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Fractonlike phases from subsystem symmetries
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We study models with fractonlike order based on Z2 lattice gauge theories with subsystem symmetries
in two and three spatial dimensions. The three-dimensional (3D) model reduces to the 3D toric code when
subsystem symmetry is broken, giving an example of a subsystem symmetry enriched topological phase.
Although not topologically protected, its ground-state degeneracy has as leading contribution a term which
grows exponentially with the square of the linear size of the system. Also, there are completely mobile gauge
charges living along with immobile fractons. Our method shows that fractonlike phases are also present in
more usual lattice gauge theories. We calculate the entanglement entropy SA of these models in a subregion A
of the lattice and show that it is equal to the logarithm of the ground-state degeneracy of a particular restriction
of the full model to A.
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I. INTRODUCTION

Since the discovery of the fractional quantum Hall (FQH)
effect [1,2], it has been known that there are quantum phases
of matter that cannot be explained by Landau’s symmetry-
breaking theory. Topologically ordered phases, of which FQH
states are a standard example, encompass phases that are
beyond the scope of Landau’s theory. Intrinsic topological
order can be characterized as exhibiting, among other proper-
ties, a ground-state degeneracy that depends on the topology
of the underlying space in which the system lives [3] and
long-range entangled ground states [4], which means that they
cannot be transformed into product states by means of local
unitary transformations. Another important feature of topo-
logical phases is the presence of anyonic excitations, which
is essential to the potential application of topological order in
fault-tolerant quantum computation [5,6]. A classical example
of intrinsic topological order is Kitaev’s toric code (TC) [5],
first introduced in the context of quantum computation as a
quantum error correction code and as a way of implementing
a quantum memory. This model can be interpreted as a Z2

lattice gauge theory, and it is a particular case of a larger class
of models known as quantum double models (QDMs) [5,7–
9], which are topologically ordered exactly solvable models
based on lattice gauge theories with arbitrary finite gauge
groups.

It is also possible to have topological order with short-
range entanglement of the ground states if there are global
symmetries in the system. Phases with such behavior are
known as symmetry-protected topological (SPT) phases, and
they are characterized by the fact that entangled ground states
cannot be transformed into nonentangled ones by means

*pibieta@if.usp.br
†lucasnix@if.usp.br
‡marzia@if.usp.br
§teotonio@if.usp.br

of local unitary transformations without breaking a global
symmetry. The classification of SPT phases is known to be
related to the group cohomology of the global symmetry
group [10,11].

Global symmetries may also coexist with topological or-
der. A topologically ordered system which respects a global
symmetry may host anyons which carry fractionalized quan-
tum numbers under this symmetry, a phenomenon known as
symmetry fractionalization. For example, global U (1) charge
conservation in the fractional quantum Hall effect imposes a
fractionalization of the electric charge of some of its quasipar-
ticles [2]. The effect of global symmetries on topologically or-
dered states leads to the notion of symmetry-enriched topolog-
ical phases. A system is in a symmetry-enriched topological
phase if, by breaking the symmetry, the system still presents
topological order [12–15].

Intrinsic topological order has its low-energy behavior
described by topological quantum field theories, which are
intimately connected to category theory [16]. In particular,
string-net models [17], a more general framework that cap-
tures essential features of topological phases in two spatial
dimensions, are obtained from fusion categories. It is be-
coming clear that, for systems in more than two dimensions,
higher category theory and higher gauge theory [18,19] are
essential to understand topological order. A variety of models
of topological phases obtained from these structures can be
found in the literature [20–22].

Recently, it was theorized that a new type of quantum phase
of matter lies beyond the topological order framework. The
so-called fracton order [23–25] refers to quantum phases of
matter in which distinct ground states cannot be distinguished
by local measurements, a feature shared with topologically or-
dered systems. However, the ground-state degeneracy exhibits
a subextensive dependence on the system size, in contrast
with the constant ground-state degeneracy of topologically
ordered models. Also, the spectrum of fracton models is com-
posed by quasiparticles with several mobility restrictions, and
some of the excitations, the so-called fractons, are completely
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immobile, i.e., they cannot be moved by stringlike operators,
in contrast with anyons in topologically ordered models which
are free to move around the lattice.

Based on the mobility of its excitations, it is common to
divide gapped fracton phases into two distinct types. In type-I
fracton phases, immobile fractons appear at the corners of
membranelike operators, and there are other quasiparticles
that can move along subdimensional manifolds, for example,
along lines or planes if the system is three dimensional (3D).
In type-II fracton phases, the only excitations are completely
immobile fractons and they live at the corners of fractal-like
operators. A more detailed description of the different types
of fracton phases is presented in [26]. Standard examples of
models exhibiting type-I and type-II fracton phases are the
X-cube model [24,27] and the Haah code [28], respectively.
Both are exactly solvable spin models in three dimensions.
Gapped fracton models are related to glassy physics and
localization [23,29–33] and they present potential applications
to quantum information [28,34–40]. There are also gapless
fracton models arising from the study of symmetric tensor
gauge theories [41–46]. This approach allows a connection of
fracton models with elasticity theory and gravity [47–49], and
some gapped fracton phases can be obtained from symmetric
tensor gauge theories defined on a lattice by a Higgs mecha-
nism [44,50]. The relation between gapless fracton phases and
gravity suggests that fractonlike models may be considered as
toy models for the holographic principle [51,52].

There are ways of generating fracton phases from known
topologically ordered models. For example, the X-cube model
can be obtained by coupling layers of two-dimensional (2D)
toric codes [45,53,54]. However, the most common manner
in which fracton models are obtained is by considering lat-
tice spin systems with subsystem symmetries as generalized
Abelian lattice gauge theories [24]. Fracton phases are then
constructed through a process of gauging the subsystem sym-
metries [55,56]. Another method to obtain new fracton phases
is by twisting the usual fracton models [57] and by enriching
U (1) gauge theories with a global symmetry [58].

