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Many-body electronic structure of LaScO3 by real-space quantum Monte Carlo
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We present real-space quantum Monte Carlo (QMC) calculations of the scandate LaScO3 that proved to be
challenging for traditional electronic structure approaches due to strong correlation effects resulting in inaccurate
band gaps from DFT and GW methods when compared with existing experimental data. Besides calculating
an accurate QMC band gap corrected for supercell size biases and in agreement with numerous experiments,
we also predict the cohesive energy of the crystal using the standard fixed-node QMC without any empirical
or nonvariational parameters. We show that promotion (optical) gap and fundamental gap agree with each other
illustrating a clear absence of significant excitonic effects in the ideal crystal. We obtained these results in perfect
consistency in two independent tracks that employ different basis sets (plane wave versus localized Gaussians),
different codes for generating orbitals (QUANTUM ESPRESSO versus CRYSTAL), different QMC codes (QMCPACK

versus QWALK) and different high-accuracy pseudopotentials (ccECPs versus Troullier-Martins) presenting the
maturity and consistency of QMC methodology and tools for studies of strongly correlated problems.
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I. INTRODUCTION

Transition metal oxides that crystalize in perovskite struc-
tures are intensely studied materials due to their complex
many-body effects as well as for their potential for broad
applications. The challenges in understanding their electronic
properties are well-known and include electron-electron cor-
relation, competition of localized d versus more extended
s and p states, crystal field effects, and spin-orbit contri-
butions for heavier elements. A number of studies over the
decades have been devoted to understand these effects within
a range of approaches such as density functional theory
(DFT), post-DFT, and dynamical mean-field theory (DMFT).
Very recently, a group of La-based perovskites with formula
LaMO3 where M represents a 3d transition metal [1–4] have
proved to be rather challenging even for the most advanced
methods. Most of these La-based crystals show local mag-
netic moments and magnetic orderings as is often the case
for transition element perovskites with partially filled shells,
especially for the middle/late 3d series. Interestingly, the
scandate LaScO3 is rather atypical since the scandium d-shell
becomes nominally empty and the ground state therefore
appears to be nonmagnetic. The La atom contributes charge
towards closing the empty shells of oxygens and stabilizes
the structure by filling the empty space between the ScO6
octahedra in the typical perovskite arrangement and results
in a large gap, as determined by various optical experiments
[5–7]. Seemingly, its electronic structure should be not much
different from other nonmagnetic closed-shell perovskites that
have been described with a mixed degree of accuracy by
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a variety of post-DFT approaches such as GW , DFT + U ,
and more elaborate DMFT methods. It is therefore somewhat
unexpected that this system proved to be difficult to reconcile
with available experimental data, since the gap estimations are
smaller than experiments by 1 eV or more, even in post-DFT
methods. As explained by Millis et al. [8], the arbitrary boost
to Hubbard U , which is often used as a fix for ordinary DFT
methods to open the gap in transition metal oxides, is not
helpful since the d-levels are nominally unoccupied. Indeed,
ad hoc, educated double-counting schemes adapted for
DFT + DMFT had to be employed in order to build the the-
oretical understanding of experimental gaps so that a proper
balance of the charge-transfer versus Mott-like behavior is
reached in related systems such as LaTiO3 [8]. Alternative
methods such as GW show somewhat mixed success for
this class of systems. In a systematic and very precise study
with several variants of the GW approach [3], heavier transi-
tion metal oxide gaps agree quite well with the experiment,
whereas in LaTiO3, the gap is overestimated by ∼0.9 eV. On
the other hand for LaScO3, the study shows an underestimated
gap by ∼1–1.5 eV, depending on the details of the GW
method. For LaScO3 in particular, the resulting discrepancy
has led to the claim that the GW result is more reliable than
the experiment in this case, despite numerous optical studies
indicating the gap is at least as large as 5.7 eV, and quite pos-
sibly larger. Considering these contradictions, here we present
an independent many-body study of LaScO3 system using
real-space quantum Monte Carlo which has paved the way
for employing correlated wave function electronic structure
methods to real materials with strong correlations over the last
two decades. We find agreement with the experimental band
gap without any empirical inputs or ad hoc parameter tuning,
merely using the fixed-node diffusion Monte Carlo (FNDMC)
approach in its variational formulation, and corroborate our
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TABLE I. Experimental structure for LaScO3 in the Pnma(62)
crystal structure [10].

Lattice parameters
a (Å) b (Å) c (Å)

5.7911 8.0923 5.6748

Atom Site x y z

O1 8d 0.1988 0.0528 0.3044
O2 4c 0.43745 1/4 0.01537
La 4c 0.5323 1/4 0.5996
Sc 4a 0 0 0

result with two independent QMC codes. We probe the band
gap using the canonical definition as well as optical promotion
excitation with the same results. We also propose a method for
analysis and correction of finite size effects for the band-gap
estimation with increasing supercell sizes. In addition, we
predict the value of the crystal cohesion energy, for which to
the best of our knowledge there is no experimental determina-
tion. Therefore, this represents a genuine prediction from our
many-body methods. In addition, we find that despite being
a strongly correlated system, LaScO3 is very well described
by a single-reference wave function nodal surface with corre-
sponding correlations recovered by the ordinary DMC method
leading to accurate energy differences.

