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The non-Hermiticity caused breakdown of the bulk-boundary correspondence (BBC) in topological phase
transition was cured by the skin effect for the systems with chiral symmetry and translation invariance. However,
periodic driving, as an active tool in engineering exotic topological phases, breaks the chiral symmetry, and the
inevitable disorder destroys the translation invariance. Here, we propose a scheme to retrieve the BBC and
establish a complete description of the topological phases of the periodically driven non-Hermitian system
both with and without the translation invariance. The demonstration of our method in the non-Hermitian
Su-Schrieffer-Heeger model shows that exotic non-Hermitian topological phases of widely tunable numbers
of edge states and Floquet topological Anderson insulator are induced by the periodic driving and the disorder.
Our result supplies a useful way to artificially synthesize exotic phases by periodic driving in the non-Hermitian

system.

DOLI: 10.1103/PhysRevB.102.041119

Introduction. Topological phases in non-Hermitian sys-
tems have attracted much attention both theoretically [1-33]
and experimentally [34—41]. Many interesting characters have
been found in different non-Hermitian systems [16—30]. One
of their unique features is that not only the edge states but
also the nontopologically protected bulk states are localized at
the edges, which is called skin effect [10-14,42—-45]. It causes
that one cannot characterize the edge states by the topological
properties of the bulk spectrum. This is the non-Hermiticity
induced breakdown of bulk-boundary correspondence (BBC)
[1-5], which lays the foundation for the classification of
topological phases in Hermitian systems [46—49]. To describe
the topological features of the edge states, many strategies in-
cluding biorthogonal eigenstate [3], singular-value decompo-
sition [31], gauge transformation [50], and modified periodic
boundary condition [51] have been proposed. A milestone
among these is the non-Bloch band theory established in the
generalized Brillouin zone (BZ) for the one-dimensional (1D)
chirally symmetric and translation invariant systems [4,8],
which is recently generalized to the system without chiral
symmetry [44,45].

Coherent control via periodic driving dubbed as Floquet
engineering has become a versatile tool in artificially syn-
thesizing exotic topological phases in systems of ultracold
atoms [52,53], photonics [54,55], superconductor qubits [56],
and graphene [57]. Parallel to the topological phases in static
systems, the topological phases in periodically driven systems
are called Floquet topological phases (FTPs). Many intriguing
FTPs absent in static systems [58—69] have been simulated by
periodic driving in Hermitian systems. The key role played
by periodic driving is changing symmetry and inducing an
effective long-range hopping in lattice systems [70-72]. A
natural question is what controllable topological characters
can periodic driving bring to non-Hermitian systems. Given
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the fact that the chiral symmetry can be broken by periodic
driving, one cannot apply the well developed non-Bloch band
theory of 1D chirally symmetric static systems [4] to the
periodic ones for recovering the BBC and defining topological
invariants. Without touching the topological characterization,
the transport phenomena of the non-Hermitian Floquet edge
states was studied in Refs. [73,74]. For some special cases in
the absence of the skin effect, the topological numbers were
defined in the traditional BZ [75,76]. Recent study reveals
that the BBC is approximately recoverable only for small
intercell coupling [77]. Further, the inevitable spatial disorder
also invalidates the non-Bloch band theory to restore the BBC.
Thus, a general theory to characterize the non-Hermitian FTPs
is still lacking.

In this work, we investigate the FTPs in the periodically
driven non-Hermitian systems. A general description is es-
tablished to characterize the FTPs of such nonequilibrium
systems both in the momentum and the real spaces. The main
idea to characterize the FTPs in both of the spaces is to
restore the chiral symmetry of the periodically driven systems
by the proposed similarity transformations, which keep the
quasienergy spectrum unchanged. Taking the non-Hermitian
Su-Schrieffer-Heeger (SSH) model as an example, we find
that rich topological phases absent in the static case are
created by the periodic driving. The studies on the real-space
topological physics in the presence of disorder reveal that
the extra phases called non-Hermitian Floquet topological
Anderson insulator phases are induced by the disorder. Our re-
sults demonstrate that the periodic driving and its constructive
interplay with the disorder supply us useful ways to engineer
exotic topological phases in the non-Hermitian systems.

