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We study the ground-state phase diagram of an interacting staggered Su-Schrieffer-Heeger (SSH) ladder in the
vicinity of the Gaussian quantum critical point. The corresponding effective field theory, which nonperturbatively
treats correlation effects in the ladder, is a double-frequency sine-Gordon (DSG) model. It involves two
perturbations at the Gaussian fixed point: the deviation from criticality, and umklapp scattering processes.
While massive phases with broken symmetries are identified by means of local order parameters, a topological
distinction between thermodynamically equivalent phases becomes feasible only when nonlocal fermionic fields,
parity, and the string order parameter are included in consideration. We prove that a noninteracting fermionic
staggered SSH ladder is exactly equivalent to an O(2)-symmetric model of two decoupled Kitaev-Majorana
chains, or two one-dimensional p-wave superconductors. Close to the Gaussian fixed point, the SSH ladder
maps to an Ashkin-Teller-like system when interactions are included. Thus, the topological order in the SSH
ladder is related to broken-symmetry phases of the associated quantum spin-chain degrees of freedom. The
obtained phase diagram includes a Tomonaga-Luttinger liquid state that, due to umklapp processes, can become
unstable against either spontaneous dimerization or the onset of a charge-density wave (CDW). In these gapped
phases, elementary bulk excitations are quantum kinks carrying the charge Qr = 1/2. For sufficiently strong,
long-range interactions, the phase diagram of the model exhibits a bifurcation of the Gaussian critical point
into two outgoing Ising criticalities. The latter sandwich a mixed phase in which dimerization coexists with
a site-diagonal CDW. In this phase, elementary bulk excitations are represented by two types of topological
solitons carrying different fermionic charges, which continuously interpolate between 0 and 1. This phase has

also mixed topological properties with coexisting parity and string order parameters.
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I. INTRODUCTION

The Su-Schrieffer-Heeger (SSH) model [1] describes a
one-dimensional Peierls insulator [2] in terms of tight-binding
fermions whose hopping along the chain is characterized by
alternating nearest-neighbor amplitudes 74 = ) = A/2. It was
introduced four decades ago almost simultaneously with a
closely related field theory of (141)-dimensional fermions
coupled to a semiclassical scalar field with a solitonlike
background—the Jackiw-Rebby model [3]. In these seminal
works it has been demonstrated that, for certain chains with a
degenerate gapped ground state, such as trans-polyacetylene,
the excitations associated with topological defects and edge
states in finite samples are characterized by fractionalization
of charge [3,4] and the related phenomenon of charge-spin
separation [1].

Shortly after the SSH papers [1], a two-chain SSH ladder
model was proposed to explain soliton confinement in arrays
of weakly coupled dimerized chains [5,6]. Nowadays, low-
dimensional objects such as dimerized chains and ladders
are being successfully manufactured and studied in cold-
atom systems on optical lattices [7-10]. Current interest
in two- and multichain SSH ladders and related systems,
which include hybrid models that interpolate between the
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SSH and Kitaev’s p-wave superconducting chain [11], as well
as Creutz-Hubbard and Kitaev ladders, is strongly enhanced
by the interest in the studies of topological phases of such
objects [12-18]. Boundary zero-mode states characterizing
such phases are believed to play an important role because
of their potential for quantum computation [11,19].

The SSH ladder is described by the Hamiltonian

H = Hy + Hin,

where

1 .
Hy=-Y" |:to + EAU(—l)"}(c;wan,g +H.c.)

no

—0 Y e (1)

no

is a one-particle Hamiltonian of spinless (e.g., fully-spin-
polarized) noninteracting fermions, which includes dimeriza-
tion (A,) and single-particle interchain hopping (¢, ). Here,
¢!, cue are second-quantized operators of a fermion on the
site n of the chain labeled by o = =£1. The average number of
fermions per single rung of the ladder is 1. The model acquires
features of a strongly correlated one-dimensional (1D) Fermi

system when interaction between the fermions is included. If
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FIG. 1. Two dimerization patterns of the ladder: (a) columnar
dimerization; (b) staggered dimerization. The links with hopping
amplitudes 7., r_, and ¢, are depicted by the double, single, and
dashed lines, respectively.

one accounts for nearest-neighbor interaction only, Hj, takes
the form

Hint =U Z ﬁn,Tﬁn,¢ +V Z ﬁn,aﬁnJrl,as (2)
n

no

where 71, , = cfmc,w are fermionic occupation number op-
erators, and the coupling constants U and V parametrize
the interchain and in-chain repulsion. Hj,, may also incorpo-
rate longer-range interactions between the particles. Indeed,
in Fermi mixtures of ultracold atoms, the properties of a
lower-dimensional subsystem, such as a single chain or two-
leg ladder, can be manipulated by tuning parameters in the
higher-dimensional species to which the lower-dimensional
subsystem is coupled. This is one way in which long-range
interaction in ladder Fermi systems on optical lattices can be
generated [20,21].

Figure 1 shows two paradigmatic dimerization patterns:
(a) columnar dimerization with A, = A_, and (b) staggered
dimerization with A, = —A_. In earlier theoretical [5] and
experimental [22] studies is has been indicated that in quasi-
1D systems of polyacetylene chains already a weak interchain
tunneling makes the staggered relative ordering of the chains
more stable. Apart from this, for purely theoretical reasons
the B-type ladder appears to be of particular interest. In a
columnar ladder the role of the amplitude 7, is similar to
that of the chemical potential in a usual two-band insula-
tor. The interchain hopping only controls the filling of the
bands and thus can lead to insulator-metal (or commensurate-
incommensurate [23,24]) transitions, without affecting the
dispersion of the bands. At¢; = 0, the midgap states realized
in the bulk as a pair of solitons centered in the vicinity of the
same rung or, in the topological gapped phase, on the bound-
aries of the sample, are doubly degenerate zero-energy modes,
each carrying fractional charge gr = 1/2. These modes split
into doublets due to interchain tunneling. As first shown by
Baeriswyl and Maki [5], the two zero modes confine [5,6]
to form a bound state representing a single fermion with the
charge gr = 1. Thus, at any nonzero ¢, , degenerate boundary
modes and the associated fractional charge are no longer the
property of a columnar ladder.

The situation is different in the staggered SSH ladder.
Here ¢, couples to a nonconserved quantity, which makes the
spectrum of the system essentially dependent on ¢, , similar
to that in the Kitaev model of a 1D p-wave superconductor
[11]. However, there is a principal difference here: the global
U(1) symmetry of a staggered dimerized ladder leads to con-
servation of the total particle number N, whereas the Kitaev

model has only a discrete symmetry Z,, “generated” by parity
P=(—V.

With regard to the bulk properties of the B-ladder, at any
nonzero A it does not have a metallic phase occupying a finite
region in the parameter space. Instead, at 1, = +2¢; already
a noninteracting staggered ladder displays two symmetric
Gaussian critical points separating a topologically nontrivial
massive phase (|t,| < 2tp) from trivial phases (7| > 2tj).
Due to chiral symmetry, the phase at |f,| < 2fy is topo-
logically protected and characterized by edge states with a
fractional charge gr = 1/2. For noninteracting fermions, the
charge of elementary bulk excitations is, of course, Qr = 1.

In this work, we focus on the correlation effects in an inter-
acting staggered SSH ladder in the vicinity of the Gaussian
criticality where the fermionic spectrum is gapless. Due to
the 1, — —¢, symmetry, we choose f; to be close to 2t,.
We derive an effective low-energy field-theoretical model in
which interaction is treated nonperturbatively using Abelian
bosonization. We show that close to Gaussian criticality,
interactions transform the ladder to a strongly correlated
1D system and affect the topological properties of massive
phases. The phase diagram is rich and includes massive phases
with explicitly or spontaneously broken discrete symmetries.
Some of these phases are topologically nontrivial and some
are not. Exactly at t; = 2t the phase diagram displays a line
of Gaussian critical points with continuously varying expo-
nents (Tomonaga-Luttinger liquid). If the interaction is strong
enough and/or sufficiently long-ranged, umklapp processes
make the Tomonaga-Luttinger critical state unstable against
spontaneous breakdown of either link or site parity, leading
to the onset of dimerization long-range order or a charge-
density wave (CDW), respectively. In these gapped phases,
elementary bulk excitations are not fermions but quantum
kinks carrying the charge Qp = 1/2.