In this paper, we study some models with fractonlike order
based on lattice gauge theories with subsystem symmetries
in two and three spatial dimensions. By fractonlike order we
mean that the excited states of the models considered here
are confined to certain regions of the lattice, i.e., they cannot
move without some energy cost, and thus they are immobile
fractons. However, although the ground-state degeneracy of
our models exhibits a dependence on the geometry of the
lattice, as is the case in most of the standard fracton models,
it is not stable under the action of local perturbations, i.e., it is
not topologically protected. The two-dimensional model we
present here is similar to the one introduced in [51,52], and
serves as a guide to the study of the three-dimensional model.
This model reduces to the 3D toric code when the system
is perturbed by operators that break the subsystem symme-
try, realizing an example of a subsystem symmetry-enriched
topological phase. The ground-state degeneracy of this model
grows exponentially with the square of the linear size of the
system, and there is also a topological contribution to the
ground-state degeneracy when the system is defined on topo-
logically nontrivial manifolds. Moreover, while this model has
completely immobile fractons as some of its excitations, there

are also quasiparticles in the spectrum that are fully mobile.
Even though some known models also present ground-state
degeneracy that grows exponentially with the square of the
linear size of the system [59] and mobile charges [60,61],
the method introduced here gives an alternative construction
of fractonlike models that differs from the usual ones. We
calculate the entanglement entropy SA in a subregion A of
these models and show that SA = log(GSDÃ), where GSDÃ is
the ground-state degeneracy of a particular restriction of the
full model to the subregion A, a result in agreement with [62].

The outline of this paper is the following. In Sec. II,
we review a two-dimensional fractonlike model and describe
its properties, explaining how its subsystem symmetries are
related to its fractonlike properties. In Sec. III, we introduce
a three-dimensional fractonlike model and analyze its fracton
properties, borrowing some ideas from Sec. II. In Sec. IV, we
calculate the entanglement entropy SA, in a subregion A, of the
models studied in the previous sections, and show that they
obey the relation SA = log(GSDÃ), where the meaning of Ã
will be clarified. In Sec. V, we make some remarks about how
one could study models of fractonlike phases based on gauge
theories with arbitrary finite gauge groups.

II. REVIEW OF FRACTONLIKE ORDER
IN TWO DIMENSIONS

In this section, we start by reviewing a simple example of a
model exhibiting fractonlike order in two spatial dimensions.
This 2D model was first introduced in [63,64] to describe a
superconducting state and it is known as the Xu-Moore model
or plaquette Ising model. The model is shown to have one-
dimensional subsystem symmetry in [55,65] and thus consid-
ered as a model for fractonlike order in [51,52], as we will
review. Its classical version is known as the gonihedric Ising
model, a particular case of the eight-vertex model [52,66],
studied in the context of string theory and spin-glass physics
in [67–70] and references therein.

A. The model

Consider the discretization of a two-dimensional oriented
manifold M. For simplicity, we take the discretization to be
described by a square lattice K . The lattice is composed by a
set of vertices K0, a set of links K1, and a set of plaquettes K2.
To each vertex v ∈ K0 we associate a local Hilbert space Hv

with basis {|1〉 , |−1〉}. In other words, a spin-1/2 degree of
freedom sits at each vertex v. Consequently, the total Hilbert
space of the model, H, is given by the tensor product of the
local Hilbert spaces over all vertices:

H :=
⊗

v

Hv. (1)

For each plaquette p ∈ K2, we define the operator

Bp = 1

2

(⊗
v∈p

1v +
⊗
v∈p

σ z
v

)
, (2)

that acts over the spins at the four vertices of p. This operator
collects the values of spins at the vertices of p, such that
it favors configurations with even number of |−1〉 around
plaquettes. Although this operator seems to be just comparing
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the degrees of freedom at the vertices around plaquettes, a
more physical interpretation of its action will be given in
Sec. V. The global Z2 symmetry of the model is made part
of the Hamiltonian by means of the projector

A = 1

2

(⊗
v∈K0

1v +
⊗
v∈K0

σ x
v

)
, (3)

where the tensor product is taken over all vertices in K0.
This operator enforces a global gauge transformation on the
system. Given (2) and (3), the Hamiltonian is defined by

H = −A −
∑

p

Bp. (4)

The global Z2 operator X given by

X =
⊗
v∈K0

σ x
v (5)

commutes with H .

B. Fracton properties

There seems to be three essential features that character-
ize fracton phases of matter: the subextensive behavior of
the ground-state degeneracy, the fact that ground states are
topologically protected, and the mobility constraints of the
quasiparticles that belong to the spectrum of the model. The
quasiparticles that are usually called fractons are completely
immobile if considered individually. Bound states of fractons,
however, can have increased mobility. Here we show that
the model defined in Sec. II A indeed supports quasiparticles
with restricted mobility and a ground-state degeneracy that
grows exponentially with the system’s size. However, this
degeneracy can be lifted by local stabilizer operators and thus
its ground states are not topologically protected. Hence, when
perturbations to the system do not break the subsystem sym-
metry, we consider this model as an example of fractonlike
order.

1. Ground-state degeneracy

Since the operators A and Bp commute for every plaquette
p, we can solve this Hamiltonian exactly. Moreover, the
operators A and Bp are projectors, so their spectrum is known.
This allows us to characterize the ground-state subspace of the
model as

H0 = {|ψ〉 ∈ H | A |ψ〉 = |ψ〉 and Bp |ψ〉 = |ψ〉},
for every plaquette p ∈ K2. Let us now construct such states.
To start, let |+〉 ∈ H be the state where every vertex spin in
the lattice is in the |+1〉v configuration, namely,

|+〉 =
⊗

v

|+1〉v .

Similarly, the state where all local degrees of freedom are in
the |−1〉v state is written

|−〉 =
⊗

v

|−1〉v .

FIG. 1. The domain wall (in blue) of (a) separates two regions
with different spin configurations. The same domain wall also de-
termines the separation between configurations of (b). More impor-
tantly, the configuration in (a) is gauge equivalent to that of (b).

It is not difficult to see that the two states above satisfy the
condition Bp |ψ〉 = |ψ〉 for all plaquettes p ∈ K2. Then, the
state |ψ0〉 = A |+〉 = A |−〉 = 1

2 (|+〉 + |−〉) is a ground state.
Now, in order to construct other ground states, we will

introduce a graphical notation to represent the basis states of
H as follows: one can color (red) any vertex that holds a |−1〉v
local degree of freedom (see Fig. 1). Furthermore, domain
walls separating two regions with different spin configuration
can be drawn. In general, a single domain wall is associated
with two basis states of H, as shown in Fig. 1. However, be-
cause of the global gauge transformation the two basis states
associated to one domain-wall diagram are gauge equivalent.
This means that domain walls are enough to represent gauge
equivalence classes of basis states, or physical states. For
example, in Fig. 2 we show two domain-wall diagrams and
the respective states they represent.

The trivial ground state, |ψ0〉, is represented by a diagram
with no domain walls, as shown in Fig. 2(a). On the other
hand, the diagram at the left of Fig. 2(b) stands for a state
resulting from a linear combination of states with the given
domain-wall configuration; this state is actually an elementary
excited state of the model as we will see in Sec. II B 2.