II. METHODS

ABO3 perovskites, with A, B as cations and O being the
anion, can crystallize in a variety of crystal symmetries.
LaScO3 in particular crystallizes with the Pnma(62) crystal
symmetry. Oxygen anions surround the Sc cations to form
ScO6 octahedra, while the La cations fill the space between
these octahedra and close the O p shell. Since Sc+3 and La+3

are closed-shell, LaScO3 is nonmagnetic as opposed to other
LaBO3 perovskites, where the partially filled d shells facili-
tate G-type antiferromagnetism. The experimental structural
information is given in Table I and illustrated in Fig. 1. We
note that while the previous DFT and post-DFT calculations
that we will be comparing to have used a slightly different
experimental structure [9], we use a more recent experimental
determination of the structure [10]. The difference between
these experimental structures results in only a 0.05% differ-
ence in the volumes and less than 1% error for the various
Sc-O octahedral bonds. Hybrid DFT studies with HSE06
find that the DFT relaxed structures all have similar percent
errors to the older experimental structure, and that the band
gap is sensitive to at most 0.1 eV between the experimental
and relaxed geometries [2]. Therefore, while all calculations
considered in this work use the more recent experimental
geometry, any comparison to DFT and post-DFT methods
that use the older experimental geometries would change the
differences only marginally, within approximately 0.1 eV, if
our adopted geometry had been used.

As opposed to effective Hamiltonian methods like DFT,
DFT + U , DFT + GW , DFT + DMFT, etc., diffusion Monte
Carlo (DMC) works directly with the many-body wave func-
tion. Using the imaginary time Schrödinger equation, we
apply an imaginary time evolution operator to a trial wave
function e−τH�T which evolves to the ground state in the

FIG. 1. LaScO3 in the experimental perovskite structure. ScO6

octahedra are shown in purple, with the O atoms shown in red. The
La+3 cations are shown in green. This figure was generated using the
VESTA software [11].

long time evolution limit. Although this is formally exact,
in order to deal with the fermion sign problem, we em-
ploy the well-known fixed-node approximation (FNDMC)
[12]. In this approximation, the obtained solution is en-
forced to have the same zero/nodal surface as the trial
wave function. This amounts to adding an additional term
to the Hamiltonian, H → H + V∞δ(R − R∂�), where R∂� =
{R; �T (R) = 0} while R denotes coordinates of all involved
electrons. The strength of the interaction is such that V∞ →
∞, so that it enforces a zero boundary condition at the trial
nodal surface [13]. Since a nonexact nodal surface can only
raise the energy relative to the exact energy, the expectation
value of such Hamiltonian is therefore variational.

The accuracy of the method clearly relies on the accuracy
of the trial wave function. Throughout this work, we utilize a
Slater-Jastrow wave function

�T (R) = eJ (R)D↑(ψ↑
k (ri ))D↓(ψ↓

l (r j )) . (1)

Here, Dσ is a Slater determinant for spin σ and ψσ
i (r j )

form the single-particle orbital matrix. The Jastrow factor
J (R) builds explicit correlation into the trial wave function
by considering electron-electron, electron-ion, and electron-
electron-ion terms; clearly, the Jastrow cannot modify the
nodal surface. In order to carry out a restricted optimization
of the nodal surface, we use various sets of single-particle
orbitals obtained from Hartree-Fock (HF), LDA, and PBE0w

where w determines the amount of exact exchange in PBE0,
defined as

PBE0w = wEHF
x + (1 − w)EPBE

x + EPBE
c . (2)

For both the ground and excited state calculations considered,
we optimize the Jastrow coefficients within variational Monte
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Carlo (VMC) using the linear method [14], and take the lowest
energy from FNDMC as the optimal nodal surface.

In order to estimate the gap within DMC, tradionally two
approaches have been utilized, namely the quasiparticle and
optical formulations [15–17]. In the quasiparticle approach,
the gap is estimated by considering electron addition/removal
from the wave function. By considering the addition/removal
of an electron from the valence band maximum (VBM) and
the conduction band minimum (CBM), we directly target the
fundamental gap of the material. It is given by the following
difference of total energies for system with (N ± 1) and N
electrons:

	qp = EN+1 + EN−1 − 2EN ,

�N−1 = cVBM�N , (3)

�N+1 = c†
CBM�N ,

with �N (±1) being the eigenstate for the N (±1) electron
systems. Since each addition/removal is intended to be the
ground state of the respective N ± 1 systems, the FNDMC
variational theorem holds and we take the lowest energy nodal
surface. An alternative method is to use the optical excitation
approach, which is argued to target the optical gap instead
of the fundamental gap, potentially including excitonic infor-
mation due to the electron-hole interaction. This is achieved
by promoting a particle to an excited state, typically from the
valence band maximum to the conduction band minimum

	op = E ex
N − EN ,

(4)
�ex

N = c†
CBMcVBM�N ,

where �ex is the wave function for the excited state system.
Although in general, the fixed-node approximation is only
variational for the ground state, often the change of symmetry
from VBM to CBM state guarantees the orthogonality of the
excitation and the variational bound. Even when both VBM
and CBM are of the same symmetry, the nodal constraint is
sufficiently restrictive that single-particle excitations results
in variational behavior in practice [15], (see Foulkes et al.
[18] for possible exceptions). In some cases, the optical
gap may not be adequately described by the single-particle
excitation used in the optical approach and a more elaborated
methodology to target excited states has been developed [19]

for QMC methods; however, here we restrict ourselves to the
common single particle-excitation due to the absence of any
pronounced excitonic effects. In cases where the dielectric
constant is large, excitonic effects are largely screened out,
and thus the optical and quasiparticle approach are nominally
equivalent. This should be indeed the case for LaScO3 with a
dielectric constant of ε � 24 [20], therefore we expect both
approaches to produce equivalent results within the energy
resolution of our QMC calculations.

