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Stability of Weyl semimetals with quasiperiodic disorder
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Weyl semimetals are phases of matter with excitations effectively described by massless Dirac fermions. Their
critical nature makes unclear the persistence of such a phase in the presence of disorder. We present a theorem
ensuring the stability of the semimetallic phase in the presence of weak quasiperiodic disorder. The proof relies
on the subtle interplay of the relativistic quantum field theory description combined with number-theoretical
properties used in Kolmogorov-Arnold-Moser theory.
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I. INTRODUCTION

Conduction electrons in metals are well described by the
Schrödinger equation but in certain cases the interaction with
the lattice produces an effective relativistic description in
terms of massless Dirac particles; this happens, in particular,
in Weyl semimetals [1], which have been recently experimen-
tally discovered [2–5]. This offers the possibility of observing
the counterpart of high-energy phenomena at a much lower-
energy scale, and to have materials with unusual physical
properties. The critical nature of excitations has the effect that
in several cases predictions are ambiguous and sensitive to
approximations. Indeed, while there is agreement that at weak
coupling many-body interactions do not destroy the semimet-
alllic phase [6–9], it is still a subject of debate the effect of
disorder. Field-theoretical approaches find that a weak random
disorder does not destroy the semimetallic phase [10,11] while
other studies [12] based on the inclusion of rare region effects
lead to the opposite conclusion, namely that even an arbitrary
weak random potential destabilizes the system. Numerical
investigations were done for random [13–19] or quasiperiodic
disorder [20,21], but conclusions are subjected to finite-size
effects [22].

Rigorous results in this context are useful as they can act as
a benchmark to check approximations or conjectures. In this
paper we rigorously analyze Weyl semimetals on a lattice in
the presence of a weak quasiperiodic disorder. Such disorder
is the one realized in cold atoms experiments [23,24]; in
addition, the quasiperiodic potential can effectively describe
coupled Dirac systems like Moire’ superlattices [25]. The
effect of quasiperiodic potentials for quantum particles has
been deeply studied in one dimension; in the noninteracting
case a very detailed mathematical knowledge was reached
[26,27], and recently great progress in understanding the ef-
fect of the interaction has been obtained [28–37]. In contrast,
very little is known for higher-dimensional Dirac systems,
with the exception of [20,21], where numerical evidence of
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stability of the Weyl semimetallic phase was found. The
main difficulty of quasiperiodic disorder is the presence of
infinitely many processes involving a large exchange of mo-
mentum, which, due to Umklapp and the incommensurability
of frequencies, connect fermions with momenta close to the
Weyl points. Such processes are dimensionally relevant in the
renormalization group (RG) sense and the effect of disorder
in principle increases at each RG iteration and could destroy
the Weyl semimetallic phase. This phenomenon manifests in
the presence in the series expansion of small divisors which
could break convergence.

A similar situation is encountered in classical mechanics
and in particular in Kolmogorov-Arnold-Moser (KAM) the-
ory, where quasiperiodic solutions are written as Lindestedt
series see, e.g., [38]. Such series are plagued by small divisors
but their convergence is ensured by subtle cancellations due to
the number-theoretical properties of irrational numbers, see,
e.g., [39]. In this paper we show that a similar phenomenon
allows to prove the stability of the semimetallic phase in Weyl
semimetals; number theoretical properties allow to prove that
the relevant terms almost connecting Weyl points are indeed
ineffective. Physical quantities are written as convergent se-
ries so that nonperturbative effects due to small divisors are
excluded.

The paper is organized in the following way. In Sec. II
the model is presented, in Sec. III we describe the effect
of Umklapp terms, in Sec. IV we recall number theoretical
properties of irrationals, and in Sec. V the main result is
presented. Finally, in Sec. VI the RG analysis is presented and
Sec. VII is devoted to conclusions.