To have a reliable tool to distinguish between topologically
distinct phases of the system, one needs a local representation
of nonlocal fermionic fields: parity and string order parameter.
The bosonization approach supplies these nonlocal fields with
a local representation. To put this correspondence on firm
ground, we need to establish contact between the ladder
model and hidden Ising degrees of freedom in a symmetry-
preserving way. We first demonstrate that, in any range of
its parameters, a noninteracting staggered SSH ladder can
be exactly mapped onto an O(2)-symmetric model of two
decoupled Kitaev-Majorana (KM) chains, or equivalently two
copies of an XY spin-1/2 chain in a transverse magnetic
field, or two decoupled 1D p-wave superconductors (1DPS).
Bearing in mind that our ladder represents a system of two
SSH chains coupled by interchain tunneling (f; # 0), the
possibility of such factorization appears to be a remarkable
property of the model. The continuous O(2) symmetry shows
up as the invariance of the two KM chains under rotations of
the two-component Majorana vector field.

In the vicinity of the critical point, the noninteracting
ladder is equivalent to a pair of identical, weakly off-critical,
decoupled quantum Ising chains. The fermionic nonlocal
operators (parity and string order parameter) are then iden-
tified as products of two order or disorder Ising parameters.
In this way, topological order in the ladder system is re-
lated to broken-symmetry phases of the associated quantum
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spin-chain degrees of freedom. Switching on interaction be-
tween the original fermions on the ladder transforms the two
decoupled Ising chains to an quantum Ashkin-Teller model
[25,26]. The proof of this equivalence is one of the main
results of the paper.

Here a remark is in order. When the staggered SSH ladder
is considered in the vicinity of the critical point #; = 2¢y, the
existence of the aforementioned equivalence does not come
as a revelation. The theory of a massive Dirac fermion with
a marginal interaction, the so-called massive Thirring model,
has long been known to be equivalent to the quantum Ashkin-
Teller system of two marginally coupled quantum Ising chains
[27]. On the other hand, the two theories are related to the
quantum sine-Gordon model [28]. Main bosonization formu-
las exploring this triad of equivalence have been derived,
including those that concern nonlocal fermionic fields [29,30].
Obviously, the significance of the mapping of the fermionic
staggered SSH ladder onto an O(2) theory of KM chains
follows from the fact that all the models involved are defined
on a lattice and the mapping is exact.

We show that universal low-energy properties of the model
are formed due to the interplay of two relevant perturba-
tions: the deviation from the U(1) criticality, and umklapp
processes generates by interactions. Upon bosonization, such
interplay is adequately described by the quantum double-
frequency sine-Gordon (DSG) model [29,30]. This theory
predicts the realization of a typical Ashkin-Teller scenario:
at small deviations from the Gaussian criticality, the phase
diagram of the model exhibits a bifurcation of the Gaussian
critical point (central charge ¢ = 1) into two outgoing Z, or
Ising criticalities (each with a central charge ¢ = 1/2). The
two Ising critical lines sandwich a mixed phase in which
dimerization coexists with a site-diagonal CDW. In this phase,
due to the CDW ordering, the charge conjugation symmetry is
spontaneously broken and, as a consequence, the fermionic
number Qp is not quantized in units 1/2 (see, e.g., Ref.
[31]). Elementary bulk excitations in the mixed phase are
represented by two types of topological solitons carrying
different fermionic charges, which continuously interpolate
between 0 and 1. This phase has also mixed topological
properties with continuously varying parity and string order
parameters.

The paper is organized as follows. In Sec. II we overview
the spectral properties of a noninteracting staggered SSH
ladder. In particular, we discuss the evolution of the fermionic
spectrum on approaching the critical point #; = 2¢y. On de-
creasing the parameter y =1 —1¢, /2ty (J]y| < 1), at small
8 = A/2ty, we observe a smooth crossover between an in-
commensurate massive phase, y > 8%, and a commensurate
massive phase, y < 82 (the commensurate phase extends to
the region y < 0). In the latter case, the elementary excitation
represents a Dirac-like fermion with a mass m ~ y. At m =
0 one has a continuum theory of a massless fermion with
a single Fermi point at k = 0. In Sec. III we incorporate
interactions between the fermions into an effective continuum
model and then bosonize it. As a result, we arrive at the
DSG model where the original Dirac mass term and umklapp
processes are the key perturbations to the Gaussian scalar field
theory. Here we also derive the bosonized form of all local
physical fields.

In Sec. IV an exact equivalence between the staggered SSH
ladder and a pair of Kitaev chains is established. Close to
U(1) criticality (Jy| < 1), interactions transform this system
to a quantum Ashkin-Teller model, which makes it possible to
employ the previously developed formalism that derives the
low-energy projections of all physical fields of the DSG model
in terms of the constituent spin degrees of freedom [30]. This
equivalence proves instrumental to derive bosonized expres-
sions for nonlocal fermionic operators, parity, and string order
parameter. In Sec. V we provide a local, field-theoretical rep-
resentation of the parity and string order operators, together
with their representation in terms of the Ising variables. In
Sec. VI we discuss in much detail the ground-state phase
diagram of the staggered ladder, paying attention to quantum
critical lines separating massive phases, topological properties
of the latter, and the fermionic numbers carried by elementary
excitations. The paper has two Appendixes in which some
details of Abelian bosonization and basic facts about the
Kitaev-Majorana model are compiled.

II. THE SPECTRUM OF A NONINTERACTING
STAGGERED SSH LADDER

We start our discussion by providing an overview of the
main properties of a noninteracting staggered SSH ladder.
While the columnar ladder is symmetric under the interchange
Py, of the two chains, the Hamiltonian of the staggered ladder
has a glide reflection symmetry [10] that is a direct product of
a translation by one lattice spacing (7,) and reflection (Pyy).
The spectrum of the staggered ladder remains fully defined
within the original Brillouin zone |k| < 7.

Passing at each rung to bonding (b) and antibonding (a)
states
ikn 1 —ikn

. b ﬁmzywz 3)

n,o

1 _
Ay = —— Y OCpg€
TN 20:

we represent the Hamiltonian (1) at AL = —A_ = A as
follows:

%=Zﬂ%mm,m:(“)

by
k| <7 t

hk) = (e +11)85 — Avta, @)

where the Pauli matrices ¢ (a = 1,2,3) act in the two-
dimensional Dirac-Nambu space. Everywhere below we will
assume that #p > 0, 0 < A < 21y, while the ratio 7, /2f is
arbitrary. The model (4) has a chiral symmetry, ¥ — Ty,
thk)? = —hk), implying that the spectrum of the Hamil-
tonian consists of (E, —F) pairs,

EP(k) =£EK), EK) =,/(&+1 2 +A7 (5

and possibly contains zero-energy modes.

The Hamiltonian H, conserves the total charge N =
>k 1//,(T Yy, but because of interband transitions caused by
dimerization it does not conserve the “chiral charge” N3 =
> 1/fkT T3Y. This is why, similar to the chemical potential
in a BCS superconductor, ¢, appears in (5) inside the square
root. Therefore, there is no room for quantum commensurate-
incommensurate transitions [23,24] in this case. In fact, the
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FIG. 2. Staggered ladder at?_ = #;, — %A =0, 1t = 21.

B-ladder does not possess a metallic phase extending over a
finite range of 7, . Instead at any fixed A # O the spectrum
(5) remains gapped except for two isolated critical points
occurring at

k=0: t, =2t (upper critical point), (6)

k=m: t, = -2t (lower critical point). 7)

These points separate massive phases that occupy the regions
|t | # 2to. The criticalities belong to the universality class of
a free massless fermion: Gaussian U(1) criticality with central
charge ¢ = 1. The existence of this criticality is immediately
understood in the special case

A A

AZZI(),l+=f0+5=2[0,l,:t0—320 (8)
(or equivalently A = =21y, ty =0, t_ = 24y) displayed in
Fig. 2. The staggered ladder transforms to a single chain with
alternating hopping amplitudes 2¢y, and 7,. Generically, the
spectrum of such a chain is massive; however, at ¢, = 2f,
translational invariance is restored, and the resulting snake-
looking uniform chain with a 1/2-filled tight-binding band
has a gapless spectrum. A similar situation is known to exist
in the theory of explicitly dimerized spin-1/2 Heisenberg
ladders [32-34]. Notice that the conditions (6) and (7) are
less restrictive than those corresponding to the translationally
invariant snake-ladder of Fig. 2. In the latter case, the critical
points are determined by two conditions imposed on both ¢,
and A, whereas (6) or (7) represents one condition imposed
on ¢, only. Therefore, on the phase plane (A, ¢, ) there exists
critical linest, = %2ty along which A may be varied.

