −10.6 −9.51 −0.165 60.1 43.7 0.183

LiDyF4 0 −163 0.817 5.91 4.84 0.588 −70.0 −48.7 0.171
−0.5 −155 0.696 5.23 4.32 0.492 −57.7 −39.5 0.173

LiHoF4 0 −58.4 0.389 2.95 2.61 −0.538 74.6 51.7 0.181
−0.5 −56.3 0.339 2.66 2.37 −0.421 62.7 42.9 0.182

LiErF4 0 61.8 −0.511 −3.75 −3.09 1.03 −114 −77.8 0.172
−0.5 60.3 −0.462 −3.50 −2.91 0.853 −99.8 −67.0 0.173

LiTmF4 0 206 −0.883 −7.16 −6.56 −0.821 137 93.2 0.182
−0.5 240 −1.67 −13.0 −12.0 −1.71 273 177 0.187

LiYbF4 0 707 15.5 128 117 35.7 −6555 −4662 0.186
−0.5 699 14.8 126 117 28.5 −6143 −4288 0.187

regular, we mean the standard DFT calculations where no
special treatment such as open core is still considered for the
4 f electrons. The regular DOSs show that the 4 f -Er states are
present in the valence region and peaked up nearby the Fermi
level, as expected from the semilocal PBE-GGA functional.

As the first step of the CFP scheme, in addition to the
regular DOSs, the DOSs are also recalculated employing the
open-core treatment by confining the 4 f electrons into the
core using the PBE-GGA, as shown in Figs. 1(e)–1(h) for
LiErF4. The Kohn-Sham potential obtained in the first step
using open core calculations, where hybridization between
4 f -R sates and valences states are prevented by confining the
4 f electrons into the core region, is stored to be used in the
next second step.

In the second step of the CFP scheme, we aim to construct
and diagonalize an effective Hamiltonian to obtain eigenval-
ues and Bloch eigenstates ψnk(r) with the band index n and
wave vector k. This Hamiltonian includes the Kohn-Sham
potentials, as self-consistently obtained from and stored in the
last step. It is so effectively engineered that can well describe
the 4 f states of the R ions hybridized with the 2p and 2s states
of F ion. To this end, the 4 f electrons are released from the
core region. Then, a suitable orbital dependent potential is
applied to all the valence states. By this potential, we push
the states towards deeper energies with respect to the Fermi
surface. Another task of this positive potential is to eject the
other irrelevant valence states so that the 4 f states can be

TABLE XII. The Muffin-Tin radii (R MT’s) in a.u. selected for Li,
R and F ions in LiRF4 compounds.

LiRF4 Li R F

LiTbF4 1.58 2.29 1.97
LiDyF4 1.56 2.29 1.97
LiHoF4 1.58 2.29 1.97
LiErF4 1.57 2.28 1.96
LiTmF4 1.56 2.26 1.94
LiYbF4 1.55 2.24 1.93

hybridized only with the relevant 2p and 2s states determined
by the first step. At this stage, the effective Hamiltonian is
more finely improved by applying the adjustable parameter
�, as discussed in Sec. IV D. At the end of this step, the
eigenvalues and Bloch eigenfunctions are obtained for the 4 f
states and stored to be used in the next step.

In the third step, the 4 f -band Bloch eigenfunctions ψnk(r)
obtained in the second step are Fourier transformed over
the first Brillouin zone (1BZ) to the mth Wannier functions
WmR(r) with lattice vectors R as follows:

WmR(r) =
∫

1BZ

(∑
n

U (k)
nm ψnk(r)

)
eik.R dk

(2π )3




, (C1)

using the WANNIER90 code [30–33] and WIEN2WANNIER code
[109], where 
 and (2π )3/
 are the volumes of the unit cells
in the direct (real) and reciprocal spaces, respectively, and
U (k)

nm are the matrix elements of the unitary operator U describ-
ing the rotation among the Bloch bands at each k point. The
latter code [109] plays an efficient role as an interface between
the FP-LAPW WIEN2K code [106,107] and the WANNIER90
code [30–33] to construct the maximally localized Wannier
functions (MLWFs) [32]. The U (k)

nm are chosen so that the
sum over the squares of the fluctuations in position operator
under Wannier functions, FR ≡ ∑7

m=1 〈(�r)2
m〉, is minimized

as follows:

FR =
7∑

m=1

[〈r2〉m − 〈r〉2
m

]