Other ground states are given by gauge-equivalence classes
of states in H on which Bp acts trivially (i.e., as an identity
operator), for every p ∈ K2. This means that every state ob-
tained by applying the global gauge transformation on a trivial
eigenstate of Bp, for all p, is a ground state. In order to be

FIG. 2. In (a) the domain-wall diagram at the left represents the
linear combinations of states at the right, in this case the ground state
|ψ0〉 = A |+〉. In (b) the diagram at the left represents the state |φ〉,
which in fact is an excited state of the model.
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FIG. 3. Some possible ground states of the model. The domain-
wall lines must begin and end at the boundary of the lattice.

invariant under Bp, a state must have either an even number of
vertices with |−1〉v spins at each plaquette of the lattice or no
|−1〉v spins at all. The latter case is taken care of by the state
|ψ0〉. Examples of the former case are illustrated in Fig. 3.
The domain-wall lines must begin and end at the boundary of
M. In case M has no boundary, the starting points of the blue
domain-wall lines must be identified with its ending points.
Essentially, domain-wall lines cannot have corners, i.e., every
domain-wall line that enters a plaquette must exit it in the
diametrically opposite side, as opposed to Fig. 2(b), which
clearly represents an excited state because it has plaquettes
with an odd number of vertices with spin |−1〉. Since the
global gauge transformation A does not change domain-wall
diagrams, any domain-wall configuration that represents a
(gauge equivalent) linear combination of trivial eigenstates of
Bp, for every p, is a ground state.

Note that we can have ground states with an arbitrary
number of domain-wall lines in both directions. If M is a
manifold with boundary and has dimension Lx × Ly, this
means that we can construct 2Lx states with domain-wall lines
in the x direction and 2Ly states with domain-wall lines in the
y direction, giving a total of

GSD = 2Lx+Ly (6)

possible ground states. This shows the subextensive behavior
of the ground-state degeneracy, which is characteristic of
fracton models.

Nevertheless, there are local operators that commute with
A and Bp, for every p ∈ K2, that can be added to the Hamilto-
nian (4) which may destroy this degeneracy. As we will see in
more detail in Sec. V A, we can define, for every link l ∈ K1

in the lattice, the zero-holonomy operator [22,62]:

Bl = 1

2

(⊗
v∈∂l

1v +
⊗
v∈∂l

σ z
v

)
. (7)

For each plaquette p ∈ K2, Bp can be regarded as an operator
that compares the zero holonomy of parallel links that belong
to the boundary ∂ p of p. By this we mean that Bp gives an

eigenvalue equal to one whenever parallel links in p have
the same value of zero holonomy, and zero otherwise. Fix
a plaquette p′ ∈ K2 and subtract from the Hamiltonian (4)
a zero-holonomy operator Bl ′ , where l ′ is any link in the
boundary ∂ p′ of p′. The Hamiltonian is given by

H ′ = −A −
∑
p�=p′

Bp − Bp′ − Bl ′ . (8)

The ground states of H ′ must have a zero-holonomy value of 1
for the link l ′, which means that the spins at the vertices in the
boundary of l ′ must be aligned. This introduces an additional
constraint to the number of possible ground-state configu-
rations of the plaquette p′, and thus it reduces the ground-
state degeneracy. Now, if we subtract two zero-holonomy
operators, Bl1 and Bl2 , for two arbitrary links l1 and l2 in the
boundary ∂ p′ of p′, this gives the following Hamiltonian:

H ′′ = −A −
∑
p�=p′

Bp − Bp′ − Bl1 − Bl2 , (9)

for l1, l2 ∈ ∂ p′. The ground state of the system now must
have a zero-holonomy value equal to 1 for both links l1 and
l2 in ∂ p′. This means that the spins at the vertices of each
link in question must be aligned. If l1 and l2 are parallel to
each other, this implies that the configuration of the plaquette
p′ is fixed; it either has all spins up or all spins down, and
both are related by the global gauge transformation A, i.e.,
they represent the same physical state. An identical situation
happens if l1 and l2 are perpendicular to each other. Therefore,
adding zero-holonomy operators for the plaquette p′ fixes its
state, reducing the number of possible ground states. One
can immediately see that, if we were to do the same process
for every plaquette in the lattice, the degeneracy would be
destroyed. Thus, we can decrease the ground-state degeneracy
shown in Eq. (6) by adding local zero-holonomy operators,
and therefore the ground states are not topologically protected.
We can move from one state in the ground-state subspace to
another by applying combinations of zero-holonomy opera-
tors.

This discussion can be summarized by noting that the
model has subsystem symmetries given by operators that flip
all spins along a straight line in the lattice. The ground-state
degeneracy (6) can be calculated by counting the number of
such operators, and the zero-holonomy operators explicitly
break this subsystem symmetry, thus drastically reducing the
number of ground states. It follows that, when the subsystem
symmetry is respected, i.e., when perturbations do not break
this symmetry, the model presents fractonlike order.

2. Fracton excitations

The excited states of the model |φ〉 ∈ H are states
for which either A |φ〉 = 0 or, for some plaquette p ∈ K2,
Bp |φ〉 = 0. The excited state coming from the condition on
the A operator is usually called charge. It is created by
acting locally with σ z on a single (arbitrary) vertex over a
ground state of the model. The global nature of the gauge
transformation makes it impossible to localize the charge,
since we can only know whether a charge is present or not.
For this reason, the charge is said to be global.

045104-4



FRACTONLIKE PHASES FROM SUBSYSTEM SYMMETRIES PHYSICAL REVIEW B 102, 045104 (2020)

FIG. 4. The configuration of Fig. 2(b) has four fractons, repre-
sented here as four red crosses.

Plaquette excitations live at plaquettes that have a spin
configuration with an odd number of vertices with spin |−1〉v .
Therefore, they live at the corners of domain walls. For exam-
ple, the configuration in Fig. 2(b) has four excitations living
at the four corners of the domain wall, as explicitly shown in
Fig. 4. We can move pairs of excitations along straight lines,
but individual excitations cannot be moved without costing
energy to the system, and so they are essentially immobile.
Therefore, plaquette excitations in this model are completely
immobile fractons, and indeed the system described by the
Hamiltonian in Eq. (4) exhibits fractonlike order in two
dimensions. The arguments made for the calculation of the
fracton properties of this model will be important to the study
of other models we will define in the following sections.

III. FRACTONLIKE ORDER IN THREE DIMENSIONS

Here we introduce a model of fractonlike order in three
spatial dimensions which reduces to the 3D toric code when
subsystem symmetry is broken. This model exhibits some
uncommon features, usually not present in the standard ex-
amples of fracton phases found in the literature. It is based
on a Z2 lattice gauge theory with slightly modified holonomy
operators, as we show in the following subsection.