The spectrum (5) of the noninteracting B-type SSH ladder
coincides with that of a one-dimensional spinless supercon-
ductor with a p-wave pairing (1DPS)—the Kitaev model
[11,19] (see Appendix B). This similarity between the stag-
gered SSH ladder and the Kitaev model has been mentioned
in the literature, and topological properties of the two models
were compared [18]. In both models, the critical points £, =
421y separate topologically nontrivial massive phases (|7, | <
2ty) from trivial massive phases (|t | > 21y). By the bulk-
boundary correspondence [35], in both cases the topological
phase shows up in the appearance of boundary zero-energy
midgap states. However, there is an important difference. In
the Kitaev model, the global symmetry is Z,. Therefore, the
boundary states localized at the edges of a single Kitaev chain

are Majorana zero modes [11,19]. These modes constitute a
highly nonlocal realization of a Z,-degenerate many-fermion
ground state of a 1D p-wave superconductor, characterized by
even and odd parity of the particle number. On the other hand,
the continuous U(1) symmetry of the staggered SSH ladder
leads to conservation of the total particle number. There-
fore, in the topologically nontrivial phase of the noninteract-
ing staggered ladder the two degenerate boundary Majorana
modes combine to produce a zero-energy state of a complex
fermion carrying a fractional fermion number [1] gr = 1/2.
The situation in the interacting ladder will be discussed in
Sec. VL.

The aforementioned differences make a direct mapping of
the SSH ladder onto a single p-wave superconducting chain
illegitimate. In Sec. IV we demonstrate that, in the absence of
interaction, the staggered ladder with two SSH chains coupled
by interchain tunneling is exactly equivalent to two decoupled
Kitaev chains. Apparently, the symmetry of such a system is
Zy x Z,. However, passing to a Majorana representation of
the two-chain Kitaev model reveals its invariance under global
O(2) rotations of the two-component Majorana vector field,
which correctly reproduces the U(1) symmetry of the original
SSH ladder model.

Let us now derive the effective fermionic Hamiltonian,
which captures the low-energy properties of the noninteract-
ing model in the vicinity of the upper critical point (6), , =
2ty. The lower critical point (7), £, = —2fy, can be accessed
using the symmetry E(k, —t,) = E(w — k, t,). Introducing
two smooth fields slowly varying over the lattice constant ag
(A < 1/ao),

1 .
V) = > Py,

k| <A

1 )
Vo) = —= > e by, ©)

lk|<A

we can write the Hamiltonian density as

HOx) = wT(x)[ivoaxfz — (m + Laf)%]wo@ +oee

2m*

(V)
Wix) = < v (x)) (10)

Here the dots stand for higher-order gradient terms. The
parameters in (10) are

m=2y—1t = 2l0)/, vg = Aay = VFé,
1/2m* = tyaj, (11)

vp = 2tpap being the Fermi velocity of the fermions on a
single undimerized chain. Equation (10) is the Hamiltonian
density of free (1+1)-dimensional fermions, which, apart
from the Dirac mass m, includes a nonrelativistic correction
(m*)~'82. The spectrum of H® represents a small-k expan-
sion,

2 2
E*(k) = kK*v} + | m — k
2m*

4

k
=m? + I+ —— -, (12)
4m*2
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E(;)/Qto

FIG. 3. The spectrum E,E“ of the staggered ladder. Notations:
T =1, /2ty, § = A/2ty. Chosen: 8% = 0.2. Cases: (1) T =0.1, (2)
1=07,371=08#7r=09and(5)r =1.

where

v =2 — % =282 — y). (13)
The k* term in (12) plays an important role in the formation of
incommensurate spatial correlations of the physical quantities
not too close to the critical point (the subcritical regime §% <
y < 1.

Let us now discuss the consequences following from the
specific form of the one-particle spectrum (12) in the vicinity
of the critical point, |y| < 1 (see Fig. 3). We assume that
0 < § < 1. Depending on the sign of v? in the expansion (12),
there are two regimes within the gapped phase 0 < y < 1:
(i) a massive incommensurate regime: v> < 0, §* <y < I;
(i) a massive commensurate regime: v> > 0, y < 8% < 1.
In regime (i), E(k) has two symmetric minima at k = %k,
where ko = a,, 1,/2()/ — §2). These minima, seen in curves 1
and 2 of Fig. 3, evolve from the two original minima at the
Fermi momenta +kr = +m /2a, where a spectral gap opens
up in the limit of two decoupled SSH chains (f;, = 0). On
decreasing y, the momentum k( decreases and vanishes at
the point y = 82, where E (k) ~ 2ty [1 + (ka0)4/8y2] (curve
3 in Fig. 3). Further decreasing y makes v? positive, and
the model crosses over to the massive region (ii) in which
the dispersion curve has only one minimum at kK = 0 (curve
4 in Fig. 3). The k* term in the expansion (12) can be
neglected under the condition that |k|ay < /8% — y. Then
one arrives at the spectrum of a massive Dirac fermion E (k) =~

~/k2v? 4+ m?. Exactly at the critical pointz; = 2y (y = 0) the
fermion becomes massless: E (k) = v|k|.

If y is negative (1, > 2y, m < 0), v? remains positive, and
the dispersion curve always has a single minimum at k = 0.
So at small but negative y one has the spectrum of a massive
Dirac fermion.

The appearance of two spectral minima of E(k) at k =
+ko indicates that in the region (i) spatial correlations of lo-
cal physical fields must exhibit incommensurate modulations
with the period 27 /2ky. On the other hand, since the spectrum
is gapped, these correlations should fall off exponentially
at distances larger than the correlation length &y. The study
of this question, which will include computation of spatial
density-density correlation functions in both incommensurate
and commensurate massive regimes, will be postponed until a
separate publication [36]. Here we would only like to stress
that, in the staggered SSH ladder, crossing the point y =
82 (ko = 0) does not have a character of a phase transition.
It rather signifies a smooth crossover between the massive
regimes.

III. INCLUDING INTERACTIONS

Now we turn to interaction between the fermions as de-
scribed by Hi, in Eq. (2). Naturally, correlation effects are
expected to be most strongly pronounced in the vicinity of
the critical points (|¢,| ~ 2fy). To derive a continuum rep-
resentation of Hi,, we will ignore the k*-correction to the
single-particle spectrum (12) and proceed from the “relativis-
tic” model of a massive Dirac fermion, Eq. (10), with the
“nonrelativistic mass” m* sent to infinity. The SU(2) “spin”
symmetry of the Hubbard on-site interaction implies that Hy
is invariant under rotations in the chain space. Therefore,

Hy =gy / dx Y] OV, ()Y, (OY,(x), (14)

where gy = Uay is the coupling constant. Furthermore, using
the correspondence

¢ enr = Dt )W) + o (= 1) W )E W)
no ~ho 2

we find that

Hy =%

dx [[¥F )W) — [ ()3 W(x)]
x [W7(x + ag)t1 W(x + ao)]l, (15)

where gy = Vay is another coupling constant. It is convenient
to make a chiral rotation of the spinor W:

. R
W) = e ), XOC):(LZ;)' (16)

Under this rotation 7, — —1%3, 73 — 7, and the effective
Dirac Hamiltonian of free massive fermions becomes

Ho(x) = x " (X)[—ivgd T3 — mEa]x (x). 17)
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To find the continuum form of the interaction in the (RL) basis
of single-particle states, we use the relations

1 i
: W;(b)%w) = E(jR +J)F E(RTL — L'R),

+ ¥ 1
UV U= (R ) + Ik
+ i[(RTL»(R*L)mO +Hel,  (18)

where Jg =: R'R : and J, =: LYL : are normal ordered den-
sities of the right and left fermions, i.e., the U(1) chiral
currents (see Appendix A). Taking into account the fact that
Hy maintains its structure with W replaced by x, we arrive at
the following expression for the interaction density, which is
parametrized by two coupling constants

Hi _ ! J2 4+ T2 + 2g., JpJ,
1nt—2g+(R+ L)+ 8+JRIL

1
+ 58 ((R'D)(R L)csa, + Hel,

g+ = (gu £28v)/2. 19)

The first term on the right-hand side of (19) renormalizes
the group velocity of the collective excitations, the second
term is a marginal forward-scattering part of the interaction,
and the last term describes umklapp processes whose correct
treatment in a continuum field theory of spinless fermions
requires point splitting [37].