In order to test the validity of our calculations, we uti-
lize two independent QMC codes, namely QWALK [21] and
QMCPACK [22]. For the QWALK calculations, we generate our
trial wave functions using orbitals with localized Gaussian
basis sets with CRYSTAL [23,24]. Gaussian orbital codes like
CRYSTAL are well-suited for semilocal effective core poten-
tials, which allows us to use our recently generated corre-
lation consistent effective core potentials (ccECPs) for Sc
[25] and O [26], which are designed for explicitly correlated
methods like FNDMC. Since at present a ccECP for La has
not been constructed, we instead use an existing ECP from
the Stuttgart group [27,28], which has been appropriately
modified to remove the Coulomb singularity in the potential,
without changing the properties of the potential or any energy
differences. We generate basis sets of the TZDP quality for
O−1, La+2 and Sc+2, which are close to the realized oxida-
tion states in LaScO3. In order to utilize our ccECPs within
QMCPACK, periodic boundary conditions are mostly supported
by orbital generation from QUANTUM ESPRESSO (QE) [29,30].
This requires a transformation of our semilocal ccECPs to
the nonlocal Kleinman-Bylander (KB) form [31] for orbital
generation, although the original semilocal pseudopotential is
used in the actual QMC calculations. While this is an exact
transformation for the reference state, in general, the potential
is different than the semilocal form and can introduce errors
such as ghost states and/or compromised transferability in
subsequent QMC calculations [32]. We found that while our
ccECPs for Sc and O did not result in ghost states, the
Stuttgart group pseudopotential did, and therefore we utilized
another pseudopotential for La designed in DFT that has
been specifically adapted to to be used in Kleinman-Bylander
(KB) form with plane wave basis set [33]. We denote this
La pseudopotential as dft-kb. By comparing QMCPACK and
QWALK calculations, we cross-check that quality of the KB
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FIG. 2. LaScO3 self-consistent band structures in the experimental geometry with varying degree of exact exchange. (a) Hartree-Fock
(HF) band structure gap of 14.82 eV is indirect with the valence band minimum (VBM) at �. However, the conduction band is very flat with a
marginal difference between the precise conduction band minumum (CBM) and the � point. (b) The PBE0 band structure shows a direct gap
of 6.51 eV at �. Similarly, (c) the PBE band structure shows a direct gap of 4.04 eV at �.
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FIG. 3. FNDMC total energies of LaScO3 ground (squares) and excited (circles) states at the � point plotted as functions of the exact
exchange weight w. The corresponding orbital sets are generated by PBE0w and FNDMC calculations are carried out using QMCPACK.
Part (a) uses ccECPs for Sc and O, and dft-kb pseudopotential for La [33]. Part (b) is calculated with dft-opt pseudopotentials [34].

transformation of our ccECP potentials for Sc and O. In addi-
tion, we also test another set of pseudopotentials for Sc and O
designed for QMC calculations [34] which we denote as dft-
opt and compare the results with our ccECPs using QWALK.

III. RESULTS

A. Optimal nodal surfaces

First, we focus on finding optimal nodal surfaces using
orbital sets generated by hybrid DFT function PBE0w where
w denotes the weight of the exact exchange (the original PBE0
functional has w = 0.25). In order to see the impact of nodal
changes both on the ground and excited states, we probe the
optical excitation where we simply promote an electron in the
Slater determinant from VBM to CBM. For this purpose, we
plot the one-particle band structures from Hartree-Fock (HF),
PBE0 and PBE calculations in Fig. 2. The plot shows that the
band extremes are both at the � point in the range of w where
we expect the optimal mixing of the exact exchange w that
typically falls between 10% and 40% [35,36].

In Fig. 3, we show the calculated ground and excited states
from DMC using the QMCPACK code. These calculations use a
20-atom simulation cell, with 160 electrons, and we perform
the ground state and excited state calculations with a � point
twist vector.

By mixing the hybrid exchange in the density functional
used to generate the Slater part of the determinant, we are
able to optimize the nodal surface for both the ground state
and excited state. Figure 3(a) shows the calculations using
the ccECPs for Sc and O and dft-kb pseudopotential for
La [37], whereas Fig. 3(b) shows the same for the dft-opt
pseudopotentials. Irrespective of the pseudopotentials used,
the total energies for the ground and excited state have similar
behavior. The minima occur around w = 0.3 mixing although
for the ground states PBE0 with w = 0.2 and 0.25 are essen-
tially identical by being basically within the error bar.

B. Cohesive energy

In order to further test, the quality of the softer dft-opt
[34] pseudopotentials generated for use in QE and QMCPACK,
we also directly compare the cohesive energies using two

independent strands of calculations with different ECPs, basis
sets and QMC codes. In particular, we utilize our ccECPs
for Sc and O, Stuttgart ECP for La, in the CRYSTAL code
for generating the orbitals expanded in Gaussian basis sets
and running the FNDMC with QWALK. The other independent
track of calculations uses dft-opt pseudopotentials, QUANTUM

ESPRESSO with plane waves and FNDMC calculations carried
out with QMCPACK. The atomic energies are calculated with
single-reference fixed-node trial wave functions and can be
found in Table II. These will be used as a reference when
calculating the cohesive energy of LaScO3.

We perform twist averaging to deal with the single-particle
finite size effects, both with a variety of twist grids shown
in Table III. Each twist averaged calculation is carried out
using the nodal surface generated by PBE025 nodes. We point
out that if we consider the � point only, we find excellent
agreement between the cohesive energies of the two sets of
results. This is quite encouraging, given the difference in
orbital generation, QMC codes, effective Hamiltonians and
different basis sets. In addition, as we converge the twist grids
to the 4 × 4 × 4, we obtain again excellent agreement. The
disagreement at intermediate twists in due to symmetry con-
siderations when generating the one-particle orbitals. Given
the agreement between the two QMC codes and various pseu-
dopotentials, we focus on the QWALK results for extrapolation
to the thermodynamic limit. The extrapolation is used to filter
out the two-body finite size effects and to this end, we perform
a supercell calculation and extrapolate to the thermodynamic
limit alongside the twist-averaging. The supercell is chosen

TABLE II. Atomic energies from fixed-node diffusion Monte
Carlo and single reference single-reference trial wave functions.
For the QWALK calculations, we utilize our ccECPs and the dft-kb
pseudopotential for La, while for the QMCPACK calculations here we
use dft-opt pseudopotentials.