A. The model

Let us consider a three-dimensional manifold M dis-
cretized by a regular cubic lattice. At each link l , we have
a spin-1/2 degree of freedom, and the total Hilbert space of
the model, which we call H, is a product of all Hilbert spaces
that sit at every link of the lattice. For each vertex v, we define
the local gauge transformation which acts over spins at each
link that shares the vertex v as follows:

(10)
where a, b, c, d, e, f ∈ {1,−1}.

Next, for each elementary cube c, we define three holon-
omy operators, B(x)

c , B(y)
c , and B(z)

c . To write them in a neat way,

FIG. 5. Links holding a |−1〉l spin are represented by being
crossed by a blue dual surface.

we represent the action of σ z operators by coloring links, that
is, links in blue are the ones over which a σ z operator acts:

(11)

(12)

(13)

The operator B(μ)
c , for each direction μ = x, y, z, checks

if the holonomies of two opposite plaquettes in the direc-
tion μ are equal. This is obtained by taking the product of
holonomies of the two plaquettes in the boundary of c the
surfaces of which are orthogonal to μ. If both plaquettes have
the same holonomy, this product is equal to +1 and we have
an eigenstate of B(μ)

c with eigenvalue +1. Likewise, if the two
opposing plaquettes have different holonomies, the product
is equal to −1 and we have an eigenstate of B(μ)

c with zero
eigenvalue, an excited state. We will say that a state has trivial
holonomy in the direction μ if it is invariant under B(μ)

c , for
every cube c in the lattice. The Hamiltonian is then given by

H = −
∑

v

Av −
∑

c

(
B(x)

c + B(y)
c + B(z)

c

)
. (14)

B. Fracton properties

1. Ground-state degeneracy

As in the 2D model, the operators Av and B(μ)
c commute

for all vertices v, cubes c, and directions μ in the lattice, so
they can be diagonalized simultaneously. Also, the operators
defined in Eqs. (10)–(13) are all projectors. This implies
that the ground state of the model is given by all gauge-
equivalence classes of states with trivial holonomy in all
directions. Therefore, we must search for states such that, at
each cube of the lattice, opposite plaquettes at each direction
have the same holonomy. A natural ground state is |ψ0〉 =∏

v Av |+〉, where |+〉 ∈ H is the state of the system where
every link is in the |+1〉l state. To visualize these states, we
introduce a graphical notation as follows: whenever a link has
spin |−1〉l , we draw a blue dual plaquette, as shown in Fig. 5,
while links with spin |+1〉l have no additional drawings.

In this graphical notation, the action of Av , for some vertex
v, over the state |+〉 is understood as introducing a blue closed
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FIG. 6. We show two possible ground-state configurations of the
Hamiltonian in (14). The membrane must begin at the boundary of M
and end at the diametrically opposite region. This means that, inside
M, the membrane cannot curve to perpendicular directions.

surface around the vertex v. That is,

(15)

where the vertex v is the one at the center of the cubic lattice.
Therefore, the state |ψ0〉 is the superposition of all closed
surfaces one can draw around vertices in the lattice and this
ground state, as shown in Eq. (16), can be interpreted as a
membrane gas much like the loop gas ground state of the toric
code.

In the case that the manifold M has the topology of
a three-torus, noncontractible closed surfaces give different
equivalence classes of ground states. This increases the GSD
with topological terms coming from the 3D toric code. In
other words, the ground states of the 3D toric code are also
ground states of our model, and there is a purely topological
contribution to the ground state of the Hamiltonian (14).
However, we are more interested in the contribution to the
ground state of H that grows exponentially with the system
size, the subextensive terms. For this reason we consider
M as having the topology of a three-dimensional ball with
dimensions Lx × Ly × Lz. States represented by membranes
beginning at one of the boundaries of M and ending at the
diametrically opposite boundary are also ground states of
the model. For instance, the state represented by Fig. 6(a).
Membranes can have arbitrary shapes in every one of the three
directions as long as they end at the boundaries of M, as in
Fig. 6(b). If the membranes do not end at the boundaries of
M, we have an excited state, as in Fig. 9(a), where we have
a link with spin |−1〉 shared by four cubes, which yields an
excited state of cube operators in the z and y directions. In
the interior of M, membranes cannot bend to perpendicular
directions, for if they do we get excitations of cube operators
at the folding regions of the bent membranes, as in Fig. 9(b)
where the membrane of Fig. 9(a) is folded into the x direction,
giving rise to excitations of B(x)

c operators at the folding line.
The gauge transformation acts at vertices and can be pictured
as adding a closed (dual) surface around the vertex at which
it acts [see Eq. (15)]. Thus, gauge transformations can only
deform membranes without changing their boundary:

(16)

We can have arbitrary compositions of such membrane
configurations in every direction. Since the boundary lines of
the membranes are gauge invariant, we use them to count how
many possible ground-state configurations we can construct in
this model. Therefore, the problem of counting ground states
reduces to the problem of counting how many straight lines,
beginning at one side of the boundary of M and ending at the
diametrically opposite side, can be drawn on the manifold.
We represent as a dot in the boundary of the manifold the
beginning of a line that extends, in a straight fashion, through
the interior of M to the diametrically opposite boundary point,
as in Fig. 7. Each plaquette in the boundary of M either has a
dot on it or it does not. For each boundary plane of M, there
can be 2Np configurations of plaquettes with dots, where Np

is the number of plaquettes on the plane in question. Since
M has dimensions Lx × Ly × Lz, the number of plaquettes in
the boundary plane with dimensions Li × Lj is LiL j , where
i, j = x, y, z and i �= j. Thus, there are

GSD = 2LxLy+LxLz+LyLz (17)

possible ground states. It is useful to think of the ground states
of this model as condensations of the 3D toric code model.
Note that every ground state of the 3D toric code is a ground
state of our model. Moreover, some excited states of the 3D
toric code are ground states of our model. In particular, the

FIG. 7. To count the number of ground states of the Hamilto-
nian (14), we draw straight lines in the interior of M ending at dots
on its boundary ∂M. These straight lines are boundary lines of the
membranes representing ground states (see Fig. 6). The problem then
reduces to counting how many dots we can draw on the boundary
of M.
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flux excitations of the TC that lie on a single plane are ground
states of our model as well.