Now we apply the bosonization method to the continuum
fermionic model Heg(x) = Ho(x) + Hine(x), where Hy and
Hine are given by Eqgs. (17) and (19), respectively. The details
of this derivation can be found in Appendix A, where the
main steps of Abelian bosonization are briefly outlined. The
bosonic counterpart of Heg (x) represents a double-frequency
sine-Gordon (DSG) model [29,30]:

Hpsg = g[nz(x) + [ ()P] + % cos VAT K¢

— % cos /167K, (20)
2(mrar)?
where
K=1-% o). Q1)
Tu

The first term on the right-hand side of (20) describes a
conformally invariant Gaussian model with central charge
c=1. ¢(x) and m(x) are the massless scalar field and its
conjugate momentum, respectively, # being the renormalized
velocity of collective excitations. We remind the reader that
the “Dirac mass” m =~ 2tyy measures the deviation from the
critical point (y = 0). The mass and umklapp terms represent
two perturbations with Gaussian scaling dimensions d; = K
and d, = 4K, respectively.

At a weak short-range repulsive interaction, the Luttinger-
liquid parameter K is only slightly less than 1, and the
umklapp term in (20) is strongly irrelevant (d, > 2) at the
Gaussian fixed point. Since the DSG model is nonintegrable
[29], the exact dependence of the Luttinger-liquid parameter
K on the coupling constants is not known. To remedy this

shortcoming, we can imagine that our SSH ladder model
incorporates longer-range interactions, which push this pa-
rameter to smaller values[38], including K = 1/2. Below this
value, both the mass and umklapp terms become relevant, and
the interplay of the two perturbations can lead to new infrared
physics.

The unrenormalized umklapp coupling constant g is pro-
portional to g_ and changes its sign at gy = 2gy. Even though
in the effective infrared theory the precise dependence of g on
the bare interaction constants is not universal, there is a line in
the uv plane where g changes its sign [39]. This fact is crucial
for the physical consequences about the phase diagram of the
model.

The DSG model (20) must be supplemented by the list of
bosonized strongly fluctuating local fields.

(i) The total on-rung density fluctuation is defined as

1p(n): = Z : clac,w — apd (x),

U )W) = xT ) x () :
— VK/7 3,.9(x), (22)

J(x)

and the fermion number is defined as

0= /OO dxJ(x) =K/t A¢,
A¢ = ¢(00) — p(—00). (23)

(ii) The total longitudinal and transverse bond-densities,
both measured from their ground-state average values at the
critical point y = 0, are

*Dppg1 2 = (=1 Z(: c,L,an,a : +H.c.)

o

— aoBj(x),

Bi(n): = Z : cj;acn,_g T — agB (%),

By(x) ~ =Bi(x) ~: W 0)#HW(x) := x ()t x (x)
— —(ma)” ! cosVATKp(x) : . (24)

(iii) The staggered part of the site-diagonal relative density
(CDW) transforms to

o) = (—1)'Y 0 :cl,cw: — aopeow(x),

pepw(x) = W O)HWE) = x () x(x)
— —(ra)" ! sinVATKo(x) : . (25)

In Sec. V we show that the above list must be
complemented by two more operators, cosv/7K¢(x) and
sin v/ K¢ (x), which represent nonlocal fermionic fields: par-
ity and string order parameter. The latter play a crucial role
in identifying topologically nontrivial massive phases of the
interacting system.
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FIG. 4. Two-sublattice representation of the staggered SSH ladder.

IV. EQUIVALENCE BETWEEN THE STAGGERED SSH
LADDER AND A PAIR OF KITAEV CHAINS

In this section, we establish an exact equivalence between
the staggered SSH ladder and a pair of Kitaev chains. Let us
divide the lattice of the staggered ladder into A and B sublat-
tices as shown in Fig. 4. Associated with these sublattices are
two fermionic operators, «, and f,, which are related to the
original operators c¢,, as follows:

Cro = (=)' My (M, — e g (n)B,].
Here 1y (n) = [1 £ (—1)"]/2 are projectors on the even and
odd sites, respectively. We then rewrite the Hamiltonian of

the noninteracting staggered SSH ladder in a translationally
invariant form

Hy=i) (ty)Bur1 +1-afBuy —tiofBy) +He.  (26)

n

The spectrum of this Hamiltonian, E®)(k), coincides with the
expression (5), as it should. Splitting the operators «, and 8,
into pairs of Majorana (real) fermions (4, ),

¥ l) + ”7(2) ¥ C}'E]) + ié‘n(z)
o, = Tv B, = T

e b} = {e ¢b) = 268, {8, ¢2} =0, (27

we find out that Hy in (26) decouples into two identical
Hamiltonians of the KM chain:

Hy = Z Higyys
a=1,2

[HliM’ HIEM] =0,

i N
ngM = Z tJrnn n+1 +1- nn;-n 1 tﬂ?ﬁ:) (28)

By the correspondence discussed in Appendix B, Hy in (28)
describes two copies of the XY spin-1/2 chains in a transverse
magnetic field:

Hy= Y Hyy,

a
HXY

Il
r'q

(h +Joa nag n+1 +J an an-H) (29)

or equivalently two decoupled p-wave superconducting
chains:

Hy = Z HlDPS’

a=1,2

Hipps = ) [—ux > i Fan—=1/204(f]  famir+Hoc))

+ (A +H.c.)], (30)

where £ = (¢4 +in?)/2 (a = 1, 2). The parameters of the
above three models are related by the formulas (B5). Notice
that, according to the definition (27), the original fermionic
operators «, and B, mix up Majorana species (a = 1, 2)
belonging to different KM chains to which the Hamiltonian
Hy decouples.

According to the Jordan-Wigner equivalence (B4), the
spin-fermion correspondence that relates the models (28) and
(29) is highly nonlocal. Each of the two KM models (Hé’l\%[) or
XY spin chains (H;Yz) is Z,-symmetric. In (28) this symmetry
is realized as the invariance under transformations n* — —n¢,
% — —¢¢ while in (29) it is the symmetry under JT-rotations
of the spin operators o), — oa s ag n— oa .. However,
the sum (28) not only possesses discrete Z, ® Z, symme-
try but it also enjoys a larger, continuous SO(2) symme-
try associated with global rotations of the Majorana vectors
n=", n*)and ¢ = (¢', ¢?). This symmetry is nonlocally
realized with respect to the spin model Hy in (29). Its existence
is consistent with the U(1) symmetry of the original SSH
ladder model and the related conservation of the total fermion
number.

Having proven an exact equivalence between a noninteract-
ing B-type dimerized ladder and a decoupled pair of two KM
copies, which holds at arbitrary nonzero ¢, , we now specialize
to the vicinity of the Ising critical point ¢, = 2ty — m, |m| K
to. In this limit, one can pass to a continuum description in
which n¢ — 2aon®(x), ¢¢ — 2ao¢%(x). As a result,

Hiy — /dx?—l‘éM(x),

Hig ) = ivn®(x)0,¢“(x) + imn“ (x)*(x) = Haieln®, ¢°1,

€2y

where v = Aqy. We see that, in the field-theoretical limit, the
KM chain reduces to a model of a massive Majorana fermion,
which is merely the continuum version of a slightly off-critical
quantum Ising chain (QIC) [40,41]. This fact is well known:
near an Ising transition, the XY spin chain in a transverse
magnetic field is faithfully described by the Ising field theory
[42].

A chiral rotation similar to that for the complex fermion
field ¥, Eq. (16), £5) = (n° F ¢%)/~/2, leads to

Hy — /dx?-[o(x),

Ho(x) = %@R kg — &y 0,6 +im Eg - £,

£E=(50.69). (32)
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This O(2)-invariant model of a two-component massive Ma-
jorana field describes the staggered SSH ladder near the U(1)
criticality in the absence of interactions. With a complex
fermionic field x (x) defined as x = (€1 4 i£@)/V/2, the
model (32) is equivalent to a theory of a free massive Dirac
fermion in 1+1 dimensions, given by Eq. (17).

