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We propose an approach called self-learning hybrid Monte Carlo (SLHMC), which is a general method
to make use of machine learning potentials to accelerate the statistical sampling of first-principles density-
functional-theory (DFT) simulations. The trajectories are generated on an approximate machine learning (ML)
potential energy surface. The trajectories are then accepted or rejected by the Metropolis algorithm based on DFT
energies. In this way, the statistical ensemble is sampled exactly at the DFT level for a given thermodynamic
condition. Meanwhile, the ML potential is improved on the fly by training to enhance the sampling, whereby
the training data set, which is sampled from the exact ensemble, is created automatically. Using the examples
of α-quartz crystal SiO2 and phonon-mediated unconventional superconductor YNi2B2C systems, we show that
SLHMC with artificial neural networks (ANN) is capable of very efficient sampling, while at the same time
enabling the optimization of the ANN potential to within meV/atom accuracy. The ANN potential thus obtained
is transferable to ANN molecular dynamics simulations to explore dynamics as well as thermodynamics. This
makes the SLHMC approach widely applicable for studies on materials in physics and chemistry.
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I. INTRODUCTION

First-principles molecular dynamics based on density func-
tional theory (DFT-MD) is a powerful tool to simulate a
variety of materials in physics and chemistry [1]. However,
reducing the computational effort required for DFT-MD re-
mains a key issue for its broader application to phenomena
on large length- and timescales. The use of artificial neural
networks (ANNs), which imitate DFT energies by machine
learning, is seen as a promising solution to this issue [2–5].
The branch of research about machine learning molecular
simulations has grown rapidly in the last decade [6–18] after
an influential paper by Behler and Parrinello [5] laid down a
general framework of setting up and training ANN potentials
from DFT data sets and running ANN-MD simulations for
condensed matter systems.

The training of machine learning (ML) potentials must be
based on sufficient amounts of DFT-derived results to cover all
the configuration space, which corresponds to a statistical en-
semble in the case of systems in thermal equilibrium. Usually,
the training sets for ML potentials are chosen before starting
ML-MD simulations. Many useful methods, such as generic
algorithms [16] and CUR decompositions [17], etc., were
suggested for properly choosing training sets. If sufficient
care is not taken, it is possible that ML-MD simulations may
break down suddenly when the trajectory finds its way into
an uncovered part of the phase space, see Fig. 1. Therefore it
would be beneficial to establish a way to somehow cover the
ensemble space in an automatic manner.
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Here we propose an approach for training ML potentials
based on the exact statistical ensemble at a given thermody-
namic condition, e.g., isothermal, isobaric ensembles, using
the hybrid Monte Carlo technique [19–21]. This allows one
to access exact results out of approximate ML potentials, and,
at the same time, create an objective and unique data set for
ML training. Herein the exactness means that the ensemble
created by this method is exactly equivalent to that created
by the DFT-MD. Importantly, we want to circumvent the use
of costly DFT-MD computations as much as possible, which
can be achieved by training the ML potential on systems
with small sizes and short timescales. Our idea is to use the
dual-level HMC method [22–25]. The ensemble is sampled by
generating trial moves of the trajectory from an approximate
ML potential energy surface, which are then either accepted
or rejected by performing the DFT energy calculations at long
time-step intervals. Note that the ensemble created is theo-
retically exact irrespective of the quality of the approximate
ML potentials. Its efficiency is strongly dependent, however,
on the quality of the ML potential, as this affects acceptance
ratio. It will be shown herein that the acceptance ratio tends to
improve as the ML potential is trained and updated iteratively,
which is done automatically on the fly during the computa-
tions. Note that the ML potential is used here in an auxiliary
manner to produce exact ensembles, which distinguishes our
concept from previous works where the ML potential was
used as an accurate approximation of the DFT potentials.