II. WEYL SEMIMETALS WITH QUASIPERIODIC
DISORDER

A basic model for Weyl semimetals, see [1], is obtained
assuming a pair of orbitals on each site of a lattice, preserving
inversion but with broken time reversal symmetry; if x =
(x1, x2, x3) are points in a cubic three-dimensional lattice
�, a±

x,1, a±
x,2 fermionic creation or annihilation operators, the
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hopping Hamiltonian is H0 =

∑
x∈�

⎧⎨⎩
2∑

j=1

(−1) j−1

[
(ζ − 1)a†

x, jax, j + 1

2
a†

x, j (−�a)x, j

]

+ it1
2

[
a†

x,1

(
ax+e1,2 − ax−e1,2

) + a†
x,2

(
ax+e1,1 − ax−e1,1

)]
+ t2

2

[
a†

x,1

(
ax+e2,2 − ax−e2,2

) − a†
x,2

(
ax+e2,1 − ax−e2,1

)]⎫⎬⎭,

(1)

where in the first line � is the standard lattice Laplacian:
� f (x) = ∑3

l=1[ f (x + el ) + f (x − el ) − 2 f (x)]. The Hamil-
tonian H0 in Fourier space can be written as H0 =∫

dk
(2π )3 â†

kh(k )̂ak with

h(k) =
(

α(k) β(k)
β∗(k) −α(k)

)
, (2)

where k ∈ (0, 2π ]3, α(k) = 2 + ζ − cos k1 − cos k2 − cos k3,
and β(k) = t1 sin k1 − it2 sin k2. We assume that ζ ∈ [0, 1),
in which case ĥ(k) is singular at k = ±pF , with pF =
(0, 0, arccos ζ ) called the Weyl point. In the vicinity of ±pF ,
k = q ± pF ,

Ĥ0(q ± pF ) = t1σ1q1 + t2σ2q2 ± sin pF σ3q3 + O(q2). (3)

We include now a many-body interaction and quasiperiodic
disorder writing

H = H0 + ε
∑

x

φx(a+
x,1a−

x,1 − a+
x,2a−

x,2) + λ
∑
x,y

v(x − y)ρxρy,

(4)
where v(x − y) is a short-range potential, ρx = a+

x,1a−
x,1 +

a+
x,2a−

x,2, and

φx =
∑

n

φ̂nei2π (ω1n1x1+ω2n2x2+ω3n3x3 ), (5)

with n ∈ Z3, φ̂n = φ̂−n, and |φ̂n| � Ce−ξ (|n1|+|n2|+|n3|). We as-
sume the periodicity of the potential incommensurate with
the lattice periodicity, by taking ωi as irrational. The above
potential includes the basic example φx = ∑

i cos(ωixi ) and
respects the inversion symmetry; it corresponds to a quasiperi-
odic staggered chemical potential.

If ψ±
x = eHx0ψ±

x e−Hx0 , x = (x0, x), x0 the imaginary time,

the 2-point function is given by S(x, y) = Tre−βH T ψ−
x ψ+

y

Tre−βH and
Ŝ(k) is the Fourier transform, k = (k0, k). In the noninteract-
ing case λ = ε = 0 one has S(x, y)|0 = g(x − y) with

g(x) = 1

L3β

∑
k

eikx[−ik0I + h(k)]−1 (6)

and ĝ(k) = [−ik0I + h(k)]−1 is its Fourier transform. From
(3) we see that, close to the Weyl momenta, the propagator
ĝ(q ± pF ) is equal to the massless Dirac propagator up to cor-
rections. By this, one can easily deduce the physical proper-
ties; for instance, the real part of the zero-temperature optical
conductivity vanishes linearly with the frequency σ (ω) ∼ ω.

To investigate the stability of the Weyl semimetallic phase
in the presence of incommensurate potential, it is conve-
nient to write the interacting correlations as S(x, y) = ∂2W

∂φ−
x ∂φ+

y
,

where W (φ) is the Grassmann integral defined in the follow-
ing way:

eW (φ) =
∫

P(dψ )eV , (7)

where φ is an external field, ψ±
x,i are Grassmann variables,

P(dψ ) is the Grassman integration with propagator g(x), and

V = λ

∫
dp̂v(p)̂ρpρ̂−p +

∫
dx(ψ+

x φ−
x + ψ−

x φ+
x )

+ ε
∑
n,i

φ̂n

∫
dk(−1)iψ̂+

i,k1
ψ̂i,k2

× δp(k1 − k2 + ω̄n2π ), (8)

where ω̄n = (0, ωn), ωn = (ω1n1, ω2n2, ω3n3),
∫

dx =∫ β/2
−β/2 dx0

∑
x, and

ρ̂p =
∫

dk(ψ̂+
k,1ψ̂

−
k+p,1 + ψ̂k,2ψ̂

+
k+p,2). (9)

Finally,

δp(k) = δp(k0)
3∏

i=1

δp(ki ), δp(ki ) = L
∑

n

δki,2nπ . (10)

Note that momentum is conserved to momenta 2πn due to the
presence of the lattice.