Now we consider the structure of interaction in the KM
representation. In terms of complex fermionic fields «; and
B;, the fluctuation part of the interaction Hamiltonian (2) takes
the form

Hipe = Z{U‘Spa(j)pﬁ(j) +VIdpu()pp(j + 1)
i

+3pa(/)pp(j — DI}, (33)
where
. T 1 i 1,2
8pa(j) = aja; — 3= "N
5ps(/) = BLB; — % = 3¢/}
So

1
Hin = 7 Z{U(nlj§1j)(772j§2j) + VIM¢r j+1)m2562,j+1)
J

+ (71¢1,-1) (0282, - D1} (34)

Using the JW transformation from fermions to spin-1/2 vari-
ables (see Appendix B), it is interesting to reveal the spin-
chain content of the O(2)-Majorana model with interaction
(34). We find that such a fermionic model is equivalent to the
following interacting XY spin-ladder model:

Hyylo1, 02] = Hyy + Hygy + Hyyloi, 021, (35)

where HY, (a = 1, 2) are given by Eq. (29) and

/ _ z z o o o o
Hyylon o] =) [U"l,f"z,f +V Y "l,j"l,_f+1(’2,j"2,j+l]

J a=x,y

(36)

is the interaction term. The Hamiltonian (35) can be regarded
as an XY generalization of the quantum Ashkin-Teller model,
the latter describing a system of two quantum Ising chains
near criticality, coupled by a self-dual interaction [29,30].
This correspondence becomes relevant in the vicinity of the
Gaussian transition in the original SSH ladder model. Indeed,
att; ~ 2t the interaction term (34) transforms to

Hiy = —/dx {Un1(x)&1(0)n2(x)2(x)

+ VI )& (x 4+ ag)na(x)8 (x + ap)
+ 11 (X)¢1 (x — ag)n2(x) &2 (x — ap)]}. (37

Taking the limit ¢y — 0 in (37) means keeping only the part
of interaction that is marginal at the ultraviolet fixed point. All
neglected terms containing derivatives of the fields, including
those that describe umklapp processes, are strongly irrelevant
at the Gaussian fixed point of the noninteracting model. In this
approximation, one arrives at the true quantum Ashkin-Teller

model

Har(x) = Y ilun* ()9, (x) + mn ()¢ (x)]

a=1,2

+an' ()¢ ot ()¢ (x), (38)

where A ~ g, ~ U +2V.

The model (38) is equivalent to the bosonized Hamiltonian
(20) without the umklapp term. However, due to renormaliza-
tions caused by the marginal perturbation, the Luttinger-liquid
parameter may reach values K < 1/2, in which case umklapp
processes cannot be ignored. It is clear that to tackle the effects
caused by the (relevant) umklapp processes would be very
hard, if possible at all, in the fermionic language, Eq. (38).
On the contrary, the bosonization method reformulates the
emerging problem in terms of the DSG model, which allows
one to infer valuable information about the phase diagram and
the new emerging criticalities.

V. NONLOCAL ORDER PARAMETERS

The notion of nonlocal order in strongly correlated systems
with a gapped spectrum and unbroken continuous symmetry
was originally associated with the Haldane spin-liquid phase
of the spin-1 chain. den Nijs and Rommelse [43] introduced a
string order parameter

i—1

<S§)‘ exp | im Y 8¢ S‘?‘>, (39)

k=j+1

0% = lim

li—j—00

S¥ (o = x, y, z) being spin-1 operators, which takes a nonzero
value in the ground state. This was shown to be related to
a spontaneous breakdown of a hidden Z, ® Z, symmetry
[44]. The Affleck-Kennedy-Lieb-Tasaki valence-bond state of
a spin-1 chain [45] has revealed a deep connection between
a nontrivial topological order and fourfold-degenerate spin-
1/2 boundary states existing for an open chain. Later on,
nonlocal string order parameters were studied in various spin
chains and ladders [46] to categorize massive phases of these
objects according to topologically distinct classes [47]. In
recent studies, string order parameters together with another
nonlocal order parameter, namely the parity operator, which
arose in the context of the Kitaev 1DPS model [11,48],
were extensively studied to characterize topologically trivial
and nontrivial massive ground-state phases of various one-
dimensional fermionic systems—SSH and Kitaev chains and
their quasi-1D analogs [12,49,50].

Nonlocal string-order and parity operators relevant to our
discussion were considered earlier for 1D lattice bosons [51].
Below we show that, for one-dimensional fermions, a field-
theoretical representation of these nonlocal operators remains
the same. Let us introduce the number of the original fermions
within the interval 1 < j < n, measured from its average
value

SNy =N,y —n=2"8p; =Y [8pa()+ 8ps(i)],

j=1 j=1
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where §p; = p; — 1 is the fluctuation of the rung density. We
then define the parity operator

P, = N = (1) 1_[(1 — 2afa;)(1 — 281 B;)
j=l1

= [Ty P e®) = P0p2. a0
j=1

The already discussed equivalence of the SSH ladder to two
copies of the Kitaev chain reveals the multiplicative structure
of the operator P,: it is a product of the parity operators
of the two copies of the Kitaev chain to which the SSH
ladder Hamiltonian maps, Eq. (28). A detailed analysis of
the Majorana structure of nonlocal order parameters for an
individual Kitaev model can be found in Refs. [12,52] (see
also Appendix B).

According to the bosonization rules, at n > 1 the local
operator §p, transforms to (ag/m)d,¢(x). Therefore, in the
continuum limit

P, — P(x) = Ree : exp [lﬁ /x dy 8)¢(y)] :
=:cosy/mp(x): . 41)

At the Gaussian fixed point, P(x) is a primary field with
scaling dimension 1/4. Its nonlocal fermionic origin follows
from the observation that it cannot be expressed as a linear
combination of fermionic mass bilinears (the Gaussian scaling
dimension of the latter is 1). At infinite separation, the two-
point correlation function of local parity operators becomes

im (PPO) = (P,

where P = ™ = PP, is the global parity operator, N =
Ny is the total particle number, and P, (a = 1, 2) are global
parities of the corresponding Kitaev chains (or related QIC
models).

To obtain an equivalent representation of parity (P) in
terms of the discrete (Ising) variables, one can proceed either
from the factorization formula (40) and then use the results
collected in Refs. [12,52], or take advantage of the corre-
spondence between a nearly critical staggered SSH ladder
and the quantum Ashkin-Teller model for which the main
bosonization formulas are well known [27,30]. We will take
the second route. Here one should take into account the fact
that, as compared to the convention adopted in Ref. [30], in
our case the sign of the Dirac (or Majorana) mass is inverted.
Changing m — —m is equivalent to the duality transformation
of the QIC model. With this circumstance in mind, one obtains

P(x) ~ o1(x)o2(x), (42)

where o(x) (j = 1, 2) are local order parameters of the jth
Ising copy.
‘We now build up a string operator:

n—1

Os(n) = exp inZB,oj 8pn = Po_18pn.  (43)

j=1

In the continuum limit,

Os(j) = Os(x) = = : cos V/Tp(x —ag) : ().

Of interest is the string correlation function,

im_(0s()0s() = (0s)”
In the conformal field theory of a massless Gaussian field
[53,54], Eq. (A1), the following operator product expansion
can be derived:

0,¢(z,7) : cos Bp(w, W) :
i ( 1 1 ) . _
= — — ——— ) :sinBop(w, w):. (44)
dr\z—w Z—w

Here z = vt + ix, Z = vt — ix are complex variables, T be-
ing imaginary time. Setting T = 0 and substituting 8 = /7
and z — w = «a (here « is the short-distance cutoff of the
bosonic theory), up to a nonuniversal multiplicative constant,
we obtain

Os(x) ~

ssina/mo(x) 1~ () pa(x), (45)

where 1 2(x) are the Ising disorder operators of the corre-
sponding chains. Referring for a general definition to Chap. 9
of the book by Mussardo [41] here we only mention that the
existence of the disorder operator in the QIC model follows
from the Kramers-Wannier duality between the ordered and
disordered massive ground-state phases that map to each other
under sign reversal of the Majorana mass. Physically, in the
ordered Ising phase, the disorder operator w(x) creates a kink
at a point x separating Z,-degenerate states with opposite
signs of the magnetization (o (x)) at x > 0 and x < 0. Kink
condensation associated with the appearance of a nonzero
average (i) leads to the onset of the disordered Ising phase.

When the marginal part of the interaction is taken into
account, the compactification radius of the scalar field gets
changed and ¢(x) — v/K¢(x). Accordingly, the parity and
string operators, (41) and (45), become

P(x) ~: cosvrKp(x) :,

Thus, the nonlocal fermionic operators of the staggered SSH
ladder, parity, and string order parameters admit a local repre-
sentation in terms of vertex operators of the scalar field ¢ (x).

Og(x) ~:sinvVaKp(x):. (46)

VI. PHASE DIAGRAM

We now turn to the low-energy effective bosonized model
(20) and analyze the ground-state phase diagram of the system
in the vicinity of the critical point 7, = 2fy (y =0) as a
function of the Luttinger-liquid parameter K, the deviation
from criticality (m ~ y), and the umklapp coupling constant
(&~g-~U=2V).