We call our method the self-learning hybrid Monte Carlo
(SLHMC) method, since it is akin to the self-learning Monte
Carlo (SLMC) method [26]. The SLMC method was recently
introduced in the field of many-electron systems to speed up
MC simulations by using efficient global updates informed
by machine learning techniques [26–32]. SLHMC extends
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FIG. 1. Schematic figure of trajectories in phase space. (a) Tra-
jectories of DFT-MD, (b) ML-MD, and (c) SLHMC. If the ML
potential is not well-trained, the ML-MD trajectory might fall outside
the range of the DFT ensemble (depicted by a dotted oval), while the
accepted SLHMC trajectory always stays inside.

the idea of SLMC to equation-of-motion-based moves to
enable efficient global updates for atomistic and molecular
simulations.

This Rapid Communication is organized as follows: We
first explain the basic theory and computational procedure of
SLHMC. We use example calculations on SiO2 (α quartz) to
demonstrate the accuracy and efficiency of the method. Cal-
culations for the phonon-mediated superconductor YNi2B2C
are then used to demonstrate the ability to construct accurate
ML potentials such that the ML-MD simulations are stable at
long times.

II. SELF-LEARNING HYBRID MONTE CARLO METHOD

A trial move uses Hamilton’s equations of motion derived
from the ML potential energy surface, VML,

ṗi = −∂VML({r}, t )

∂ri

, ṙi = pi

mi

, (1)

where pi, ri, and mi are the momentum, coordinates, and
mass of the ith atom, respectively. Starting with a random
initial momentum generated from the Maxwell-Boltzmann
distribution, the equations of motion are solved for a discrete
time step, �tML, using a time-reversible and area-preserving
algorithm (in the present study, the velocity-Verlet algorithm).
The ML potential surface VML({r}, t ) depends on time t as it is
trained on the fly, but is kept constant within the time interval
�tT, i.e.,

VML({r}, t ) = V n
ML({r}), n�tT < t < (n + 1)�tT, (2)

where V n
ML is the ML potential for the nth update. VML is

trained every �tT = nDFT�tDFT, where �tDFT ≡ nML�tML is
the interval of acceptance/rejection in the Metropolis algo-
rithm. Thus, nDFT is the number of times the DFT energy
is computed for training and nML is the number of steps in
a trial move. The acceptance probability for a trial move

within the phase space from {p, r} to {p′, r′} is given by (see
Supplemental Material for the technical details [33])

Pacc({p, r} → {p′, r′}) = min(1, e−β(HDFT({p′,r′})−HDFT({p,r})) ),

(3)

where β = 1/T is the inverse of temperature and

HDFT =
N∑

i

|pi|2
2mi

+ VDFT({r}) (4)

is the Hamiltonian based on the DFT potential energy,
VDFT({r}). We note that the detailed balance condition is
preserved exactly on the basis of the DFT (not ML) potential
as long as the ML potential VML({r}, t ) does not change during
a trial move.

According to Eqs. (1) and (3), ML force calculations
are required nML times while DFT energy calculations are
required once. SLHMC is computationally efficient when the
former is less expensive than the latter, which is usually
the case unless we set a huge value for nML. In such a
case, �tML could be chosen to be sufficiently small so as to
conserve the ML energy within a trial move. (This situation is
different from conventional HMC where the step size should
be large to break energy conservation.) When the ML energy
is conserved within a trial move, the acceptance probability
Eq. (3) becomes

Pacc({p, r} → {p′, r′}) ∼ min(1, e−β��V ), (5)

where ��V ≡ �V ({r′}) − �V ({r}) and �V ({r}) ≡
VDFT({r}) − VML({r}, t ). Therefore, the accuracy of the
ML potential influences the acceptance ratio, and thus the
efficiency of the SLHMC method. In practice, SLHMC is
efficient by setting �tDFT such that the acceptance ratio is
more than 20%.

In this Rapid Communication, we use the Behler-Parrinello
ANN potentials as ML potentials. We follow the standard
ANN training protocol to minimize the mean-square error
(�V ({r})2) [5]. The ANN variables are restarted from the
last update (n − 1) and optimized using all the DFT energy
data up to the current update (n). Training is possible us-
ing either only the accepted structures or both the accepted
and rejected structures (the latter is employed here). We
recommend the latter since the ML potential is improved
more rapidly in this case. By including the rejected samples,
the sampled space naturally expands in the course of the
simulation.