However, as happened to the 2D model of Sec. II, here
there are local operators that commute with the Hamilto-
nian (14), i.e., local symmetry operators, which can lift the
degeneracy given by Eq. (17) to that of the 3D toric code.
To see this, fix a cube c′ in the lattice and subtract from
the Hamiltonian (14) a 3D toric code plaquette operator Bp′ ,
where p′ is some arbitrary plaquette in the boundary ∂c′ of c′.
We have the Hamiltonian

H ′ = −
∑

v

Av −
∑
c,μ

B(μ)
c − Bp′ , (18)

where μ = x, y, z. Ground states of H ′ must have a one-
holonomy value of 1 for the plaquette p′. Since the cube
operators B(μ)

c constrain parallel plaquettes to have the same
one-holonomy in the ground state, the plaquette which is
parallel to p′ will also have a one-holonomy value of 1. This
reduces the number of ground-state configurations the cube c′
can have, thus reducing the ground-state degeneracy. Now, if
we subtract from the Hamiltonian (14) 3D toric code plaquette
operators Bp′ for four of the six plaquettes in the boundary ∂c′
of c′, the Hamiltonian is then given by

H ′′ = −
∑

v

Av −
∑
c,μ

B(μ)
c −

∑
p′∈∂c′

Bp′ , (19)

where μ = x, y, z and Bp′ are the one-holonomy operators of
the 3D toric code for four specific plaquettes p′ ∈ ∂c′. Now,
the ground state of the model must have the four chosen
plaquettes with holonomy equal to 1. This fixes the allowed
ground-state configurations of the whole cube c′, reducing
further the number of allowed ground states. Subtracting 3D
TC plaquette operators for every plaquette in the lattice, the
ground-state degeneracy would end up being that of the 3D
TC, because the contribution given by Eq. (17) would be
destroyed and only the topological terms would survive. So,
this model is not stable under local perturbations, reducing to
the 3D toric code when local operators are added, and there-
fore it gives an example of a subsystem symmetry enriched
topological phase, showing that not only topological phases
enriched by global symmetries host fractonic behavior [58],
but also subsystem symmetry-enriched ones. The question of
whether the model presented here can be protected by a global
symmetry is an open one.

We saw that we can go from the fractonlike model defined
by Eq. (14) to the toric code by adding plaquette operators
that break the subsystem symmetry. A reasonable question is
then whether there is a way to go from the 3D toric code to
the fractonlike model. To answer it, suppose we start with the
3D toric code defined on the three-torus, the Hamiltonian of
which is

HTC = −
∑

v

Av −
∑

p

Bp.

In the graphical notation introduced in this section, ground
states of the toric code are represented by closed dual surfaces.
Dual surfaces with boundary correspond to plaquette excita-
tions. Consider an excited state of the toric code represented
by a noncontractible dual ribbon, as in Fig. 8(a). In this
figure, there are flux quasiparticles at all plaquettes along the

FIG. 8. In (a), we show an excited state of the toric code. In
(b), we illustrate the graphical notation corresponding to add a cube
operator B(z)

c′ and remove the plaquette operators Bq and Bq′ of the
toric code Hamiltonian. In (c), we take the model defined by the
Hamiltonian obtained in figure (b) and consider the TC excited state
of figure (a) in this context. It is still an excited state, but its energy is
reduced by two unities. In (d), by continuously extending the red line
of figure (c), we obtain a state with an even more reduced energy. In
(e) and (f), the same procedure is done for all cubes hosting a half of
the ribbon, resulting in a ground state.

z direction. The boundary of this ribbon is composed by two
noncontractible curves. The energy of this state is two times
the length Lz of the torus in the z direction.

We will now replace plaquette operators of the toric code
with the cube operators defined in Eqs. (11)–(13). To better
visualize what is happening, we assign the following graphical
notation to the process of replacing plaquettes with cube
operators: we draw a straight red line connecting two parallel
plaquettes the operators of which are removed from the TC
Hamiltonian. Then, to any cube hosting such a red line we as-
sociate a cube operator B(μ)

c , where μ is the direction parallel
to the red line. As an example, in Fig. 8(b), we perform this
procedure to the cube c′, associating to it an B(z)

c′ operator. In
this example, the resulting Hamiltonian is

H ′
TC = −

∑
v

Av −
∑

p�=q,q′
Bp − B(z)

c′ .

Then, consider again the toric code excited state of
Fig. 8(a), but now with a red line linking two parallel plaque-
ttes in the z direction, as in Fig. 8(c). Now, the Hamiltonian
of the model has a B(z)

c operator corresponding to the cube
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hosting the red line. Since the plaquettes connected by the red
line in the z direction share the same holonomy, the cube is
not excited. Hence, the energy of the state is reduced by two
unities. However, it is still an excited state of the toric code.
The ground-state degeneracy of the toric code does not change
under this modification of the Hamiltonian.

By continuously extending the red line of Fig. 8(c) to the
boundary, we obtain Fig. 8(d). The red line closes into a
noncontractible curve. The energy of the state is reduced to be
equal to the length of the torus in the z direction. The resulting
state of Fig. 8(d) is still an excited state of the toric code, and
the corresponding modified Hamiltonian remains equivalent
to HTC.

The same procedure can be performed to the neighbor-
ing cubes that host the other half of the dual ribbon, as
shown in Figs. 8(e) and 8(f). However, the resulting state
in Fig. 8(f) is a ground state. Thus, the Hamiltonian ob-
tained at the end of the process shown in Figs. 8(c)–8(f)
defines a model in which ground states are given by closed
dual surfaces and surfaces bounded by the red noncon-
tractible curves. Its ground-state degeneracy is GSDTC + 2,
where GSDTC is the ground-state degeneracy of the toric
code.

The procedure of connecting parallel plaquettes by red
lines can be extended to the whole lattice at every direction.
The resulting Hamiltonian is the one given by Eq. (14),
and it describes the fractonlike model. In this way, there
is a continuous process in which we can go from the toric
code Hamiltonian to Eq. (14). In this process, TC excita-
tions condense into ground states of the fractonlike model.
However, note that only TC excitations given by noncon-
tractible ribbons condense into fractonlike ground states. For
instance, a TC excitation given by a contractible surface,
as in Fig. 9(a), is a fracton excitation in the fractonlike
model.

2. Fracton excitations

The elementary excited states |φ〉 ∈ H are such that either
Av |φ〉 = 0, for some vertex v, or B(μ)

c |φ〉 = 0, for some cube
c and direction μ. A string of σ z operators, beginning at a
vertex v and ending at a vertex v′, creates excitations of Av

and Av′ , also called charge excitations. Since Av is essentially
the gauge transformation of the 3D toric code, the charge
excitations of the model (14) are the same charge excitations
of the 3D toric code, and they can move freely in the lattice
without an energy cost.