A. Casel/2 <K <2
This is a situation when d; < 2, d, > 2, so that the umk-
lapp term in (20) is irrelevant and the low-energy physics is
described by the standard quantum sine-Gordon model,

H(x) = g[n%x) + [0, ()] + % cos VATK$(x). (47)
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Upon renormalization, this model flows toward a strong-
coupling fixed point characterized by a dynamically generated
mass gap M ~ |m|"/?~%) 1In the ground state, the field ¢ is
locked in one of the degenerate minima of the cosine potential:

(@ = \/g[n + %9(m)i|, n=0,%1,42,..., (48

where 6(x) is the Heaviside step function. Since the separa-
tion of neighboring minima is A¢ = /7 /K, the fermionic
number (23), associated with a topological kink of the SG
model (47), is equal to Qr = 1. This is the charge carried by
a massive Dirac fermion. The ground state of the system is
insulating.

According to (24) and (48), at any m # 0 the ground
state is characterized by both the longitudinal and transverse
explicit dimerization, with averages (53) and (53,) nonzero
and of opposite sign. At the critical point, both bond densities
change their sign. The system goes through a U(1) Gaussian
criticality to another massive phase. At m = 0 the model dis-
plays the properties of a spinless Tomonaga-Luttinger liquid
characterized by the absence of single-fermion quasiparticles
and power-law decay of correlation functions with nonuni-
versal, K-dependent critical exponents (see, for a review,
Refs. [38,40]).

The two massive phases with opposite signs of m are
dual to each other and thermodynamically indistinguishable.
However, they differ in their topological properties. The case
m < 0 corresponds to the disordered Ising phase while m > 0
corresponds to the ordered phase. In a single Kitaev 1DPS
chain, the Ising ordered (disordered) phases correspond to
topologically nontrivial (trivial) phases of the superconductor.
Then, according to the relations (42) and (45), we conclude
that

m>0:(P)=0,
m<0:(P)#0,

(Os) # 0 (topological phase),
(Os) = 0 (nontopological phase), (49)

in full agreement with the different structure of the bosonic
vacuum at m > 0 and m < 0 as displayed by Egs. (48). In
the phases where they are nonzero, up to a nonuniversal
coefficient both parity and string order parameter scale with
the bare mass m as

P(m) ~ 6(—m)F (m), Os(m)~ 0(m)F (m),
F(m) ~ (Imoc/u)*/ 45, (50)

On approaching the Gaussian criticality (m — 0), both P(m)
and Og(m) vanish.

The above results for parity agree with the conclusions
reached by Kitaev and co-authors [48,55], who discussed
topological properties of fermions in one dimension. They
argued that in the topologically trivial phase of a 1D p-wave
superconductor, the ground state has a certain parity. On the
other hand, in the topologically nontrivial phase with two
boundary Majorana zero modes, the nonlocally realized Z,
degeneracy of the vacuum always remains unbroken, and
the average parity vanishes. We see that the bosonization
treatment of a pair of the Ising models to which the original
SSH ladder maps supports this conclusion.

The situation with the string order parameter is just the
opposite. From (49) it follows that the operator Og acquires a

nonzero expectation value in the Ising ordered phase (m > 0)
and vanishes in the disordered Ising phase (m < 0). Thus, as
expected, the string order parameter is indicative of topologi-
cal order in the model.

The insulating state at m > 0 is topologically nontrivial.
For the model (47) with open boundary conditions, the spec-
trum contains boundary modes that transform to zero-energy
midgap states in the thermodynamic limit (L — o0). It is well
known [3] that each zero mode accumulates the fractional
charge gr = 1/2. In bosonization language this fact can be
understood as follows. A boundary of a finite system, say at
x = 0, is topologically equivalent to a mass kink of the SG
model (47) which separates the topological bulk phase (x > 0)
with m > 0 from the vacuum at x < 0O, the latter treated as a
phase with m — —oo. Following Jackiw and Rebby [3], one
then replaces the mass m in (47) by a coordinate-dependent
function m(x) with a solitonic profile: m(x) — m > 0 at x —
00, m(x) - —oo at x — —oo. The vacua corresponding to
different signs of m(x) have a relative shift A¢ = /7 /4K,
which immediately leads to the fractional charge gr = 1/2
of the zero fermionic mode at the boundary, as opposed to
the unit charge of the bulk fermionic excitations. The bulk
massive phase at m < 0 is topologically trivial: no boundary
zero modes exist in this case.

It is worth noting that, in both massive phases, the link-
parity symmetry (P;) of the ground states

Po:n—>1-n x&) — hx(=x), ¢x)—> —p(—x)
(5D
excludes the formation of a site-diagonal charge-density
wave: (pcpw) = 0. Indeed, in the strong-coupling regime, for
both sets of vacua (48) the average (sin /4w K¢) vanishes.
Thus the properties of the system at 1/2 < K < 2 are

controlled by the magnitude and sign of the Dirac mass m.

B. Case K <1/2

A more complicated and interesting picture emerges when
both perturbations in the DSG model (20) are relevant: d; <
d, < 2. The phase diagram of the system at K < 1/2 is
schematically depicted in Fig. 5.

Suppose that the noninteracting ladder is at the Gaussian
critical point m = 0. When umklapp processes are taken into
account, the effective low-energy theory is described by a
sine-Gordon model but with a different cosine perturbation:

He) = 51700 + [0 ] - 2<Tga>z cos VI6T K (x).

(52)

At K < 1/2 the dynamically generated mass gap scales as
Mz ~ ||/~ In the infrared limit, the field ¢ gets locked
in one of the minima,

1 1
(¢)n=§\/§|:(n+59(—g)i|, n=0,%x1,%£2,.... (53)

Since A¢ = (¢)ns1 — (d), = /7 /4K, one concludes that
the fermionic number carried by a quantum soliton of the

SG model (52) is fractional, Qr = 1/2. The critical point
& = 0 separates two massive phases with different physical

properties. At § > 0 (cosv/4nK¢) # 0, (sin/4rK¢p) = 0,
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FIG. 5. Phase diagram of interacting staggered SSH ladder at
t; ~2t, K <1/2. D-I and D-II denote nondegenerate massive
phases with opposite signs of average dimerization. At m = 0 the
ground state is twofold-degenerate and is spontaneously dimerized
if g > 0 or has a site-diagonal charge-density wave if § < 0. Qf in-
dicates the fermionic charge of elementary excitations. m = £m.(g)
are critical lines belonging to the Ising universality class. A similar
phase diagram for 7, ~ —21; is obtained from the present one by a
mirror reflection with respect to the horizontal axis.

so there exists a bond-density wave in the ground state
of the system (dimerization). On the other hand, at § <0
(cosv/4n K@) =0, (sin/4wrK¢) # 0, indicating the onset
of a site-diagonal charge-density wave. Close to the critical
point both the dimerization (B, ;) and the staggered density
(pcpw) (at g > 0 and g < 0, respectively) scale as

By )|~ [{pse) | ~ (18l /u)</21=2K), (54)

A similar phase diagram has been discussed by Haldane [37]
for the XXZ spin-1/2 Heisenberg antiferromagnetic chain
with competing interactions (in the latter case, by the Jordan-
Wigner correspondence the Neél order translates to the CDW
one).

The two massive phases have different symmetry proper-
ties. The dimerized phase is link-parity symmetric, while the
site parity Ps,

Pg:n— —n, x(x) > tix(—x), ¢(x) - %E — ¢(—x),
(55
is spontaneously broken. For the CDW phase the situation is
just the opposite.

In both phases, the ground state is doubly degenerate. This
follows from the fact that the corresponding order parameters,
(cos v4m K@) and (sin /4w K ¢), have opposite signs for even
and odd values of the integer n, which in (53) labels different
degenerate vacua. The aforementioned quantum solitons of
the SG model (52) are the kinks interpolating between the
degenerate vacua. Fermions as stable quasiparticles are ab-
sent in the spectrum. In the spontaneously dimerized phase
(g > 0), different degenerate vacua have different topological
properties. It follows from (53) that at & > O the average parity
and string order parameters are proportional to cos(zn/2) and
sin(rn/2), respectively, implying that only one of the two

degenerate dimerized phases is topological (namely the one
with n odd for which (P) = 0, (Os) # 0) while the other is
not ((P) # 0, (Os) = 0). The CDW phase at m =0, g <0
is a “topologically mixed” phase. As seen from (53), in any
of the degenerate CDW vacua both P and Os have nonzero
vacuum expectation values. We will return to this point in the
sequel.