Since the size of the training data set needed is small
(∼2000 here), the computational cost of training the ANN
potential is usually not dominant in SLHMC. As the number
of training data increase with increasing n, one can skip
the training steps after the ANN variables are optimized
sufficiently by judging from the average acceptance ratio
calculated in SLHMC.

III. DEMONSTRATION I: THERMODYNAMICS OF SiO2

The SLHMC method was implemented in the PIMD
code [34] which has access to ANN potentials and DFT
calculations via the ATOMIC ENERGY NETWORK (ænet) [35]
and VIENNA AB INITIO SIMULATION PACKAGE [36]. The first
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FIG. 2. Difference between the DFT and ANN energies of SiO2

in SLHMC. The step size of ML, DFT, and training were chosen to
be �tML = 0.25 fs, �tDFT = 5 fs, and �tT = 500 fs, respectively.

test was on the thermodynamics of the α-quartz phase of
SiO2 crystal [37]. The SLHMC simulations were at 300 K in
the canonical ensemble for a periodic system of 24 Si atoms
and 48 O atoms. The DFT calculations used the Perdew-
Burke-Ernzerhof functional [38]. The projected augmented-
wave method [39] was employed, while the cutoff energy
was 500 eV and the sampling points were gamma point
only. The ANN potentials were trained using the limited-
memory Broyden-Fletcher-Goldfarb-Shanno method [40,41].
We adopt the Chebyshev basis set as a descriptor for atomic
environments [11] and the corresponding parameters are given
in Ref. [42]. The step size of ML, DFT, and training were
chosen to be �tML = 0.25 fs, �tDFT = 5 fs, and �tT = 500 fs,
respectively. The initial guess of the ANN potential was
prepared and trained using a short DFT-MD trajectory of
300 steps starting from the crystal structure. This could
be done in other ways if the SLHMC run gets stuck at
the initial step.

Figure 2 shows that the difference between the ANN and
DFT potentials quickly diminishes to about 1 meV/atom on
average as the SLHMC simulation proceeds and the ANN
potential is trained on the fly. This accuracy can be ascribed to
the fact that the ANN potential has been trained in a confined
configuration space corresponding to the exact ensemble at
the DFT level. Figure 3 shows that the radial distribution
functions (RDFs) obtained from the SLHMC and DFT-MD
simulations are identical, as they should be. Note that this
is the case even when the ANN potentials are changed
during the SLHMC simulation. This demonstrates that the
SLHMC method is able to gain statistics on thermodynamic
properties while training the ANN potential at the same
time. The RDFs in the SLHMC converge faster than those
in the DFT-MD.

Figure 4 shows the results of the mean squared displace-
ment (MSD) as a function of the number of DFT calculations,
obtained with SLHMC and DFT-MD simulations. The MSD
is defined as (1/NSi)

∑NSi
k=1(r′

k (t ) − r′
k (0))2, where NSi is the

number of Si atoms and r′
k (t ) is the position of the kth

atom relative to the center-of-mass of the system at time t .
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These MSD curves, which should converge to a constant
value for large t in solid states, indicate the length scale of
the autocorrelation of atomic displacement. As expected, the
MSD converges faster as �tDFT increases, since the ANN-
MD trajectory is longer. Assuming that the DFT calculations
are the bottleneck of the SLHMC simulations, which was
mostly the case in our computations, SLHMC simulations
become more efficient as the MSD converges. This is not only
because the sampling of statistics becomes more efficient,
but also because the training data becomes less correlated.
When �tDFT is long enough to be uncorrelated in a single MC
step, the efficiency of SLHMC should become proportional
to the acceptance ratio, which is eventually reflected by the
difference between the ANN and DFT potentials and thus the
quality of the ANN. In the present simulation, the acceptance
ratio with the well-trained ANNs with �tDFT = 50 fs was
around 40%, and the difference between the ANN and DFT
potentials tended to 0.23 meV/atom on average.
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calculated by the SLHMC at 300 K. The horizontal axis is the
number of the DFT calculations. We set �tML = 0.25 fs in SLHMC.
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FIG. 5. Phonon density of states in YNi2B2C calculated by
ANN-MD with the ANN trained by the SLHMC. The temperatures
are 60 K (upper panel) and 300 K (lower panel).