III. RELEVANT PROCESSES AND UMKLAPP TERMS

A natural way to understand the effect of the interaction
and disorder is to use the RG. The physical information are
encoded in the marginal or relevant processes, that is, the
terms with vanishing or positive scaling dimension. The linear
divergence at the Weyl points of the propagator (6) says that
the scaling dimension of the interactions with n ψ fields is
D = 4 − 3n/2, so that the only relevant terms are the bilinear
ones. In the absence of quasiperiodic potential ε = 0, there is
only one relevant term corresponding to a shift in the position
of the Weyl points. The irrelevance of the quartic terms has
the effect that, in the weak coupling regime, the semimetallic
behavior persists and the only effects of the interaction are the
finite renormalization of the velocities and wave function, see
[6].

The presence of the quasiperiodic potential produces in-
finitely many relevant terms quadratic in the fields, with mo-
menta k1, k2 such that k1,i − k2,i + 2ωiniπ + 2liπ = 0 with
li, ni positive or negative integers. The factor 2ωiniπ is the
momentum exchanged with the quasiperiodic disorder while
the factor 2liπ is exchanged with the lattice (Umklapp). Only
the terms connecting fermions with momenta close to the
Weyl points are really important and, due to Umklapp, this can
happen also in correspondence of a nonvanishing transfer of
momentum produced by the disorder. The important processes
involve fermions with momenta close to the same Weyl point
σ = 0 or to opposite ones σ = 1/π ones; if pF = (0, 0, pF,3)
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this requires

n1ω1 − l1 ∼ 0, n2ω2 − l2 ∼ 0, n3ω3 − l3 ± σ pF,3 ∼ 0.

(11)
Note the basic difference between periodic or quasiperiodic
potentials. In the first case ωi is rational ωi = p/q so that the
differences in (11) either are exactly vanishing or are O(1/q):
there are no processes (for pF,3 �= nπω3) connecting momenta
arbitrarily close to the Weyl points except the one with ni = 0,
a process corresponding to the shift of the chemical potential.
Therefore a periodic potential is not expected to modify the
physical behavior for generic values of pF , at least for small ε

(except opening of gaps at pF,3 = nπω3).
In contrast, in the quasiperiodic case (11) can be arbitrarily

close to zero, for the basic properties of irrational numbers.
This means that there are infinitely many relevant processes
connecting the Weyl points. Such a feature makes the case of
quasiperiodic potentials very close to the random case, where
the difference of momenta of relevant terms is k1 − k2 = p
with p the momentum carried by a random field φ̂p which can
be arbitrarily small.

IV. KAM THEOREM AND DIOPHANTINE CONDITIONS

In the case of random potential the issue of stability is
related to the probability that certain dangerous configurations
happen. In the quasiperiodic case, the problem is deterministic
and related to the irrationality properties of the frequencies.
Therefore, quantitative estimates saying how much an irra-
tional is close to a rational one are necessary. For instance,
the golden number ω =

√
5−1
2 verifies |qω − p| � 1

(3+√
5)

1
2πq .

If such ω is the frequency of the quasiperiodic potential,
this says that, looking at (11), only the processes involving
a large transfer of momentum can involve fermions close to
the Weyl points. Such a property is indeed generic. There is
a class of irrationals called Diophantine, such that, for q �= 0,
p, q ∈ Z2/(0, 0)

|qω − p| � C0

2πqτ
. (12)

The irrationals not verifying (12) in the unit segment have
measure O(C0); as C0 can be taken arbitrarily small, the set
of Diophantine numbers is full, see, e.g., [38]. Indeed the set
of ω in the unit cube verifying |qω − p| < C0

qτ for a certain

q, p is smaller than 2C0/qτ+1 hence summing over p (a sum
bounded by C|q|) and q we get a set with measure bounded
by CC0

∑
q

1
qτ which is O(C0) for τ > 1.

It is therefore not restrictive to assume the following con-
ditions on the frequencies, i = 1, 2, 3

|2πωin|T � C0

|n|τ |2πω3n ± 2pF,3|T � C0

|n|τ n ∈ Z/0,

(13)
where by |.|T we mean the average on the torus, that is
|2πωn|T = inf p |2πωn − 2π p|; the first condition is (12) and
the second is a requirement of incommensurability for pF,3.
As we will see, Diophantine conditions are crucial to prove
the stability of the Weyl semimetallic phase.