Atom QWALK/ccECP QMCPACK/dft-opt

La −31.40293(22) −31.536684(4)
O −15.86548(39) −15.90088(27)
Sc −46.52048(35) −46.63115(48)
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TABLE III. Comparison of the twist-averaged energies for the
20-atom simulation cell between QWALK and QMCPACK. The QWALK

calculations utilize the ccECPs (dft-kb for La), whereas the QMCPACK

calculations are using dft-opt pseudopotentials. The corresponding
atomic energies are in Table II. Total energies are given per formula
unit.

QWALK/ccECP QMCPACK/opt

Twists E (Ha) Coh. (Ha) E (Ha) Coh. (Ha)

� −126.87466(6) 1.3548(08) −127.2262(04) 1.3558(08)
2 × 2 × 2 −126.8903(08) 1.3704(11) −127.2568(08) 1.3864(10)
3 × 3 × 3 −126.8956(10) 1.3757(10) −127.2546(04) 1.3841(07)
4 × 4 × 4 −126.9058(05) 1.3860(09) −127.2556(02) 1.3851(07)

such that it doubles the number of atoms and it is as close to
a cube as possible. The cohesive energy per chemical formula
is typically linearly extrapolated to the thermodynamic limit
with scaling variable 1/N where N is the number of formula
units. The various cell energies are collected in Table IV.
Note that already at 40 atom supercell the energy components
are close to the twist averages. When extrapolated to the
thermodynamic limit, they yield cohesive energy of 1.320(1)
Ha per formula unit. To the best of our knowledge, there is
no experimental cohesion available, and thus this is a genuine
prediction.

C. Band gap

We first discuss the band gap of LaScO3, for both the
experimental and DFT methods. From optical conductivity
measurements, the spectral intensity shows a clear increase
at ≈ 6 eV [6]. Numerous other optical measurements yield
similar gaps. For example, a band gap of 5.7(1) eV for LaScO3

was found from samples grown with molecular beam deposi-
tion and pulsed laser deposition [5] as well as >5.8 eV using
epitaxial films [7]. From this, it is clear that the band gap is
nearly 6.0 eV or perhaps slightly above, with an experimental
uncertainty of a few tenths of eV. Previous LDA calculations
underestimate the band gap as 3.98 eV [38], whereas PBE
in the experimental structure has been found to be 3.81 eV
[2], which is clearly related to the well-known band-gap

TABLE IV. Total, kinetic, and potential energies for the various
QWALK calculations. This includes two supercell sizes and several
twist grids. Energies are given per formula unit.

Nat k points Energy Kinetic Potential

� −126.87466(6) 65.493(17) −207.492(07)
2 × 2 × 2 −126.8903(08) 65.401(11) −207.403(09)

20
3 × 3 × 3 −126.8956(10) 65.373(11) −207.380(09)
4 × 4 × 4 −126.9058(05) 65.325(07) −207.356(06)
5 × 5 × 5 −126.9115(40) 65.299(7) −207.340(7)
6 × 6 × 6 −126.9133(3) 65.294(4) −207.339(5)
7 × 7 × 7 −126.9143(3) 65.283(4) −207.329(5)

� −126.8729(4) 65.436(13) −207.431(23)
40

2 × 2 × 2 −126.8770(5) 65.369(14) −207.362(17)
3 × 3 × 3 −126.8775(4) 65.380(12) −207.363(13)

underestimation in DFT. This is in close agreement with
our independent PBE calculations, shown in Fig. 2(c), which
gives a band gap of 4.04 eV. Note that although the settings
are not identical since we employ different pseudopotentials,
Gaussian basis sets versus plane wave basis sets, slightly
different experimental geometries to the ones used previously
and different codes, the results are very close. Additionally,
we provide both HF and PBE0 band structures with 25% exact
exchange, labeled as PBE0, which show the increase in the
band gap as exact exchange weight is increased as expected,
with plots in Fig. 2. A similar behavior was demonstrated in
Ref. [2] using the HSE06 hybrid functional. Clearly, the band
gap from the hybrid functional depends on the mixing and
therefore it requires an educated guess and fine tuning in order
to find proper effective exchange mixing.

In order to probe for the accuracy and impact of the nodal
surface on the band gap, we first estimate the optical gap, with
simple promotion of an electron in the Slater determinant from
VBM to CBM, which are both at the � point (Fig. 2). In Fig. 3,
we show the calculated ground and excited states from fixed-
node DMC using the QMCPACK code with total of 20 atoms
in the simulation cell. By varying the Fock exchange in PBE0
functional, we generate orbitals for the Slater determinant and
therefore scan the corresponding nodal surfaces for both the
ground state and excited state [36]. Figure 3(a) shows the
ground state and excited state calculations using the ccECPs
for Sc and O and the dft-kb pseudopotential for La, whereas
Fig. 3(b) shows the ground state and excited state calculations
using the softer dft-opt pseudopotentials. Irrespective of the
pseudopotential sets used, the total energies for the ground
and excited state show similar behavior. The minima of the
DMC energy occurs using nodal surfaces of PBE030. From
this, we can estimate the gap for each; the uncorrected gap
using the ccECPs is 6.28(7) eV, whereas using the designed
QMC potentials, we estimate 6.36(7) eV showing an excellent
consistency of the direct energy differences.