Floguet topological phases. A time-periodic system
H({)=H(@+T) with period T has a complete set of
basis |u,(t)) determined by Floquet equation [H(t)—
i0:]|ug(t)) = eqluq(t)) such that any state evolves as |W(t)) =
>, Ca€ e Uy (1)) [78,79]. Acting as stationary states and
eigenenergies of static systems, |u,(#)) and &, are called
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quasistationary states and quasienergies, respectively. Being
equivalent to Ur|ug(0)) = e~ T |u,(0)) with Ur the one-
period evolution operator, the Floquet equation defines an
effective Hamiltonian Heg = %ln Ur whose eigenvalues are
the quasienergies. The FTPs are defined in the quasienergy
spectrum. Different from the static case, they can occur at both
of the quasienergies 0 and = /T [70].

Chiral symmetry plays an important role in characterizing
the non-Hermitian topological phases [2—4,6,8]. However, it
cannot be preserved if a periodic driving is applied. Consider
a non-Hermitian two-band system H with its parameters
periodically driven between two specific H; and H, in the
respective time duration 77 and 7,. Applying the Floquet the-
orem, we obtain H.g from Uy = e 22~ Ti Tt can be seen
that even H; (j = 1, 2) have chiral symmetry SH;S™' = —H;
with § being the chiral operator; Hg breaks the symmetry
due to [H|, H,] # 0. The absence of the chiral symmetry in
H. makes it hard to define the FTPs in a non-Hermitian
system by the non-Bloch band theory, which is developed
for the chirally symmetric static system [4]. We propose
the following scheme to resolve this problem. Two similar-
ity transformations G; = €""V'H#iTi/2 covert Uz into Uz =
e T2 =i Ty =i Ti2 and [y, = e i B/2 M Ti p=ithT2/2,
from which the defined Her; = +InUr,; share the same
quasienergies with H.g while recover the chiral symmetry of
H;. It can be equivalently understood to define new chiral
operators G;'S~1G ; such that Hgr obeys the chiral symmetry.
The similar scheme was used in Hermitian systems [80]. As
we will see later, the recovered chiral symmetry is significant
to characterize the FTPs in the non-Hermitian system both for
the translation-invariant and variant cases.

Translation-invariant non-Hermitian system. If the system
is further translation invariant, we can develop a general
characterization to the FTPs in the momentum space. The co-
efficient matrices of H; are written in the momentum space as
H;(k) =h;(k) - o with o being the Pauli matrices. We read-
ily obtain Her(k) = hegt(k) - o = iln[e” "W L= ®Ti] /T
with the Bloch vector hgg(k) = — arccos(e)r/T and

€ = cos(T1Ey) cos(T2E2) — hy - hy sin(T Ey ) sin(TaEz), (1)

r =h, x h, sin(T{ E,) sin(TzE;) — h, cos(T 1 Ey)
x sin(TrE>) — h; cos(TLEy) sin(Th Ey), (2)

where T =T, + 1>, l_1j =h;/E;, and E; = ,/h; -h; is the
complex eigenenergies of #H ;(k) [81]. The FTP transition is
associated with the closing of the quasienergy bands, which
occurs at the exceptional points for the k£ and driving parame-
ters satisfying

TiEj =n;m, nj € L, 3)
b, -h, = %I

“
T]E]:l:TzEZZHJT, nez

at the quasienergy zero (or 7 /T) if n is even (or odd) [81].
As the condition for the phase transition, Eqgs. (3) and (4)
supply a guideline to manipulate the exceptional points via
the driving parameters for engineering various non-Hermitian
FTPs at will. They reduce to the results in the Hermitian case

[71,72] as a special case when the non-Hermitian terms in h;
vanish.

We see from Eq. (2) that heg(k) generally has three com-
ponents even though the chirally symmetric h; have only two.
It proves that the chiral symmetry is broken by the periodic
driving [81]. Thanks to the similarity transformation G;, we
obtain 7—~leff, j(k) preserving the chiral symmetry of H;(k).
Then we can restore the BBC and define proper topological
invariants in our periodically driven non-Hermitian system by
introducing the generalized BZ in the similar manner as the
static system [4]. The topological properties of the periodic
non-Hermitian system are fully characterized by the two
winding numbers WV, defined in the generalized BZ associated
with ﬂeff, j- The number of 0- and 7 /T-mode edge states
relates to W; as [41,75]

No= Wi +Wsl/2,  Negjr = Wi =Wal/2. (5)

Without loss of generality, we demonstrate our method by
the 1D non-Hermitian SSH model [82—-84]