Another point to stress is that, to impose a periodic bound-
ary condition, we have to choose a sequence of ω rational

converging to an irrational in the infinite volume limit. To do
that we start from the continued fraction representation of a
number ω

ω = a0 + 1

a1 + 1
a2+ 1

a3+···

. (14)

We approximate ω by a sequence of rational numbers (conver-
gents) p1

q1
= a0 + 1

a1
, p2

q2
= a0 + 1

a1+ 1
a2

, and so on. The proper-

ties of the convergents imply that if ω verifies the Diophantine
condition then |π (n pi

qi
− k)| � C

2|n|τ if q1 � n � qi

2 and any k.
Therefore, we can impose periodic boundary conditions by
considering a sequence of frequencies ωi = pi

qi
and Li = qi.

Finally, it is worth recalling that the number-theoretical
conditions are unusual in condensed matter, but rather com-
mon in other branches of physics. For instance, planets around
the sun neglecting the mutual attraction have an integrable
Hamilltonian dynamics which is quasiperiodic, and according
to KAM theory only quasiperiodic motions with Diophantine
frequencies survive in the presence of perturbation-breaking
integrability [38]. Indeed quasiperiodic solutions are written
as a series in the perturbation, called the Lindstedt series,
whose convergence follows by subtle cancellations due to
Diophantine conditions, see, e.g., [39].

V. MAIN RESULT

As the interaction in general moves the location of the Weyl
mometum, we write ξ = cos pF + ν in (4) and we choose ν so
that pF is the just the interacting Weyl momentum.

Theorem. For λ, ε small enough, and assuming that the
frequencies ωi in (5) verify (13), there exists ν such the 2-point
function Ŝ(k) behaves as, if pF = (0, pF )

S(q ± pF )= 1

Z

(−iq0 ± v3q3 v1q1 − iv2q2

v1q1 + iv2q2 −iq0 ∓ v3q3

)−1

[1 + O(q)],

(15)
with Z = 1 + O(λ, ε), v1 = t1 + O(λ, ε), v2 = t2 + O(λ, ε),
v3 = sin pF + O(λ, ε).

This result proves the stability of the Weyl semimetallic
phase, as quasiperiodic disorder does not modify qualitatively
the 2-point function but produces only a finite renormalization
of the parameters; no phase transition is present at small
disorder. As a consequence the real part of optical conduc-
tivity vanishes as O(ω) as in the noninteracting case. Even if
there are infinitely many relevant terms due to quasiperiodic
disorder, they do not modify the physical behavior. The result
is in agreement with the numerical evidence in [20,21].

VI. RENORMALIZATION GROUP

To prove (15) we need to evaluate the generating function∫
P(dψ )eV with V = V + ν

∫
ψ̂+σ3ψ̂

− with V given by (8)
and the propagator given by g(x). We introduce two smooth
cutoff functions χ±(k ∓ pF ) nonvanishing in a region |k ∓
pF | � γ and nonoverlapping, γ > 1 a suitable constant: we
define ĝ(�0)

ρ (k) = χρ (k − ρpF )̂g(k) and

g(x) = g(1)(x) +
∑
ρ=±

g(�0)
ρ (x) (16)
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with ĝ(1)(k) = (1 − ∑
ρ χρ )̂g(k); this induces the Grass-

mann variable decomposition ψx = ψ (1)
x + ∑

ρ=± ψ (�0)
ρ with

propagators given by g(1)(x) and g(�0)
ρ (x), respectively. Note

that ψ (1) corresponds to fermions with momenta far from the
Weyl points, while ψ

(�0)
± with momenta around ±pF .

We can further decompose χρ (k − ρpF ) =∑0
h=−∞ fh,ρ (k) with fh,ρ (k) = χρ (γ −h(k − ρpF )) −

χρ (γ −h+1(k − ρpF )) nonvanishing in γ h−1 � |k − ρpF | �
γ h+1; therefore, setting ĝ(h)

ρ (k) = fh,ρ (k )̂g(k) we get

ĝρ (k) = ∑0
h=−∞ ĝ(h)

ρ (k), ρ = ±; note that ĝ(h)
ρ (k) is the

“single scale propagator,” corresponding to fermions
with momenta measured from pF which are O(γ h)
(γ > 1 and h < 0). This decomposition of the propagator
corresponds to a decomposition of the Grasmann variables
ψ (�0)

ρ = ∑0
h=−∞ ψ (h)

ρ , where ψ (h)
ρ has propagator g(h)

ρ . In the
following we distinguish between the momentum k and the
momentum measured from the Fermi points, q = k − ρpF ;
in the support of fh we have that q ∼ γ h.