We directly compare these results to another independent
set of QMC calculations using the QWALK package with nodal
surfaces generated using the semilocal versions of our ccECPs
from CRYSTAL, shown in Table V. We find similar behavior in
the optimal ground state, which within error uses either the
PBE025 or PBE030 nodal surfaces, whereas the excited state
is PBE030 (within statistical error). From the estimated gaps
using consistent nodal surfaces, we see that the gap is in close
agreement to the QMCPACK calculations with independent
pseudopotentials.

As an independent check on the gap, we perform quasi-
particle gap calculations. Given the high dielectric of the
material, we do not expect any contributions from excitons, so
that the quasiparticle and optical gap estimates should agree
and form independent estimates of the gap from QMC. For
this purpose, we have carried out charged state calculations
with the QMC designed potentials and QMCPACK as well as
our ccECPs with QWALK, shown in Table VI using PBE025

nodal surfaces.

1. Extrapolation analysis

After we find close agreement between the QWALK and
QMCPACK calculations with various pseudopotentials, we
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TABLE V. DMC total energies of the ground and excited state
calculations using the � point as the twist vector from QWALK.
This choice of twist accommodates both the CBM and VBM in
the simulation cell, and define the excitation. The excited state
calculations here use an independently optimized Jastrow for the
ground and excited state and the gaps are not corrected for finite size
effects. The total energies in the range from PBE020 to PBE030 range
are roughly within two error bars and imply the uncorrected average
gap here of about 6.15 eV.

Nodal surface |�0〉 ĉ†
CBM,�,↑ĉVBM,�,↑|�0〉 	op(�)

PBE −507.4854(32) −507.2535(09) 6.31(09)
PBE0-10 −507.4967(03) −507.2580(01) 6.493(8)
PBE0-20 −507.4898(29) −507.2715(15) 5.94(08)
PBE0-25 −507.4987(22) −507.2681(28) 6.27(10)
PBE0-30 −507.4953(16) −507.2696(05) 6.14(05)
PBE0-40 −507.4978(10) −507.2702(08) 6.19(03)
PBE0-50 −507.4915(18) −507.2621(16) 6.24(07)
PBE0-75 −507.4779(37) −507.2433(06) 6.38(10)
HF −507.4491(37) −507.2126(13) 6.43(11)

study the impact of supercell sizes on the band gap and overall
electronic properties. This is quite challenging due to the fact
that the number of electrons per primitive cell is significant
and therefore very large supercells would lead to prohibitively
long runs. We therefore focus on calculations of the optical
and quasiparticle gaps with doubled size of 40 atom cell. We
collect the results for side by side comparison in Table VII
where for the neutral 20-atom cell we use the lowest energies
from Table V. First thing to notice is that the quasiparticle and
optical gaps are identical within the error bars. Furthermore,
it is clear that the gap estimates from plain total energy
differences for each size are burdened by significant finite
size biases. As elaborated below, these raw differences reflect
finite size effects that often have complicated dependence
on size and shape of the supercell, differing convergence to
asymptotic values for kinetic and potential energies, nature
of excitations and/or net charge in the supercell. In order to
understand these issues and corresponding data, we write the
total energies of supercells with N LaScO3 units for ground

TABLE VI. Total energies (Ha) and band gaps (eV) estimated in
20 atom supercell from independent QWALK and QMCPACK calcula-
tions. The single-reference trial wave functions with PBE0 orbitals
were used and the gaps from energy differences do not include finite
size corrections.

Property VMC-QWALK DMC-QWALK

EN (�) −506.7667(20) −507.4987(22)
EN+1(�) −506.1680(24) −506.9369(40)
EN−1(�) −507.0704(25) −507.8305(50)
	qp(�) 8.02(12) 6.26(20)

VMC-QMCPACK DMC-QMCPACK

EN (�) −508.2768(20) −508.9050(17)
EN+1(�) −507.6968(18) −508.3445(18)
EN−1(�) −508.5888(17) −509.2332(17)
	qp(�) 7.29(10) 6.32(09)

TABLE VII. FNDMC total energies (Ha) calculations of the
various states used to estimate the gaps from raw energy differences
	op and 	qp (eV). We perform each calculation for the supercell �

point, which allows us to directly target the CBM and VBM in each
supercell. There is essentially perfect agreement between optical and
fundamental gaps that suggest no presence of excitonic signals. We
provide the total energies and calculate the gaps from the direct
energy differences, that are not corrected for finite size effects.

State/cell 20 atom 40 atom

EN (�) −507.4987(22) −1014.9833(28)
EN+1(�) −506.9369(40) −1014.4147(09)
EN−1(�) −507.8305(50) −1015.3112(19)
E ex

N (�) −507.2715(15) −1014.7344(22)

	qp (eV) 6.26(20) 6.79(32)
	op (eV) 6.18(08) 6.89(23)

and optical excitation states as energy per chemical unit

EN/N = e0 + A/N + B/Nα + · · · , (5)

E ex
N /N = eex

0 + [Eg + Aex]/N + Bex/Nα + · · · , (6)

where e0 and eex
0 are energies per unit, Eg is the gap and

A, . . . are parameters. For our case of a large gap insulator and
charge neutral supercells, we expect that the exponent α > 1.
We consider the impact of subleading order terms as either
minor if α � 2 or, possibly, as more slowly varying [39] with
size so that they are effectively lumped into the A and Aex

terms. This second case of more slowly varying subleading
order contributions would be especially relevant for studies
at intermediate sizes when calculations of larger supercells
might be out of reach. Furthermore, we also consider the
excitonic electron-hole effects to be marginal as argued above
and as it is also clear from Table VII below. In what follows,
we will study the optical excitation Eg that makes the analysis
more straightforward due to the charge neutrality, simplifying
thus the finite size effects. Analysis of the total energies per
unit is useful since close to the asymptotic regime only the first
two terms are important. Furthermore, the expressions show
that the gap value is present in the slope of the excited state so
that it can be eventually extracted from the data. We note that
we specifically distinguish between the ground and the excited
states for the asymptotic values of energy per chemical unit.
Although they should be the same, this is not always the case
at intermediate supercell sizes due to the finite size effects as
further discussed below. Clearly, this is one potential source
of the finite size bias. The expressions also clearly identify
another possible source of difficulties that is represented by
the total energy offsets A and Aex.