Consider now small deviations from the critical point,
m # 0, keeping K < 1/2. Then the mass term is important,
and one has to proceed from the DSG model (20) with both
perturbations present. Apparently, the term m cos V4w K¢ is
the most relevant perturbation. However, when m is small
enough, the interplay of the two perturbations determines the
nature of the infrared fixed point. The crossover to the new
low-energy regime will occur when the mass gaps that would
be generated separately by each of the two perturbations in
Eq. (20) are of the same order:

(Imla/u)™% ~ (|g| /)77 (56)

If g > 0, the vacua (48) are odd and even subsets of the
set (53). The m-perturbation lifts the degeneracy between the
two sublattices of the potential gcos+/ 167 K¢ and leads to
the period doubling in ¢-space. The new period is that of the
potential m cos /4w K ¢. As a result, two kinks with fractional
charges Qr = 1/2 confine to produce a bound state that is
equivalent to recovery of the fundamental fermion with an
integer charge Or = 1. Thus at g > 0 the main properties
of the massive phase of the DSG model (20), including
the quantum numbers of topologically stable excitations, are
essentially the same as in the absence of umklapp processes.
Nevertheless, as m — 0, the system does go through a critical
point: just due to umklapp processes the spectral mass gap
M (m) undergoes a discontinuity:

lim M(m) = £[My].

m—=+

The situation changes qualitatively when g < 0. Now the
sets of fields (48) that minimize the potential m cos v/4w K¢
do not minimize |g|cos+/16wK¢. The DSG potential in
this case undergoes a topological transition. Let us il-
lustrate this semiclassically [29]. Consider the potential
U(p) = pucos g + gcos2¢, where g~ —g > 0, u ~ m, and
¢ = V4nK¢$. At u < 4g the potential displays a set of de-
generate minima located at

¢ = *(r/2 +no), mod 2w, 57
where sinny = p/4g. These minima are assembled in a se-
quence of local double-well potentials. At wu/4g — +£1 the
two minima of each double-well potential merge (79 —
7 /2 sgnu), and U becomes 2 -periodic, with minima located
eitherat o = 2n+ )w at u > 0 or ¢ =2mwn at u < 0. The
conditions u/4g = =£1 provide classical values of two sym-
metric critical points. The double-well potential structure of
U implies (in the Ginzburg-Landau sense) that the transition
should belong to the Ising universality class. A quantum
estimate of the Ising critical lines follows from the relation
(56): up to a nonuniversal multiplicative numerical constant,
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these lines are determined by the equations

m_i%@>nu@~&<%>“f (58)

Thus, at a given g < 0, as |m| is increased from m =0
there exists critical values m = £m, at which the system
undergoes a quantum Ising transition (see Fig. 5). A precise
value of the phase shift 7y in terms of the parameters m, g,
and K is unknown. However, for us only two limiting val-
ues of 7o are important: n9 — 0 at m — 0 and ny = £7/2
at m — =£m,.. The inner region bordered by the two Ising
critical lines represents a mixed phase in which dimerization
(By, 1) # 0 coexists with the site diagonal CDW, (pcpw) # 0
(see Fig. 5). The average dimerization (B) changes its sign
at m = 0 but remains finite at the critical lines m = +m,.
The CDW order parameter reaches its maximum at m = 0,
vanishes on approaching the critical lines, and remains zero in
the regions |m| > m., where the P, symmetry of the ground
state is recovered.

The behavior of the system in the vicinity of each of the
two Ising critical points m = +m, is described in terms of
an effective Ising field theory. Necessary details can be found
in Ref. [30]. Adopting the ultraviolet-infrared transmutation
of the physical fields found in [30], we read off the singular
parts of the average dimerization and CDW in the regions
Im F me| < me:

m me me
By, L)m — By, L)m. ~ :l:< i )ln

me |m:ch|’
Iz

c

(pcow)m ~ O(me — |m| (59)

According to (57), in the mixed phase (m < m,) the frac-

tional soliton of the SG model (52) with Qr = 1/2 splits into
two topological kinks carrying charges

1
0 =3F 2. (60)
The existence of excitations in the mixed phase (|m| < m,),
carrying fermionic numbers that continuously depend on the
parameter 1y, follows from the spontaneous breakdown of
charge conjugation symmetry C caused by the onset of a
CDW:

C: R — R'(x), L(x) = L (x), ®(x) > —d(x),
COC™'=-0, CpyC™' = —py. (61)

The polymer cis-polyacetylene is an example of this kind
[31]. At the Ising critical points (nyp — =+ /2), the two kinks
merge and the standard classification of integer topological
quantum numbers is recovered: Qr = 0, 1. Itis just the singlet
kink that loses its topological charge and becomes massless at
m = *m.. Qr =1 is the standard fermionic number of the
explicitly dimerized phases, D-I and D-II in Fig. 5.

Some information on the topological properties of the
ladder in the mixed phase of the phase diagram (g < 0, |m <
m|) can be extracted from semiclassical estimates. Using the
location of the minima of the DSG potential, given by (57),

for average parity and string order parameter, Eqgs. (46), we
obtain

(P) ~ cos(¢/2) = ; (62)

(Os) ~ sin(g/2) = — | cos 1 + sin —) 63)

o
As already mentioned, at m = 0 (179 = 0) both (P) and (Os)
are nonzero. When m — m, — 0 (n9 — m/2), (P) vanishes
while (Oys) is finite. This is consistent with the fact that the
phase D-I (m > m,) is topologically nontrivial. On the other
hand, at m — —m.+0 (no — —m/2), (P) remains finite
while (Ogs) — 0, indicating that at the lower Ising critical
point the system enters a topologically trivial phase D-II (m <
—mc) [56].

VII. CONCLUSION

In this paper, we have studied the ground-state phase
diagram of the interacting staggered two-chain SSH ladder in
the vicinity of the Gaussian critical point (1, ~ 2fy). We have
derived a fully bosonized effective field-theoretical model to
treat the correlation effects in a nonperturbative way. We have
shown that such a model has the structure of the double-
frequency sine-Gordon (DSG) model [29,30], Eq. (20), char-
acterized by the existence of two perturbations at the Gaussian
fixed point: the deviation from criticality parametrized in
terms of a “Dirac mass” m ~ 2ty —t,, |m| < 2ty, and four-
fermion umklapp scattering processes with amplitude g. The
effects of forward scattering of the particles are phenomeno-
logically incorporated into a Luttinger-liquid parameter K that
varies in a broad interval including the region where both
perturbations are relevant.

Massive phases with an explicitly or spontaneously broken
symmetry have been identified by inspecting order parameters
described by expectation values of local fermionic fields in
the bosonic representation. The structure of the nonlocal
operators, parity, and string order parameter, which identify
topologically nontrivial phases, has been completely clarified
as a result of a proof that a noninteracting fermionic staggered
SSH ladder can be exactly mapped onto an O(2)-symmetric
model of two decoupled Kitaev-Majorana chains (or two 1D
p-wave superconductors). In the vicinity of the Gaussian fixed
point, an interacting staggered SSH ladder is equivalent to
an Ashkin-Teller-like system of two coupled quantum Ising
chains with a nonlocally realized O(2) symmetry. This equiv-
alence made it possible to show that topological order in
the SSH ladder is related to broken-symmetry phases of the
associated quantum spin-chain degrees of freedom.

At a relatively weak interaction (1/2 < K < 2), umklapp
scattering plays a subleading role, so that the ground-state
properties of the model are dominantly controlled by the
magnitude and sign of the Dirac mass m. At m = 0, the ground
state represents a Tomonaga-Luttinger liquid, but at m # 0 it
is explicitly dimerized and insulating. Only the m > 0 massive
phase, which is thermodynamically indistinguishable from its
m < 0 counterpart, is topological. At a stronger and longer-
range interaction (K < 1/2), both the mass and umklapp
perturbations are relevant, and their interplay results in the
ground-state phase diagram shown in Fig. 5. At m = 0 and any
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nonzero g, the Tomonaga-Luttinger liquid becomes unstable
under a transition to a spontaneously dimerized state (g > 0)
or a site-diagonal CDW (g < 0). Elementary excitations are
quantum solitons carrying fractional charge Qf = 1/2. At
g > 0 only one of the two degenerate dimerized phases is
topological, whereas at § < O the CDW phase is a “topolog-
ically mixed” phase with the both average parity and string
order parameter nonzero.