After the integration of ψ (1), ψ (0), . . . , ψ (h+1) the generat-
ing function has the form

eW (φ) =
∫

P(dψ (�h) )eV
(h) (ψ (�h),φ), (17)

where P(dψ (�h) ) has propagator

ĝ(�h)
± (q)= 1

Zh
χh,ρ (q)

( −iq0 ± v3,hq3 v1,hq1 − iv2,hq2

v1,hq1 + iv2,hq2 −iq0 ∓ v3,hq3

)−1

(18)
with χh,ρ (q) = χρ (γ −hq) and V (h)(ψ, 0) =∑

m,n,ρ

∫
dq1 . . . dqmW (h)

n,m(q)ψε1(�h)
ρ1,q1

...ψεm (�h)
ρm,qm

δn,m(q), (19)

where ε = ±, δn,m(q) is Lβ times a periodic Kronecker delta
nonvanishing for

∑m
i=1 εiq0,i = 0 and pF = (0, 0, pF,3)

m∑
i=1

εiqi = −
m∑

i=1

εiρi pF + 2πωn + 2lπ, (20)

with l = (l1, l2, l3) and ωn = (ω1n1, ω2n2, ω3n3). V (h)(ψ, φ)
has a similar expression with some ψ field replaced by an
external field φ.

Our aim is to prove the following bound:∣∣W (h)
n,m(q)

∣∣ � C[max(|ε|, |λ|)]m−1γ Dhe− ξ

2 |n|, (21)

with D = 4 − 3
2 m the scaling dimension, from which (15)

easily follows. The main point of the above statement is
that, up to the dimensional factor γ Dh, the kernels W (h)

n,m are
small for ε, λ small uniformly in −h. The validity of (21) is
nontrivial at all for the presence of infinitely many relevant
terms. We recall that, in the usual terminology, the relevant
terms are the ones with D > 0, actually the bilinear terms
m = 2 and any n in (19). This could produce an infinite
number of running coupling constants which could possibly
produce an instability. However, we can distinguish among the
relevant bilinear terms in (19) the ones such that the left-hand
side (l.h.s.) of (20) is vanishing, which we call resonant, from
the others, which we call nonresonant. The resonant terms
with m = 2 are possible only for n = 0 and ρ1 = ρ2; the case

ρ1 = −ρ2 would be possible if pF,3 = n3πω3, a case excluded
by (13). In the RG approach one needs to renormalize the
relevant terms introducing an operator R = 1 − L. The key
point is that there is no need to renormalize the nonresonant
terms, even if they are dimensionally relevant, as their size is
controlled by the Diophantine condition. We define therefore

LW (h)
0,2 (q) = W (h)

0,2 (0) + q∂W (h)
0,2 (0) (22)

and LW (h)
n,m(q) = 0 otherwise; this says that the renormal-

ization R = 1 − L makes the scaling dimension, which is
originally 1, negative. Note also that R is trivial on the
relevant nonresonant terms. By symmetry, no new relevant
and marginal terms are produced by the L operation. Indeed
the nondiagonal part of W (h)

0,2 is the sum of terms with an
odd number of nondiagonal propagators, hence it is vanishing
while the diagonal part has opposite signs. In addition, the
derivative with respect to 0,3 of the terms contributing to the
nondiagonal part is zero, as they contain an odd number of
nondiagonal propagators, and the derivative with respect to
1,2 of the terms contributing to the diagonal part is zero, as it
contain an even number of nondiagonal propagators. We can
write therefore

Vh = LVh + RVh (23)

with R = 1 − L; moreover, we can insert the marginal terms
in LVh in the fermionic integrations so that a renormalization
of the velocities vh and of the wave-function renormalization
Zh is produced. In conclusion, we can rewrite (17) as∫

P̃(dψ (�h) )eγ hνhF (h)+RV (h) (ψ (�h),φ) (24)

with F (h) = ∫
dx(ψ+

x,1ψ
−
x,1 − ψ+

x,2ψ
−
x,2) and P̃(dψ (�h) ) has

a propagator similar to (18) with vi,h−1 replacing vi,h and
Zh−1 replacing Zh, with vh−1,i = vh,i + ∂iW h