Let us now outline how we address these complications and
also propose an approach on how to extract the gap from our
data set.

(i) Total energy offsets. We first address the asymptotic
energy offsets, i.e., A and Aex, by considering that they do
not necessarily have the same value. Although the offsets
should nominally vanish for N → ∞, it is well-known that the
conditionally convergent Ewald sums can exhibit finite, O(1)
terms, in the thermodynamic limit (e.g., from nonvanishing
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TABLE VIII. FNDMC energies (Ha) per LaScO3 for ground and excited states used to eliminate the finite size effects from the estimation
of the optical gap (eV) from differences (	) as well from the slopes (Eg) with finite size correction. For both the ground and excited state,
we include the raw extrapolations, as well as the constrained extrapolations that are displayed in Fig. 4. The gap estimation is given for the
eex

0 ← e0 constraint, which corresponds to Fig. 4(a).

State/constraint 20 atoms 40 atoms e0 + const/N

EN (�)/N −126.87468(55) −126.87292(36) −126.87112(87) −0.0142(51)/N
e0 ← eex

0 −126.86571(67) −0.0401(37)/N

e0 ← e0+eex
0

2 −126.8684(11) −0.0281(62)/N

E ex
N (�)/N −126.81788(38) −126.84180(28) −126.86571(67) +0.1913(38)/N

eex
0 ← e0 −126.87112(87) +0.2165(44)/N

eex
0 ← e0+eex

0
2 −126.8684(11) +0.2042(53)/N

Gap Eg (finite size corrected)
	op (eV) 6.18(08) 6.89(23) 6.29(16)

multipole moment densities, such as quadrupole moments).
Similarly, the kinetic energy could converge slowly for metals
[40] or in the vicinity of critical points in electronic phase
diagrams, etc. Related effects were addressed by corrections
using real or reciprocal space formulations [15,16,39,41]. Fur-
thermore, any contribution of subleading terms would effec-
tively add to A and Aex within our range of sizes as mentioned
above [39]. The key observation for our data is that the ground
state value of A appears to be rather small, see Table VII and
Fig. 4(a). We assume that this reflects a gradual convergence
due to appreciably large number of electrons/states already
in the primitive cell and rather flat bands in comparison with
the expected size of the band gap. On the other hand, the
excited state slope is an order of magnitude larger than for
the ground state. Therefore we expect that Aex contained in
the excited state slope has a similar value so that it does
not overshadow the gap “signal.” Assuming that A ≈ Aex is
approximately true, we can cancel out most of this bias using
the difference A − Aex. We then expect that the remaining
error would then be only a fraction of the ground state slope or
perhaps even smaller. The impact of such residual error on the
gap estimation would then be below our statistical uncertainty.
Note that we have seen similar behavior in a previous study of
phosphorene that showed essentially converged ground state
thus enabling accurate gap estimation [17].

We note that this assumption might not always be valid. A
possible situation where such assumption could fail can occur
if the ground state slope happens to be large and comparable to
the excited state slope. Such complication can make the gap
estimation difficult or biased. Obviously, this would require
further data for larger sizes and/or detailed analysis of the
sources of biases involved.

(ii) Cohesion differences. Biases in the asymptotic values
e0 and eex

0 could influence the results even more significantly.
Although these values should nominally agree, in many calcu-
lations they still differ by a statistically significant margin sug-
gesting an apparent thermodynamic limit inconsistency. For
our case, see Table VII and Fig. 4(a), the corresponding limits
differ by at least six standard deviations. Regardless what is
the source of the disagreement, if that would persist even
for larger supercells the resulting biases would be difficult
to control. It is then inevitable that the band-gap estimations
from raw differences of total energies lead to a bias and

that, contrary to the intuition, its influence on total energy
differences can even grow with the supercell size. Although
our data indicate a seemingly “small” difference (i.e., well
below 1 mHa/unit for 40 atom system), for the total energies,
it is indeed very significant. We address this problem by
an approximate cohesion consistency condition that requires
both extrapolations to converge to the same asymptotic value,
which we label as easym

0 . This effectively restricts e0 = eex
0 =

easym
0 and forces both extrapolations to be consistent in the

thermodynamic limit. The corrected value of the gap is then
estimated from the difference of the corresponding slopes. For
simplicity, let us first assume that easym

0 is bounded by the
given data range

e0 � easym
0 � eex

0 . (7)

In Fig. 4(a), we use the ground state value of e0 (that is
intuitively perhaps the most appropriate choice) as the com-
mon asymptotic limit. Interestingly, the condition above can
be relaxed and the true asymptotic value could possibly be
outside this bound (note that the considered data are based
on single k-point occupation). The construction is very robust
in this sense since the corresponding gap estimation does not
depend on the precise value of easym

0 as further illustrated in
Fig. 4. Indeed, any value from a reasonable energy range gives
the same gap (basically, due to the conserved sum of angles in
a triangle so that the difference between the slopes does not
change).

From this analysis, we therefore conclude that the lack
of consistency of energy/unit asymptotic values does play a
significant role in biasing the total energy differences. Con-
sidering broader implications, if the difference between these
asymptotic values is unacceptably large it simply indicates
that calculations of larger supercells are still necessary in
order to obtain a reliable result. In our experience so far, if
the ground state varies mildly with the cell size, restoring the
convergence of both extrapolations to the same asymptotic
cohesion removes most or at least a major part of the finite size
bias. [We have additional example(s) where essentially perfect
agreement in extrapolated cohesions is achieved directly from
the data and indeed the gap estimation is then more straight-
forward, to be published elsewhere].