Now, excited states of the cube operators B(μ)
c are called μ-

flux excitations and can be pictured as lying at the corners of
membranes. This can be better understood using the graphical
representation of states as in Fig. 9. The simplest μ-flux
excited state is created by the action of a σ x operator on a
single site over a ground state of the model. Note that whether
this operator acts on a link along the x, y, or z axis will result in
certain combinations of x, y, and z fluxes. For instance, acting
with σ x

l on a ground state,

|φ〉 = σ x
l |ψ0〉 , (20)

FIG. 9. (a) A state represented by the membrane diagram inside
M has flux excitations and the four cubes at its corners. The red
crosses represent what we call z fluxes, excitations of B(z)

c , whereas
the green ones are y fluxes, excitations of B(y)

c . Blue crosses stand
for x fluxes, excitations of B(x)

c . (b) Excitations can freely move as
long as the number of corners remains invariant. (c) If a membrane
bends into an orthogonal direction, flux excitations are created at
every corner it has.

where l is a x-like link, results in a state with pairs of y and
z fluxes at the boundaries of the membrane as depicted in
Fig. 9(a).

These excitations have restricted mobility since their local-
ization is associated to the corners of the membrane. For ex-
ample, the state represented by Fig. 9(b) shows that extending
the membrane along the y direction moves pairs of μ fluxes.
In general, moving these excitations corresponds to extending
the membrane without changing the number of corners. In
contrast, if the membrane is bent towards its orthogonal di-
rection more excited states are created, increasing the energy
of the state, as shown in Fig. 9(c). Again, this is interpreted
as an energy penalization to deformations of membranes that
change their number of corners.

IV. ENTANGLEMENT ENTROPY

In this section, we calculate the entanglement entropy SA of
a subregion A of the lattice for the models presented in Secs. II
and III. For both cases, we interpret the result as a relation
between the entanglement entropy of A and the ground-state
degeneracy of a restriction of the full corresponding model to
the subregion A.

A. Entanglement entropy of the 2D fractonlike model

Consider the 2D fractonlike model of Sec. II. The model is
defined on a square lattice of size Lx × Ly. Let us split the
lattice into two subregions, A and B, as in Fig. 10, where
subregion A is characterized by black vertices and has size
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FIG. 10. Division of the lattice into two subregions, A and B,
where region A is composed by black vertices.

Rx × Ry. The total Hilbert space H is thus given by the tensor
product H = HA ⊗ HB, where HA and HB are the Hilbert
spaces associated to the regions A and B, respectively. We
want to calculate the entanglement entropy SA of subregion
A. The density matrix of the model is given by

ρ = �0

Tr(�0)
= 1

GSD
�0, (21)

where GSD is the ground-state degeneracy given by Eq. (6)
and �0 is the ground-state projector, given by

�0 = A
∏

p

Bp, (22)

where A is given by Eq. (3) and Bp by Eq. (2). The entan-
glement entropy is the von Neumann entropy of the reduced

density matrix

SA = −Tr[ρAlog(ρA)], (23)

where the reduced density matrix ρA is obtained from ρ by
tracing out the region B, namely,

ρA = TrB(ρ). (24)

Taking the partial trace of ρ over region B, we have

ρA = 1

GSD
TrB

[
1

2

(⊗
v∈K0

1v +
⊗
v∈K0

σ x
v

) ∏
p

Bp

]
. (25)

The second term of the sum in the right-hand side of Eq. (25)
multiplies a σ x matrix to every vertex in the lattice. As we will
see more clearly in what follows, the product

∏
p Bp can be

written as a sum over plaquettes of products of σ z matrices. In
this sum, there will be terms where there will be no σ z matrix
acting on the region B, and thus introducing a σ x operator
to this region and taking the trace over B will yield zero. For
terms in the sum where there are σ z matrices acting on vertices
in the region B, the multiplication by σ x results in −iσ y, which
also has trace zero. Therefore, the second term of the sum in
the right-hand side of Eq. (25) is equal to zero, and we have

ρA = 1

2GSD
TrB

(∏
p

Bp

)
. (26)

Now, using Eq. (2), we can expand the product
∏

p Bp into the
sum given by Eq. (27):

∏
p

Bp =
∏

p

1

2

(⊗
v∈p

1v +
⊗
v∈p

σ z
v

)
= 1

2Np

⎛
⎝⊗

v∈K0

1v +
∑

p

⊗
v∈p

σ z
v +

∑
p�=q

⊗
v∈p

σ z
v

⊗
v′∈q

σ z
v′ + ...

⎞
⎠, (27)

where Np is the number of plaquettes in the lattice. To each
plaquette, we assign an operator of the form bp = ⊗

v∈p σ z
v

and a number sp ∈ {0, 1}. We also define the vector s =
(sp1 , ..., spNp

), the ith entry of which is the number spi , associ-
ated to the ith plaquette in the lattice. Then, for each possible
vector s, we define the product

gs = b
sp1
p1 b

sp2
p2 ...b

spNp
pNp

(28)

of operators bp for every plaquette of the lattice. To illus-
trate, the vector s0 = (0, ..., 0) gives the product gs0 = ⊗

v 1v ,
while the vector s1 = (1, 0, ..., 0) gives the product gs1 =⊗

v∈p1
σ z

v . It is straightforward to check that gs, for every
vector s, forms a finite Abelian group, which we call G. Also,
the sum over all elements of G is equivalent to the sum in
the expansion shown in Eq. (27). Therefore, since the trace
will give zero whenever there are σ z operators acting over the
region B and the only surviving terms will be those with only
identity operators acting over B, we can write

ρA = 1

2Np+1GSD
TrB

⎛
⎝∑

gs∈G

gs

⎞
⎠

= 1

2Np+1GSD
dim(HB)

∑
gA

s ∈G

gA
s , (29)

where gA
s are the elements in G which have only identity oper-

ators acting over the subregion B, and they form a subgroup,
which we call GA. This implies that

ρ2
A = dim(HB)

2Np+1GSD
|GA|ρA, (30)

where |GA| is the order of the subgroup GA. Then, from
Eqs. (23) and (30) it is easy to see that the entanglement
entropy for subregion A is given by

SA = log

(
2Np+1GSD

|GA|dim(HB)

)
. (31)

For a lattice with dimensions Lx × Ly and a subregion A
with dimensions Rx × Ry, with GSD given by Eq. (6), the
entanglement entropy for the subregion A is

SA = log(2Rx+Ry+1) = Rx + Ry + 1. (32)