0,2, i = 1, 2, 3, and
Zh−1 = Zh + ∂0W h

0,2.
We can use the additional property of Gaussian Grass-

mann integrations P(dψ (�h) ) = P(dψ (�h−1))P(dψ (h) ), with
P(dψ (h) ) with propagator g(h) and P(dψ (�h−1)) with prop-
agator g(�h−1) (“high- and low-energy fields”), where g(h)

coincides with g(�h−1) (18) with fh,ρ replacing χh−1,ρ .
We integrate the single scale variable ψ (h)

eV
(h−1) (ψ (�h−1),φ) =

∫
P
(
dψ (h)

)
eγ hνhF (h)+RV (h) (ψ (�h),φ), (25)

obtaining for V (h−1) an expression similar to (17) with h − 1
replacing h, and the procedure can be iterated. By definition

V (h−1) =
∞∑

n=1

1

n!
ET

n (γ hνhF (h) + RV (h); n), (26)

where ET
n are truncated expectations (also called cumulants),

expressed in terms of connected Feynman graphs. The proce-
dure can be therefore iterated.

The result of the above RG analysis is an expansion of
W (h)

n,m(q) in powers of λ, ε, νh with coefficients expressed in
terms of the Feynman graphs defined, as usual, contracting
bilinear ε or νh vertices or quartic λ vertices in oriented
lines �, so that to each line � is associated with a propagator
ĝ(h� )

ρ�
(q�) (q = k + ρpF ); the difference of momenta k coming
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v1> >> > > > >
v2

v3

v5

v4

FIG. 1. The graph with value (27).

in and out an εφ̂n vertex is 2πωn = 2π (ω1n1, ω2n2, ω3n3),
while the sum of momenta coming in and out a λ-vertex
or ν vertex is zero. Note that the propagators carry now
a scale index h� such that h� < h. Given a graph we can
consider a maximally connected subset of propagators with
scale h� such that h� � hv and there is at least a scale hv ,
and such that the external lines have scale < hv; the points
connected by such lines define a cluster labeled by v, and to
each Feynman diagram is associated a hierarchy of clusters.
We can reorganize the expansion in the opposite way; one
can choose a hierarchy of clusters and find the diagrams
associated with it. The momenta q of the propagators in a
cluster measured from the Weyl points are larger than the
ones of the external lines; this induces a decomposition in
subgraphs avoiding overlapping divergences, see, e.g., [39,40]
for more details. Note finally that the R = 1 − L operation
acts on the clusters with two external lines and n = 0, that is
on the resonant clusters; this means that W (hv )

0,2 (q) is replaced

by W hv

0,2(q) − W (h)
0,2 (0) − q∂W (h)

0,2 (0).
An example of the Feynman graph defined according to the

above rules is in Fig. 1. The graph is a contribution of order
7 in ε; the vertices are represented by dots and the clusters,
labeled by vi, by circles enclosing the subsets of vertices.
The clusters v1, . . . , v6 are such that, by definition, hv3 < hv1 ,
hv3 < hv4 , hv4 < hv2 , hv4 < hv5 . We will use the notation that
v′ is the first cluster enclosing v, that is, v′

2 = v4 and so on,
and hv′ < hv . As only ε vertices are present, the graph is linear
with value

ε7
∫

dqψ+(�h)
q,ρ ψ

−(�h)
q+2πωn,ρ ′

7∏
i=1

φ̂ni

×ĝ
hv1
ρ1 (q1 )̂g

hv3
ρ2 (q2 )̂g

hv3
ρ3 (q3 )̂g

hv2
ρ4 (q4 )̂g

hv4
ρ5 (q5 )̂g

hv5
ρ6 (q6), (27)

where k = q + ρpF , k1 = k + 2πωn1 mod. 2π , k2 = k +
2πωn1+n2 , k3 = k + 2πωn1+n2+n3 and so on; finally,

∑
i ni =

n and ωn = (ω1n1, ω2n2, ω3n3). The bounds leading to (21)
are largely independent from the details of the graphs; what
really matters is the structure of clusters with scales and the
momentum conservation rule. This fact is also essential in
proving the convergence of the series expansion: we bound
a class of graphs with the same cluster structure, and in
this way we avoid the dangerous combinatorial n! which
would be obtained by bounding each graph separately. In
Fig. 2 it is represented in the cluster structure and the vertices
corresponding to the graph in Fig. 1. In general, graphs
obtained by contractions with λ vertices are not linear; in
Fig. 3. it represents a graph contributing to W (h)

n,4 of order

FIG. 2. The cluster structure of the graph in Fig. 1.

λ3ε3 and the associated cluster structure; the propagator in the
circle, representing a cluster, has a scale lower than the four
propagators external to it.