Our consistency construction leads to the gap estimation
of 6.29(16) eV. In order to complete the considerations of
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FIG. 4. Extrapolations of the ground (squares) and excited (circles) state energies per unit using 20- and 40-atom supercells data. Note that
the extrapolated energies do not agree by a significant margin since the corresponding error bars are about 1mHa/unit (i.e., smaller than the
data symbols). (a) We add the constrained extrapolation of the excited state with the asymptotic value identical to the ground state. (b) We add
the constrained extrapolation of the ground state to the asymptotic value of the excited state. (c) We add the constrained extrapolation of both
the ground and excited state using the average of the asymptotic values. As explained in the text, any asymptotic value within a reasonable
energy range that is applied consistently to both state extrapolations lead to same gap value, shown in the figures. Fitting parameters for each
of the plots are given in Table VIII.

systematic biases, we conjecture that the fixed-node bias
is between 0.1–0.2 eV, based on experience from previous
calculations [36]. Taking this into account, the resulting best
guess with all (known) systematic and random errors leads to
estimate of 6.09–6.19 (16) eV, that is indeed very close to the
experiments. We recall that the optical experimental data show
onset of absorption at ≈ 6 eV at ambient temperatures. For
T = 0 though, removing the zero point and thermal motion
effects of would increase the measured gap at least by 0.1 eV
if not more, considering corrections from electron-phonon
effects in large gap solids with similar elements [42,43].
In fact, the resulting agreement we see is perhaps beyond
expectations from a single-reference trial wave function DMC
method and corroborates the previous findings that have pro-
duced accurate values for cohesive and low-lying excitations
of solids. A comparison of gap estimations to experiment for
various electronic structure methods is shown in Fig. 5.

The presented construction is approximate and clearly has
certain applicability limits. In particular, the data should be
close to the thermodynamic limit with the ground state close
to being converged in the first place. If this is not the case and
the slopes for the ground and excited states are very similar

and possibly large, the “gap signal” might be simply lost in
the statistical noise and/or present systematic biases. Biases
could be caused if the offsets vary from size to size due to
noncubic cell shapes or very different aspect ratios. Although
the aspect ratio changes in our case of a 20 versus 40 atom
supercell, we rely on the key feature of our band structure
with a large gap and relatively flat bands. However, in general
further complications could stem from slow convergence of
energy components or other features such as charges, defects,
etc. and may prevent reliable estimations. Further issues could
emerge for systems with very small gaps and/or metals.
Therefore, for such applications, further study of finite size
effects at realistic supercells sizes is highly desirable.

2. Discussion

We initiate the discussion by recalling some of the
previously published results. As it is well-known DFT meth-
ods have their limitations and in particular the description of
excitations can lead to rather mixed results. One of the reasons
is the tendency to smooth out and distort the excited states by
systematic deficiencies in approximate functionals (such as

045103-8



MANY-BODY ELECTRONIC STRUCTURE OF LASCO3 … PHYSICAL REVIEW B 102, 045103 (2020)

LDA PBE PBE0 G0W0 FNDMC
3

4

5

6

7

8

B
an

d
ga

p
of

L
aS

cO
3

[e
V

]

Exp.

FIG. 5. Band gaps of LaScO3 from LDA[38], PBE[2], PBE0
(this work), G0W0 [3], and FNDMC (this work) compared with the
experimental estimation. FNDMC is given as 6.29(16) eV, whereas
the estimated of ≈ 0.2 eV fixed-node bias is indicated by the shaded
region.

the lack of self-interaction correction) that typically leads to
underestimated band gaps. Extensions to DFT such as hybrid
functionals, through inclusion of some of the exact exchange,
correct for part of these errors and often result in rather
close agreement with experiments even with little fine-tuning.
Hybrid functionals are often reasonable using their default
values of exact exchange mixing, and previous calculations
with HSE find a band gap of 5.73 eV [2], whereas our inde-
pendent calculations with PBE0 find a band gap of roughly
6.51 eV using the default parameters. While these estimates
are not perfect, they are relatively close to the experimental
values. Improvements for hybrids can be obtained by retuning
the exact exchange parameter, however this requires one to
have experimental data to compare against and is not purely
ab initio. Many-body perturbation theory such as G0W0 is
often used to improve the DFT band-gap issues. However, the
results can be rather sensitive to the underlying DFT orbitals
[19]. A very systematic study using G0W0 was carried out for
a wide variety of ABO3 compounds, and for the majority the
calculated band gaps largely agree with experiment. However
for LaScO3 the G0W0 band gap is estimated to be between 4.5
and 4.9 eV [3]. This discrepancy with experiments is justified
by stating that “LaScO3 is a clear band insulator with the first
(charge-transfer) optical excitation arising from the O-p to
Sc-d transition; the experimental spectrum does not clearly
show. the tail at the bottom of the spectrum well visible in
GW . We believe that the GW band structure is reliable in
this respect, and that the onset of optical absorption is not
easily detected in the experiment. We therefore trust that our
predicted band gap of 4.9 eV should be more reliable than
the experimental estimate of 6.0 eV,” as stated in Ref. [3]. We
would like make the following comments on two aspects of
this interesting material. One point to consider is that the 3d
channel is not the only candidate for the lowest excitations
stemming mainly from the Sc atom. The actual situation
might be more complex and probably involves a number
of channels and many-body effects. In this respect, there

is a rather unique example of bounded atomic Sc− anion
for which one expects the ground state to be a triplet with
additional electron occupying the d orbital, i.e., 3F (3d24s2).
Surprisingly, this is incorrect and such a state is not bounded
[44,45]. The true Sc− bounded lowest state actually does not
conform to the Hund’s rules; it is a singlet and the additional
electron goes to the 4p state, i.e., it is 1D(3d4s24p), showing
nontrivial correlations and competition of several one-particle
atomic channels. We believe that such correlations might be
quite difficult to describe even by sophisticated and precise
perturbational approaches and indeed many-body wave
functions are crucial for describing such effects [44].