One can notice that there is a similarity between the func-
tional dependence of the entanglement entropy (32) and the
logarithm of the ground-state degeneracy of the same model
defined only on the sublattice A. In fact, this result agrees
with those in [62], where the entanglement entropy for some
subregion A, for arbitrary topological models, was shown to
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be equal to the logarithm of the ground-state degeneracy of
the model restricted in a particular way to the subregion A,
namely,

SA = log(GSDÃ), (33)

where GSDÃ is the ground state of the model restricted to
subregion A and without the gauge transformations on the
boundary of A. To see that this is indeed the case, let us
calculate the ground-state degeneracy of the model given by
Eq. (4) restricted to some subregion A of dimensions Rx × Ry

and without gauge transformations on the boundary ∂A of A.
Note that, since the transformations (3) act globally, the only
way to exclude such transformations from the boundary ∂A
is to exclude them from the whole lattice. Thus, the restricted
model is given by

HÃ = −
∑
p∈A

Bp. (34)

We can construct ground states of this model just like we did
in Sec. II, but now every ground state we had will be split into
two different ones. For example, the two states which form the
superposition |ψ0〉 of Fig. 2(a), which is a ground state of the
full model, will be ground states of the restricted model (34).
Thus, the model (34) has two times the degeneracy of the full
model, and we have that

GSDÃ = 2Rx+Ry+1. (35)

We can immediately see that Eqs. (32) and (35) satisfy
Eq. (33).

B. Entanglement entropy of the 3D fractonlike model

Now, consider the 3D fractonlike model of Sec. III, defined
on a cubic lattice of size Lx × Ly × Lz. The calculation of
the entanglement entropy for this model will follow almost
exactly the previous one. We split the lattice into two sub-
regions, A and B, where subregion A has dimensions Rx ×
Ry × Rz. The total Hilbert space H will then be given by the
tensor product H = HA ⊗ HB of the Hilbert spaces associ-
ated to subregions A and B. The density matrix is given by
Eq. (21), where GSD is given by Eq. (17) and �0 will now be
given by

�0 =
∏
v

Av

∏
μ,c

B(μ)
c , (36)

where, for every vertex v, Av is given by Eq. (10) and, for
every cube c, B(μ)

c is given by Eqs. (11), (12), and (13),
for μ = x, y, z respectively. From the definitions of the cube
operators, it follows that for a fixed cube c

B(x)
c B(y)

c B(z)
c = 1

4

(
1 + Z (x)

c + Z (y)
c + Z (z)

c

)
, (37)

where

(38)

(39)

(40)

Then, we have

�0 = 1

2Nv+2Nc

∏
v

(1v + Xv )
∏

c

(
1c +

∑
μ

Z (μ)
c

)
, (41)

where 1v = ⊗
l∈star(v) 1l , Xv = ⊗

l∈star(v) σ
x
l , μ = x, y, z, Nv is

the number of vertices, and Nc is the number of cubes in the
lattice. This product is equal to a sum of products of Pauli
matrices, and thus we can proceed just as we did in the case
of the 2D model by defining a group G the elements gs of
which, indexed by a vector s with Nv + 2Nc components, with
each component being zero or one, are given by products of
Pauli matrices, in a similar way as in Eq. (28). The result is
that

�0 = 1

2Nv+2Nc

∑
gs∈G

gs. (42)

From Eq. (24), the reduced density matrix ρA is then given by

ρA = 1

2Nv+2Nc
dim(HB)

∑
gÃ

s ∈G

gÃ
s , (43)

where Ã is a region obtained from A by excluding the vertices
at the boundary ∂A of A. The reason this is the only surviving
region after we take the trace over B is that gauge transfor-
mations Av that act over vertices v on the boundary of A can
introduce σ x operators acting over links outside of A, i.e., links
that belong to B. The trace over B then gives zero in such case.

It is straightforward to check that the elements gÃ
s form a

subgroup of G. Thus, we can perform exactly the same steps
we did in Sec. IV A and then, using Eq. (23), it follows that
the entanglement entropy of subregion A is given by

SA = log

(
2Nv+2Nc GSD

|GÃ|dim(HB)

)
, (44)

where |GÃ| is the order of the subgroup GÃ formed by the
elements gÃ

s . Since the lattice has dimension Lx × Ly × Lz and
region A has dimension Rx × Ry × Rz, we have that

SA = 3(RxRy + RxRz + RyRz ) + 2, (45)

and this result is also consistent with Eq. (33). To see this, let
us calculate the ground state GSDÃ of the reduced model. To
reduce the model, we must discard the gauge transformations
on the boundary of region A. This means that configurations
which differ from each other only by a gauge transformation
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on the boundary ∂A are not gauge equivalent anymore, and
must be accounted for in the calculation of GSDÃ. So, the
number of configurations to be added to GSD is the number
of gauge transformations on the boundary ∂A, which is simply
the number of vertices in ∂A, and this number is equal to
2(RxRy + RxRz + RyRz ) + 2. Thus, GSDÃ = RxRy + RxRz +
RyRz + 2(RxRy + RxRz + RyRz ) + 2 and Eq. (33) holds.

The constant term in Eq. (45) is equal to the topological
entanglement entropy of the 3D toric code. This is expected
because, as we discussed in Sec. III B 1, toric code ground
states belong to the set of ground states of the fractonlike
model.

V. REMARKS ON GENERALIZATIONS TO
ARBITRARY GAUGE GROUPS

The models presented in Secs. II and III can be generalized
to models based on arbitrary, possibly non-Abelian finite
groups. In this section, we make some remarks about how
this generalization could be done. We leave a more in-depth
discussion for future work.

A. G fractonlike order in two dimensions

Consider a two-dimensional oriented manifold M, dis-
cretized by a square lattice. At each vertex v, we have a local
Hilbert space Hv with basis given by states |g〉 labeled by
some element g ∈ G, where G is an arbitrary finite group
and the total Hilbert space is H = ⊗

v Hv . Global gauge
transformations are given by

Ag|a, b, c, ...〉 = |ga, gb, gc, ...〉 , (46)

where g ∈ G and |a, b, c, ...〉 ∈ H is an arbitrary basis state
in the total Hilbert space, with a, b, c, ... ∈ G. We define
the operator A as the normalized sum of all global gauge
transformations, namely,

A = 1

|G|
∑
g∈G

Ag. (47)

One can easily see that if G = Z2 we recover Eq. (3). Next,
we define two plaquette operators B(μ)

p , μ = x, y, which in the
language of higher gauge theories (see [22]) act by comparing
the zero holonomy of links that are parallel to the μ direction.
They are given by the formulas

(48)

(49)

If G is Abelian, the two operators are actually the same,
and one can easily check that if G = Z2 we recover Eq. (2).
The Hamiltonian is then given by