We want now to bound the Feynman graph associated to a
hierarchy of clusters. We call v′ the minimal cluster containing
v so that hv − hv′ > 0, and Sv is the number of clusters or
vertices contained in v and not in any smaller cluster. We also
call ne

v the number of lines external to a cluster v and m4
v, m2

v

the vertices in a cluster v of kind λ or ε, ν. Using that the
propagator g(h)(x) is bounded by γ 3h and the integral of the
propagator over coordinates by γ −4hγ 3h, a graph of order s is
bounded by Cs[max(|ε|, |λ|, |νh|)s] times∏

v

γ −4hv (Sv−1)
∏
v

γ 3hvnv

∏
v

γ zv (hv′−hv ), (28)

where nv is the number of propagators in the cluster v but not
in any smaller one, and zv = 2 where v is a resonant cluster
with ne

v = 2 and zero otherwise; the last term in the above
expression is produced by the renormalization R. Note that
the same bound is valid for the sum over all Feynman graphs
with a fixed hierarchy of clusters from cancellations due to the
Pauli principle, see [40].

By using the relations∑
v

(hv − h)(Sv − 1) =
∑

v

(hv − hv′ )
(
m4

v + m2
v − 1

)
,

∑
v

(hv − h)nv =
∑

v

(hv − hv′ )
(
2m4

v + m2
v − ne

v/2
)
,

one gets

γ Dh
∏
v

γ (hv−hv′ )(Dv−zv )
∏
v

γ 2hvm̄4
v

∏
v

γ −hvm̄2
v

[∏
i

e−ξ |ni|
]
,

(29)

FIG. 3. An example of graph with λ and ε vertices and the
associated cluster structure.
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k ka kb

>

<

FIG. 4. A cluster with the gain (33).

where m̄4
v is the number of vertices λ contained in v and not in

any smaller cluster, m̄2
v is the number of vertices ε contained

in v and not in any smaller cluster [such a factor is absent
for νh vertices as canceled by the γ h in (25)], s is the order,
Dv = 4 − 3ne

v/2; the last term comes from the factors φ̂n.
One needs to sum over all the choices of scales {h}. By

looking to (29) we see indeed that if for all v one has
Dv − zv < 0 then one can sum over all the choices of scales,
that is,

∑
{h}

∏
v γ (hv−hv′ )(Dv−zv ) is bounded by Cs (remember

that hv − hv′ > 0). There are, however, clusters with Dv −
zv = 1, actually the nonresonant clusters with ne

v = 2 which
are dimensionally relevant, and this produces a divergent
bound γ −hs. Such a divergence may suggests that the Weyl
semimetallic behavior is unstable.

We need, however, to take into account the number-
theoretical properties of the frequencies. Let us consider
a cluster with two external lines (see, e.g., Fig. 4), asso-
ciated to propagators with momenta ka, kb. If qa, qb are
the momenta measured from the Weyl points, k = q ±
pF , external to a cluster v, one has |qa| � γ hv′ , |qb| �
γ hv′ for the compact support properties of the propaga-
tor. We call N = (N1, N2, N3), N = ∑

i ni where ni is the
momentum associated with each ε vertex in the cluster;
therefore, ka − kb = 2π (N1ω1, N2ω2, N3ω3) so that, if |q|T =√

|q1|2T + |q2|2T + |q3|2T
2γ hv′ � |qa|T + |qb|T � |qa − qb|T , (30)

where we used the triangular inequality on the torus. Now we
use the Diophantine property (13), ε = 0,±

2γ hv′ �
√

|2πω1N1|2T + |2πω2N2|2T + |2πω3N3 + ε2pF,3|2T

� 3C0

N̄τ
, (31)

so that, if N̄ = max(N1, N2, N3) then

N̄ � Cγ −hv′ /τ . (32)

This inequality says that if the momenta external to a nonres-
onant cluster are very small, than the momentum transferred
is very large. On the other hand, N = ∑

i ni and∏
i

e−ξ |ni| � e−ξ N̄ � e−Cγ
−h

v′ /τ
, (33)

as
∑

i |ni| � | ∑i ni| � N̄ . An example is in Fig. 4; the first
circle represents the propagators of the two λ vertices while
the second circle represents a cluster v with scale hv contain-
ing three ε vertices with momenta n1, n2, n3; if ka, kb are the
external momenta if ka − kb = 2πωN and |qa| ∼ γ −hv′ , |qb| ∼
γ −hv′ then |N̄ | � γ −hv′ /τ , see (31), N = n1 + n2 + n3. The
small factor (33) is sufficient to compensate the factor γ −hv′

v1 v2

v3

FIG. 5. An example of hierarchy clusters leading to (37).

for dimensional reasons, that is the dimensionally relevant
terms are indeed irrelevant.