Furthermore, we also consider the fact that absorption
data could be challenging to analyze when the band gap is
large. However, the underestimation from GW using PBE
orbitals does not necessarily imply the stated claim, given the
significant variability of typical GW results with respect to
their underlying orbital sets [19]. Our DMC results indicate
that the gap, at least in the ideal system without defects or
nonstoichiometries, appears to be around or marginally above
≈ 6 eV, in an excellent agreement with several published
spectra. Therefore we are inclined to accept the optical ex-
periments as representative in this regard. High-quality direct
and inverse photoemission experiments for LaScO3 would be
highly desirable in corroborating the results of both our calcu-
lations as well as the data from existing optical measurements.

IV. CONCLUSIONS

We present a quantum Monte Carlo study of LaScO3 based
on real-space sampling and fixed-node diffusion Monte Carlo
method. Experiments show that this scandate is a large gap
nonmagnetic insulator as has been consistently reconfirmed
by several experiments. Despite the fact that optical data are
often more complex to analyze, for large dielectric materials,
the lowest excitations should effectively measure the funda-
mental gap due to absence of strong excitons. In this Mott-
Wannier limit, the interaction between electrons and holes is
largely screened, and the resulting excitons are delocalized
with a very small binding energy.

Our calculations are based on standard the DMC workflow
and we are able to obtain accurate band gaps when compared
to experiment, without the need for fine-tuning any nonva-
riational parameters. Other electronic structure methods rely
on guidance from experiments, such as adjusting the exact
exchange mixing parameter in hybrid functionals or inserting
Hubbard U in DFT + U approaches. Similarly, changing
the initial orbitals sets, i.e., the starting point bias in GW
methods can affect and possibly bias the predictions as well.
As an alternative, diffusion Monte Carlo relies only on the
variational principle and on the quality of the nodal set of the
explicitly constructed many-body trial wave function. Note
that the usual issue of finite basis sets in correlated wave
function methods does not arise in DMC since the random
walks represent sampling of the complete position space.
We note that in general, the finite basis sets can impact the
nodal surface in DMC. However, for single Slater-Jastrow
wave functions and the basis used here this dependence is
negligible. We show that for systems such ours, the standard
ansatz for excited states such as promotion from the valence to
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the conduction band works quite well when coupled with the
nodal surface optimization using one-parameter hybrid DFT
effective Hamiltonian.

We have carried out also a rather detailed study of finite
size effects such as twist averages for the proper estimation of
cohesion. In fact, our cohesive energy is a genuine prediction
since to the best of our knowledge that quantity has not been
measured yet. Similarly, we have studied the finite size biases
in estimations of the band gap for different supercell sizes.
Since our system exhibits relatively flat bands when compared
with the gap, we have encountered rather mild finite size
dependence of the ground state at intermediate sizes. We then
showed that it is important to take into consideration both
the ground and excited states scaling to large sizes so as to
guarantee the consistency in thermodynamic limit. Using this
as a consistency condition has enabled us to conclude that the
band gap is located at 6 eV and possibly marginally higher.

Although our agreement with the experiment is very en-
couraging we would like to reflect on the origin of systematic
errors still involved. We recapitulate the following possible
sources:

(a) finite size effects, which we treat approximately, are
still very important for further considerations. This concerns
both the offsets and subleading order terms that could be still
significant at intermediate sizes. Within the presented data
the gap estimation is essentially locked by the introduced
consistency condition at the asymptotic limit, however, for
other quantities more studies and insights are necessary.

(b) Residual fixed-node errors that remain after taking
differences are equally relevant. The goal is to get the resulting
fixed-node bias to such level that it would not affect the
differences of interest within the desired statistical accuracy.
Obviously, for larger systems, the cost and difficulty of such
exploration can be very very challenging.

(c) Neglect of zero point and thermal motion effects on the
band gap and possibly other quantities of interest. For these
effects, we roughly estimate that their impact on the band gap
is of the order of 0.1 eV. Here we consider some of the recent
results [43,46] for transition and simple metal oxide materials
such as SrTiO3, TiO2, and SnO2 where phononic corrections
are in the range ≈ 0.1 and 0.3 eV. This clearly requires further
study.

In order to cross-validate a number of technical aspects
of the QMC methodology, most of the calculations have
been carried out along two independent tracks. One used the
QWALK code with Gaussian basis sets, correlation consistent
ECPs (ccECPs), and the CRYSTAL code for generating the
self-consistent Gaussian-based solid state orbitals. The other
track employed DFT-generated pseudopotentials, QUANTUM

ESPRESSO code with plane wave basis and QMCPACK for
QMC runs. Overall, we find excellent agreement between
the results using these technically very different paths, inde-
pendent codes, effective Hamiltonians and basis sets. These
two sets of results provide a systematic corroboration of the
robustness of the QMC methods and tools for calculations of
transition metal oxide systems and other complex materials
in future.

For more complicated systems and further gains in accu-
racy, systematic improvement of the ground and excited states
may be necessary [19]. In addition, better understanding of
finite size effects for realistic sizes of supercells will be also an
important subject of future studies. Nevertheless, the methods
presented here provide an excellent starting point and a first
step towards more accurate and further elaborated ab inito
calculations where more sophisticated trial wave function
ansatz may be necessary, beyond just the Slater-Jastrow form.

The data from this work are made available from the
Materials Data Facility [47,48] and can be found in Ref. [49].
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