=
7∑

m=1

[〈WmR| r2 |WmR〉 − 〈WmR| r |WmR〉2
]
, (C2)

where 〈(�r)2
m〉 as the expression shown in the bracket is the

quadratic spread of the mth Wannier functions in real space.
After finding U (k)

nm from Eq. (C2), the MLWFs [32] will be
then straightforwardly determined using Eq. (C1).
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In the CFP scheme, the real states |φi〉 for i = 1 to 7
are constructed by combining the complex states |lm〉 as
follows:

〈θ, ϕ|φ1〉 = i√
2

[
Y 3

−3(θ, ϕ) + Y 3
3 (θ, ϕ)

]

= i√
2

[
1

8

√
35

π

(x − iy)3

r3
+ −1

8

√
35

π

(x + iy)3

r3

]

= i√
2

1

8

√
35

π

1

r3
[(x − iy)3 − (x + iy)3]

= i√
2

1

8

√
35

π

1

r3
[(−2iy)(3x2 − y2)]

= 1√
2

1

4

√
35

π

1

r3
[y(3x2 − y2)]

∝ y(3x2 − y2), (C3)

〈θ, ϕ|φ2〉 = 1√
2

[
Y 3

−3(θ, ϕ) − Y 3
3 (θ, ϕ)

]

= 1√
2

[
1

8

√
35

π

(x − iy)3

r3
− −1

8

√
35

π

(x + iy)3

r3

]

= 1√
2

1

8

√
35

π

1

r3
[(x − iy)3 + (x + iy)3]

= 1√
2

1

8

√
35

π

1

r3
[(2x)(x2 − 3y2)]

= 1√
2

1

4

√
35

π

1

r3
[x(x2 − 3y2)]

∝ x(x2 − 3y2), (C4)

〈θ, ϕ|φ3〉 = i√
2

[
Y 3

−1(θ, ϕ) + Y 3
1 (θ, ϕ)

]

= i√
2

[
1

8

√
21

π

(
(x − iy)

r3
− (x + iy)

r3

)
(5z2 − r2)

]

= i√
2

1

8

√
21

π

1

r3
[(−2iy)(5z2 − r2)]

= 1√
2

1

4

√
21

π

1

r3
[y(5z2 − r2)] ∝ y(5z2 − r2)

∝ yz2, (C5)

〈θ, ϕ|φ4〉 = 1√
2

[
Y 3

−1(θ, ϕ) − Y 3
1 (θ, ϕ)

]

= 1√
2

[
1

8

√
21

π

(
(x − iy)

r3
+ (x + iy)

r3

)
(5z2 − r2)

]

= 1√
2

1

8

√
21

π

1

r3
[(2x)(5z2 − r2)]

= 1√
2

1

4

√
21

π

1

r3
[x(5z2 − r2)] ∝ x(5z2 − r2)

∝ xz2, (C6)

〈θ, ϕ|φ5〉 = 1√
2

[
Y 3

−2(θ, ϕ) + Y 3
2 (θ, ϕ)

]

= 1√
2

[
1

4

√
105

2π

(x − iy)2z

r3
+ 1

4

√
105

2π

(x + iy)2z

r3

]

= 1√
2

1

2

√
105

2π

1

r3
[z(x2 − y2)]

∝ z(x2 − y2), (C7)

〈θ, ϕ|φ6〉 = i√
2

[
Y 3

−2(θ, ϕ) − Y 3
2 (θ, ϕ)

]

= i√
2

[
1

4

√
105

2π

(x − iy)2z

r3
− 1

4

√
105

2π

(x + iy)2z

r3

]

= i√
2

1

4

√
105

2π

1

r3
[z(−4ixy)]

= 1√
2

√
105

2π

1

r3
[z(xy)]

∝ xyz, (C8)

〈θ, ϕ|φ7〉 = Y 3
0 (θ, ϕ) = 1

4

√
7

π

z(5z2 − 3r2)

r3

= 1

4

√
7

π

1

r3
z(5z2 − 3r2)

∝ z3. (C9)

The angular parts of the wave functions 〈θ, ϕ|ψ j〉 are ex-
panded using the above real tesseral spherical harmonics
〈θ, ϕ|φi〉 as the bases of the 4 f orbitals of the R ions for i = 1
to 7 as:

〈θ, ϕ|ψ j〉 =
7∑

i=1

ci j 〈θ, ϕ|φi〉 , j = 1 − 7. (C10)
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