In the above argument we have not taken into account
that there is, in general, a sequence of clusters enclosed into
clusters, as in Fig. 2, and not all the gain coming from the
factors e−ξ |n| contained in a cluster can be consumed. To get a
decay factor for each cluster we can write each factor e−ξ |n|/2

associated to φ̂n as

e−ξ |n|/2 =
−1∏

h=−∞
e−ξ2h|n|/2, (34)

so that, if Nv is the sum of the ni of the ε-vertices in v∏
i

e−ξ |ni|/2 �
∏
v

e−ξ N̄v2h
v′
, (35)

where the produce in the l.h.s. is over all the ε ver-
tices. An example of the above argument is in Fig. 5;
if the vertices represent φ̂ni , assuming 1,2,3 in v2, 3,4
in v3 and 4,5,6 in v1, then

∏8
i=1 e−|ni| is bounded by

e−(|n1|+|n2|+|n3|)2hv2 e−(|n4|+|n5|)2hv3 e−(|n1|+···|n8|)2hv1 .
We get, using (32),

e−ξ N̄v2h
v′ � e−ξ2h

v′ γ −h
v′ /τ

. (36)

If we choose γ 1/τ = 4 then e−ξ2−h
v′ � (N/eξ )N 2N2hv′ by using

e−αxxN � ( N
eα )

N
. Therefore, choosing N so that 2N = γ (N =

2τ ) [∏
i

e−ξ |
ni|/2

]
� Cs

∏
v

γ hv2SNR
v , (37)

where SNR
v is the number of nonresonant clusters with two

external lines or ε vertices in v and not in any smaller cluster
and s is the order.

Using that

∗∏
v

γ −2(hv′ −hv )
∏
v

γ −hv2m̄2
v �

∏
v

γ −hv2SNR
v , (38)

where the first product is over the nonresonant relevant v we
get that (29) is replaced by, using (37),

γ Dh
∏
v

γ (hv−hv′ )(Dv−z̄v )
∏
v

γ hvm̄4
v

[∏
i

e−ξ |
ni|/2

]
(39)

with z̄v = 2 for ne
v = 2 and zero otherwise. Note that the Dio-

phantine equation has been used to derive (37), from which
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one can associate a gain γ 2hv to each nonresonant relevant
cluster, making their scaling dimension negative, that is, re-
placing zv with z̄v in (39). As Dv − z̄v � −1 we can sum over
all the scale choices getting a bound O[Cs max(|λ|, |ε|, |νh|)s]
from which the convergence of the series expansions follows,
provided that ν is chosen so that νh vanishes as h → −∞.

Finally we note that the velocities verify a recursive re-
lation vh−1 = vh + βh

v and the wave-function renormaliza-
tion verifies Zh−1 = Zh + βh

z ; note that the Feynman graphs
contributing to βh have at least a λ vertex so that βh =
O(λγ h) (the quartic terms are irrelevant) and v−∞ = v0 +
O(λ), Z−∞ = 1 + O(λ). One can therefore sum over all the
scales hv in (39) obtaining (21).

Note that the crucial role of the exponential decay
of the harmonics φ̂n to prove the irrelevance of the
nonresonant terms, see (33). While such a condition is
probably nonoptimal, some fast decay is likely to be
necessary. Indeed this is what happens in the case of in-
teracting one-dimensional fermions: nonresonant terms are
irrelevant at weak coupling with some fast decay [29] while
if the decay is slow O(1/n) as in the Fibonacci potential,

there is evidence that they are instead relevant and produce
instability [41].

VII. CONCLUSION

We rigorously established the stability of the Weyl
semimetallic phase in the presence of weak interaction and
quasiperiodic disorder. Even if the infinitely many relevant
terms produced by the disorder could possibly destabilize the
semimetallic phase, this is avoided by subtle cancellations due
to the number of theoretical properties. The physical proper-
ties appear to be determined by the interplay of relativistic
quantum field theory with classical mechanics and KAM
theory. There are no phase transitions for weak quasiperiodic
disorder, where rare region effects are absent. If a similar
rigorous RG analysis can be performed in the case of random
disorder is a very interesting open question.
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