H = −A −
∑

p

(
B(x)

p + B(y)
p

)
. (50)

One may notice a similarity between this theory and the
usual quantum double model of the finite group G [5,7–9].
In fact, the operators defined in (46), (48), and (49) satisfy
the quantum double algebra D(G). Define the local operators
Lg

v, Rg
v, T g

v : Hv → Hv such that ∀ |a〉 ∈ Hv:

Lg
v |a〉 = |ga〉 , (51)

Rg
v |a〉 = |ag〉 , (52)

T g
v |a〉 = δ(g, a) |a〉 . (53)

These operators satisfy the quantum double algebra D(G) [5].
We can write A and B(μ)

p , for every p, in terms of Lg
v , Rg

v , and
T g

v in the following way. First, from (46), we have that

Ag =
⊗

v

Lg
v. (54)

Now, for every plaquette p = (v1v2v3v4), we define the oper-
ators

B(x)
p (g) =

∑
{bi}4

i=1

δ
(
b1b−1

2 b3b−1
4 , g

) ⊗
vi∈p

T bi
vi

, (55)

B(y)
p (g) =

∑
{bi}4

i=1

δ
(
b1b−1

4 b3b−1
2 , g

) ⊗
vi∈p

T bi
vi

. (56)

For g = e, the group identity, B(x)
p (e) = B(x)

p and B(y)
p (e) =

B(y)
p , where B(x)

p and B(y)
p are defined in (48) and (49), respec-

tively. With these definitions, it is straightforward to check
that the operators A and Bp do indeed satisfy the quantum
double algebra of G, i.e., ∀g, h ∈ G:

AgAh = Agh, (57)

AgB(μ)
p (h) = B(μ)

p (ghg−1)Ag, (58)

for any μ = x, y.
The algebra of the operators (47)–(49) is the quantum

double of G, but the model (50) is different from the usual
quantum double models. Here, we have a quantum double
algebra for each plaquette in the lattice, while in the usual
QDMs there is an algebra for each vertex-plaquette pair. A
consequence of this fact is that there are no dyons here,
only flux quasiparticles. However, the fact that the operator
algebra in this model is the quantum double of G allows us
to immediately classify the flux quasiparticles of the model.
A more in-depth discussion about this topic will appear in a
future work.

B. G fractonlike order in three dimensions

Consider a three-dimensional oriented manifold M, dis-
cretized by a regular cubic lattice. At each link l , there is
a local Hilbert space Hl , generated by a set {|g〉} of basis
elements, labeled by some finite group G. The total Hilbert
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space is given by the product H = ⊗
l Hl . We define three

cube operators B(μ)
c , one for each direction μ = x, y, z. B(μ)

c

compares the one holonomy of plaquettes that are orthogonal
to the μ direction, in the following way:

(59)

(60)

(61)

It turns out that, for arbitrary groups, it is not possible to
define an operator analogous to (10) which commutes with
every cube operator. However, we can define a global operator
A, inspired by the 2D model of Sec. V A, made of a suitable
combination of Lg’s and Rg’s to make it commute with all the
cube operators. Then, we define a global operator

A = 1

|G|
∑
g∈G

Ag, (62)

where Ag is defined as

Ag =
⊗

p

Lg
l1

⊗ Rg
l2

⊗ Rg
l3

⊗ Lg
l4
, (63)

where li ∈ ∂ p, i = 1, ..., 4 and the plaquettes are oriented
outwards.

The Hamiltonian is defined as

H = −A −
∑

c

(
B(x)

c + B(y)
c + B(z)

c

)
. (64)

The operators defined in Eqs. (62), (59), (60), and (61) com-
mute for every cube in the lattice, so the Hamiltonian (64) can
be diagonalized. Moreover, as in Sec. V A, we can write these
operators in terms of Lg’s, Rg’s, and T g, and then it can be
shown that they also satisfy the quantum double algebra of G.
We leave this discussion for a future work.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have studied models of fractonlike order
based on lattice gauge theory with subsystem symmetries
in two and three spatial dimensions. The three-dimensional
model reduces to the 3D toric code when subsystem symmetry

is explicitly broken, realizing an example of a subsystem-
symmetry enriched topological phase. It exhibits some fea-
tures that are usually not present in the most common real-
izations of fracton order, such as a ground-state degeneracy
that depends exponentially on square of the linear size of
the system and on its topology, and fully mobile excita-
tions living along with fractons. However, the fractonlike
character is destroyed if local perturbations that break the
subsystem symmetry are applied to the system. We also
calculated the entanglement entropy of these models, and
we showed that it obeys a simple formula which was de-
rived for the case of usual topological models, relating the
entanglement entropy and the ground-state degeneracy of a
particularly restricted model. Although they are not topo-
logically protected, these models show that one can obtain
fractonlike phases from more regular lattice gauge theories,
giving an alternative to the usual constructions found in the
literature.

One important open question is how the models introduced
in this paper and more standard models such as the X-cube
model are connected. Since the ground-state degeneracy of
the model described in Sec. III scales differently from the X
cube, a relation between the two is not obvious. Likewise, it
is not clear what is the relation between the generalized lattice
gauge theory with subsystem symmetries of [24,55,56] and
the approach developed in this paper.

Moreover, the definitions of the models in Secs. II, III,
and V show an explicit dependence on the geometry and the
topology of the system, which suggests that new phenomena
may arise if we define the models in manifolds with nontrivial
geometry, topology, and discretization. This direction was
pursued for the X-cube model [71,72], and therefore it may

045104-12



FRACTONLIKE PHASES FROM SUBSYSTEM SYMMETRIES PHYSICAL REVIEW B 102, 045104 (2020)

also be helpful in the quest to clarify how the two models are
connected.

At the end of this paper we made some remarks about
the possibility of constructing fractonlike models from non-
Abelian gauge groups. We argued that the operator algebra
of these models is the quantum double of the corresponding
finite group, but the models constructed in this way are
not equivalent to the known quantum double models. This
direction is worth pursuing because this construction allows us
to study more directly the behavior of non-Abelian fractons,
which are known in the literature [57,73]. This could possibly
lead to a better understanding of how to apply fracton phases
in quantum computation. On the other hand, the entanglement
entropy can certainly give more information about the nature
of entanglement in the ground/excited states of the fracton

models we introduce in this paper. In [62], we show that
the entanglement entropy calculation can be mapped into the
counting of edge states in the entanglement cut. This also
holds for the fractonlike models of this paper, and whether
it is also the case for more standard fracton models is an
immediate question worthy of further study that could deepen
our understanding of gapped quantum phases of matter.
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