IV. DEMONSTRATION II: DYNAMICS OF YNi2B2C

The second test was on the dynamics of an uncon-
ventional phonon-mediated superconductor YNi2B2C (Tc ∼
15 K) [43–46]. Neutron-scattering experiments have shown
a strong temperature dependence of the phonon density of
states (DOS) in this superconducting compound [47]. The
temperature dependence arises from anharmonic vibrations
that are not taken into account in static DFT calculations based
on (quasi) harmonic analysis at zero temperature [47,48]. We
show that a combination of the SLHMC and ANN-MD meth-
ods could be useful in this case. Since the SLHMC method
optimizes the ANN potential in the configuration space of
a given ensemble, the accuracy of ANN potential is guaran-
teed in ensuing ANN-MD simulations as the trajectories stay
confined within this configuration space. Therefore, once the
ANN potential is optimized in SLHMC, the ANN-MD runs
should be stable for long times, which may not necessarily
be the case for complex systems with several elements (in the
present case, four elements) for the methods proposed earlier.

The SLHMC and ANN-MD simulations were carried out
for a supercell containing 16 Y atoms, 32 Ni atoms, 32 B
atoms, and 16 C atoms. The ANN and DFT simulations were
set up in the same way as those in the previous section.

The SLHMC simulations were at 1000 K with the step sizes
�tML = 0.25 fs, �tDFT = 2.5 fs, and �tT = 250 fs. The dif-
ference of the trained ANN and DFT potentials was found to
be about 0.4 meV/atom on average. The DOS was computed
via the Fourier transform of velocity autocorrelations [49]
from the ANN-MD simulations. For statistical convergence,
ten Newtonian trajectories were run independently for 100 ps
with the step size �tMD = 1 fs. These trajectories were
restarted from the equilibrated configurations of NVT en-
semble at 60 K and 300 K to reflect the temperature de-
pendence [50] of the DOS. As expected, all the ANN-MD
trajectories were found to be stable for 100 ps.

As shown in Fig. 5, the phonon DOS depends on tem-
perature, which is consistent with the neutron-scattering ex-
periments [47]. This result confirms that anharmonic effects
of phonons are important in this material. The crystal struc-
ture of YNi2B2C is similar to that of high-Tc cuprates and
strongly anisotropic superconducting pairing has been sug-
gested [44–46]. Thus, anharmonic effects of phonons appear
to play a key role in this unconventional superconductor.

V. CONCLUSIONS

We proposed a method called SLHMC to compute thermo-
dynamic properties exactly based on DFT using an approx-
imate ML potential that is trained on the fly to accelerate
sampling. The ML potential is optimized automatically by
using a training data set of a given ensemble that is generated
exactly. The ML potential thus obtained can be used safely in
ML-MD simulations to compute dynamic properties in ther-
mal equilibrium, since the ML-MD simulations are stable for
long times. Proof-of-concept calculations were presented for
the thermodynamics of SiO2 and the dynamics of YNi2B2C,
which demonstrated the usefulness of SLHMC.

As can be expected from the acceptance probability in
Eq. (5), the efficiency of SLHMC depends strongly on the
balance between the system size and the quality of the ML
potential. Thus, it is recommended to keep the system reason-
ably small for SLHMC in practice. However, like other ANN
methods in the framework of the Behler-Parrinello approach,
the ANN potentials are transferable to larger systems once
they are well-trained by SLHMC. Unlike the original HMC
method, the small step size �tML prevents deterioration of
the efficiency of SLHMC. The SLHMC approach established
herein is not limited to solids but could be applied generally to
many kinds of systems such as molecular clusters and liquids.
In principle, this idea could be extended to other statistical
ensembles, such as the isobaric ensemble and quantum en-
sembles via imaginary-time path integral theory [51].
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