We have shown that in our model, depending on the sign of
&, both scenarios of the DSG model are realized: kink confine-
ment and Ising quantum transitions. At g > 0, the mass term
lifts the degeneracy between the two spontaneously dimerized
states and leads to confinement of two fractionally charged
excitations, thus resulting in the recovery of the fundamental
fermion with a unit charge Qr = 1. At g < 0, the phase
diagram acquires Ashkin-Teller-like features. The Gaussian
critical point splits into two symmetric Ising critical lines m =

+m.(g, K), m.(g,K) ~ |g|%. These two lines sandwich a
mixed massive phase in which dimerization coexists with a
site-diagonal CDW. In this phase, charge conjugation symme-
try is spontaneously broken and, consequently, the fermionic
number Q is not quantized in units 1/2. Elementary bulk
excitations in the mixed phase are represented by two types
of topological solitons carrying different fermionic charges,
which continuously interpolate between the values Qp =0
and 1. This phase has also mixed topological properties with
continuously varying parity and string order parameters. It
would be very interesting to investigate the structure and
spectrum of midgap edge states in such a mixed phase.

Cold-atom setups are excellent candidates to realize a
staggered dimerized ladder with a control of its main param-
eters. Of particular interest and importance are topological
properties of this and other quasi-1D systems. There has been
significant recent progress in developing novel experimental
techniques using optical microscopy, aimed at observation
of edge states at interfaces, separating topologically distinct
phases of 1D ultracold atomic systems [8,9,15]. Remarkably,
Ref. [8] reports on an experimental realization of a Dirac
model with an inhomogeneous mass term, directly related to
an inhomogeneous SSH chain. We hope that the methodology
presented herein will soon make it possible to study topo-
logical excitations, including edge modes, in multichain SSH
setups, so that the results of this paper might potentially be
relevant to future experimental studies.

The approach developed in this paper for a two-chain
dimerized ladder can be straightforwardly generalized to a
larger number of chains. This would lead to a possibility to
study correlation effects and topological properties of systems
displaying quantum criticalities with non-Abelian symmetry
groups. This and related questions are presently under inves-
tigation.
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APPENDIX A: BOSONIZATION DICTIONARY

Here we provide some technical details related to the
bosonization method [40], used in the main text. In 1+1
dimensions, free massless fermions [case m = 0 in Eq. (17)]
are equivalent to free massless bosons:

My

%{@@)2 + (9,0

= vol(3:9r)* + (1)1 = wvo(Jg +J7). (Al

Here ®(x) = pp(x) 4+ ¢ (x) is a massless scalar field, ®(x) =
—@r(x) + @1 (x) is the dual counterpart. The chiral currents
Jrr(x) are expressed in terms of the chiral bosonic field

gOR,L(x),

1 1
Jr(x) = ﬁawa(x)’ Ji(x) = ﬁ&c(pL(x)y (A2)
and they satisfy the U(1) Kac-Moody algebra [40]
e (). T ()] = -8/ e = ),
[Vr(x), JL(x)] = 0. (A3)

Adding to (A1) the part of Hiy quadratic in the currents Jg 1,
we define the Gaussian part of the equivalent bosonic model:

u A u A
Hoauss = = 1 — —— T2+ = 14+ — ) (0,)?,
Gauss 2( 27'ru) + 2( + 27114)( )

(A4)

where u = vy(1 + A/2mvy) is the renormalized velocity. Here
IT(x) = 0,0(x) is the momentum conjugate to the field ®(x).
The current algebra (A3) ensures the canonical commutation
relation [®(x), [T(x")] = i§(x — x').

The fermionic mass bilinears acquire the following bosonic
representation:

e—i«/KGCD’ LTR N eimd’
2ro 2o

R'L > — . (A9

where « is the ultraviolet cutoff of the bosonic theory. In
particular,

1
x"tax = —i(R'L —H.c.) > ——— cosv4n ®, (A6)
o
1
x'tix =R'L+He — — —sinvdrd. (A7)
To
Using point splitting, one bosonizes the umklapp operator

+ (L'R)?

X, x+o

cos v/ 16 P (x).

Oumia(x) = (R'L)?

X, x+o

1

C 2(ma)? (A8)
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In the massless case (m = 0), the effective bosonic model
takes the form

HB = HGauss + gOumkl
_u 2 -1 2
= SIKTE + K71 (3,0)’]

0s V167 ®. (A9)

2(71(1)2
At a weak marginal coupling A the parameter K is given by an
expansion

A 2
K=1-—+4+00%) (A10)

Tu
in which only the O(A)-term is universal. Generally, the
Luttinger-liquid parameter K decreases with increasing short-
range repulsion, but for K to reach arbitrarily small values,

longer-range interaction is required [38].
Rescaling the field and momentum

VKo(x), Tx) = (1/vVK)m(x),

one rewrites (A9) as

d(x) =

Hp(x) = gwm + (0.0 (0)1]

osvV 161 K. (A11)

8

——c

2(mrar)?
Equation (A11) is a quantum sine-Gordon (SG) model that is
well known to describe a 1D system of spinless fermions with
a nearest-neighbor density-density interaction. Equivalently,
such a model describes the scaling properties of the XXZ

spin-1/2 chain [40].

At m # 0 one uses (A6) and bosonizes the Dirac mass
term, in which case the effective bosonic theory transforms

to the double-frequency sine-Gordon (DSG) model [29,30]:

Hpsg = E[7T2()C) + [3:0 ()% + ﬂ cosv4n K¢

0s V167K ¢. (A12)

2(7101)2

APPENDIX B: KITAEV-MAJORANA CHAIN AND
RELATED MODELS

In this Appendix, we collect known facts about the Kitaev-
Majorana (KM) chain [11] and its equivalent representations,
which are used in the bulk of this paper. The KM chain is
defined on a lattice with N lattice sites in terms of a pair of
Majorana lattice fields, n,, and ¢,:

N
HKM[n’ C] = iZ(_hnngn +Jxr)n§n+l - Jndr]n-‘rl)~ (Bl)

n=1
In special cases J, # 0, J, =0orJ, =0, J, # 0, the Hamil-
tonian Hgy reduces to a quantum Ising chain (QIC) in the
Majorana representation. In the general case J, # 0, J, # 0,
the model (B1) constitutes a Majorana representation of the
spin-1/2 XY chain in a transverse magnetic field,

Hxy = —hzgrf - Z (hofol, +holal,).  (B2)

The spin-chain model (B2) is in turn equivalent to the Kitaev
toy model of a 1D p-wave superconductor (1DPS):

Hipps = —fts ) (f fo = ) +1 Z(f fur1 +He)

n

+ (1/2)A, Z( L+ He). (B3)

The equivalence of the three models—(B1), (B2), and (B3)—
is established in two steps. First, by the Jordan-Wigner (JW)
correspondence,

ol =2f1f, — 1,

Hyy is mapped onto H|pps. The parameters of the two models
are related as

s = 2h,

5= 21 e R ()

Iy = Jx + Jya A.x = 2(Jx - J\) (BS)

Secondly, splitting each complex fermion into a pair of Majo-
rana fermions [11]

fE= @ in)/2, ¢f =6 1 =m,
{gnv Cm} = {Tin, 77m} = 28}1}111 {g-nv nm} =0, (B6)

one transforms Hipps to Hxwm [1, C].

One can now build Majorana string operators [12,52].
Consider two-spin correlation functions for the XY spin
model (B2): I'y(1, n) = (o70,) and I'y (1, n) = (Ul o). Spin
ordering in the x or y directions of spin space is determined
by the asymptotic behavior of these correlation functions in
the limit n — oo:

lim T(1, n) = (c*)?,

n— oo

lim Ty(1,n) = (0”)*.

n—oo

(B7)

Since for any fixed spin projection (o = x,y,2) of0o) =
(oo )o5o) - (0 0%), from (B4) one deduces that

O'no'n+1 = —iNy8ny1s 0',10-,14_1 = i Nnt1

and finds out that the correlation functions I', (1, n), local in
spin variables, are nonlocal in terms of the fermions, in which
case they represent string order parameters:

(B8)

n—1
e(1,n) = Oc(n) = [ [(=in;¢;11),
j=1
n—1
y(1,n) = Oy(n) = [ Gg;njs)- (B9)

J=1

In the region |us| < 2t (|h| < J, +Jy), depending on the
sign of Ay = 2(J, — J;), either {(c*) # 0, (¢¥) =0o0r (c*) =
0, (0”) # 0. Consequently, either the string order parameter
O,(n) acquires a nonzero expectation value at n — oo if
Ag >0, or Oy(n) if Ay < 0 [52]. At |ps] > 2t (Jh] > Jx +
Jy), (0%) = (07) =0 and string order is absent. The direct
calculations of the topological invariant [11,19] define the
region || < 2t; where the massive phase of Kitaev’s 1DPS
model (B3) is topologically nontrivial. The same conclusion is
reached when the string order parameters O, ,(n) are analyzed
in the limit n — oo. This fact illustrates the efficiency of the
string order in studies of the topological phases of 1D Fermi
systems.
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