L
H = |:<l‘1 + Z)a}b[ + (I] - Z)b;az
= 2 2

+12(a by + H.c.)i|, (©6)

where a; (b;) are the annihilation operators on the sublattice
A (B) of the Ith lattice, and L is lattice length. In momentum
space and the operator basis (d, by)" with a (by) being the
Fourier transform of a; (b;), it reads

H(k) = dyos + (dy + iy /2)0y. ™

where d, = t; +t, cos k and dy, = 1, sin k. The bands close at
k=m (or0)whent; =1, £ y/2 (or —t, £ y/2). It is in con-
flict with the result under the open-boundary condition, where
the bands close when #; = vt + y?/4. It is called the non-
Hermiticity caused breakdown of BBC [1-5]. The problem for
the static system with chiral symmetry (rz’l’H(k)aZ = —H(k)
[49] is cured by the skin effect. Via replacing ¢* by g =

/|% le’*, Eq. (7) is converted into H(B) = 3_,_,. R.(B)o,
withoy = (0y £ioy)/2and R (B) =1 + % + B¥'t,. Here B
defines a generalized BZ. Its topological property is described
by the winding number W = —(W, — W_)/2, where Wy =
%[arg R1(B)]c, with [arg R+ (B)]c, are the phase change of
Ry as B counterclockwisely goes along the generalized BZ
Cp [4,8]. When [1] < Vt22 +y%/4, W =1and a pair of edge
states is formed.

Choosing the periodic driving as

f t € mT,mT +T))

' meZ, (8
qf, te[mlT+T,m+1DT),

h(t) =

we now investigate the FTPs in our periodically driven non-
Hermitian SSH model. Figure 1(a) shows the quasienergy
spectrum under the open-boundary condition. It indicates
that even the static system when f =0 is topologically
trivial; diverse topological phases at the quasienergies 0
and /T can be created by the periodic driving. However,
this quasienergy spectrum has a dramatic difference from
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FIG. 1. (a) Quasienergy spectra with the change of the driv-
ing amplitude under the open (blue lines) and periodic (gray
lines) boundary conditions. Numbers of 0-mode (b) and 7 /7 -mode
(c) edge states defined in the conventional (red dashed) and general-
ized (cyan solid) BZ. Weuse t; = 2.0y, T; =T, = 0.6y !, g = 3.0,
and L = 80.

the one under the periodic-boundary condition, which takes
Ve (k) - hege(k). Tt reveals that the non-Hermiticity induced
breakdown of BBC occurs in our periodically driven system
too. To solve this problem, we introduce the generalized
BZ via replacing e in Hcg(k) by B [81]. Then the ef-
fective Hamiltonian is converted to Heg(8). First, Heg(8)
correctly explains the exceptional points of the quasienergies
under the open-boundary condition. Remembering h(f) =
[+ (B +B71)/2.ily +6@)(B~! = £)1/2,0] and us-
ing Egs. (3) and (4) by setting #; > y /2 > 0, we obtain the
phase-transition conditions as follows.

Case I: h, - h, = 1. We can check that Egs. (4) induce
Tilk + € fl+ Dalc + ¢*qf | = namw, (g €Z) (9)

for k in B being @ = 0 or &, where k = thz — y2/4. Here
sgn[(k — f)(k — qf)] = 1 is further needed for « = 7.

Case II: h, -h, = —1 requires k =x when sgn[(x —
)k —qf)] = —1. Then Egs. (4) give
Tilk — fl = Tlk — qf | = nam. (10)

Case III: According to Eq. (3), any k in g satisfying

NE =nn, DE=mnr, @,necZ) 1A1)

contributes to the band closing.

Taking care of the skin effect via introducing 8, Egs. (9)—
(11) perfectly describe the band closing of the quasienergy
spectrum under the open-boundary condition. The 7 /T-mode
band-closing points at f =~ 0.34y and 2.27y in Fig. 1(a) are
obtainable from Egs. (9) with ny = n, = 1. The 0-mode ones
at f >~ 0.97y and 1.65y are obtainable from Egs. (10) with
n, = 0 and (9) with ng = 2, respectively. Thus the BBC has
been successfully retrieved in our periodically driven system.

Second, the FTPs of the quasienergy spectrum under the
open-boundary condition are well characterized by the two
winding numbers W, defined in ,}:Zefﬂ j- According to Eq. (5),
we plot in Figs. 1(b) and 1(c) the numbers of 0-mode and
7 /T-mode edge states calculated from the conventional and
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FIG. 2. Trajectories of R, in ’;':[eff,l(ﬂ ) with k in B running from
0 to 2 when f crosses the phase boundaries. The winding number
W, changes from O when f = 0.335y (red dashed) to 1 when 0.345y
(blue solid) in (a) and (b), and from 1 when f = 0.94y (red dashed)
to 0 when 1.0y (blue solid) in (c) and (d). Others parameters are the
same as Fig. 1.

generalized BZs. Although qualitatively capturing the excep-
tional points of the quasienergy under the periodic-boundary
condition, the ill-defined topological numbers from the con-
ventional BZ nonphysically take half integers. However, the
ones from the generalized BZ correctly count the number of
the edge states. It is called the non-Bloch BBC [4,8]. Note
that, absent in the static system, such correspondence for the
7 /T-mode edge states is unique in our periodic system.

Third, the topological change of the quasienergy spectrum
is reflected by H.g(B). We plot in Fig. 2 the trajectories of
Ry in ﬂeffyl(ﬂ) when f increases across the phase borders.
Figures 2(a) and 2(b) show that Ry have no wrapping to
the origin and thus W; = 0 before the 7 /T-mode phase
transition. When f increases across the critical point, Ry at
the neighbourhood of k = 0 changes such that ¢ = \/R R_
crosses 7w /T . Due to its periodicity, € abruptly jumps to —z /T
keeping the direction of Ry unchanged. Then an anticlockwise
and a clockwise wrappings to the origin are formed by R, and
R_, respectively, and thus W, = 1. Figures 2(c) and 2(d) show
that W, changes from 1 to 0, where R at the neighbourhood
of k =  changes such that ¢ crosses the quasienergy 0. This
gives a geometric picture to the FTP transition in Fig. 1.

As a useful tool in controlling the exceptional points, the
periodic driving enables us to realize not only the topological
phases inaccessible in the same static-system condition but
also rich phases completely absent in its original static system.
Figure 3 shows the phase diagram in the 7;-7, plane. A
widely tunable number of W; and edge states are induced by
changing the driving parameters. The presence of such rich
phases originates from the distinguished role of periodic driv-
ing in simulating an effective long-range hopping in different
lattices [70—72]. The phase boundaries in red solid lines (black
dashed lines) are perfectly described by Eq. (9) with @ = 0 [by
Eq. (10)]. LbE, = m in Eqgs. (11) is satisfied by T, >~ 2.22/y.
T\E, =mm is satisfied by T} ~nw/(y+/6+ 5.66cosk).
When k runs from O to 7 for given n;, a series line segments
with a common 7, >~ 2.22/y (see the blue dot-dashed line
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FIG. 3. Phase diagram characterized by W, (a) and W, (b). The
red solid, the black dashed, and the blue dot-dashed lines are the
phase boundaries from Egs. (9), (10), and (11), respectively. We use
tp =15y, f=2y,andg =0.

in Fig. 3) are formed, which all give the phase boundaries.
We see that our analytical method successfully describes the
FTPs in the periodically driven non-Hermitian system. The
result reveals that, without changing the intrinsic parameters
in the static system, the periodic driving supplies us another
control dimension to adjust the numbers of the non-Hermitian
topological edge states. This is useful in the application of
non-Hermitian topological physics.

Translation-variant non-Hermitian system. When the
translation invariance of Eq. (6) is broken by the disorder d§;
in the non-Hermitian term y, where & € [—0.5,0.5] is the
disorder in the /th cell with strength d, we cannot work in
the momentum space anymore. The non-Bloch band theory is
inapplicable too. However, we still may characterize the FTPs
by the chirally symmetric ’F[eff,j in the real space. Regarding
le[l,¢] and [L — £ + 1, L] of the chain as the boundaries,
we define the real-space winding numbers [85]

Wi = %Tr’(SQj[Qj,X])- (12)
Here Si5 ¢ = é1r(0;)sy is the chiral operator and Xj; ;¢ =
18,8,y with s, =A,B being the sublattices, Q; =
S () (n | — S1nB) (nh1ST) with Hegr j1n%) = ;,n%) and
Al jInf) =
interval with length L' = L — 2¢ and )"/, denotes the summa-
tion to the bulk states. We can check that W; return to V¥ when
d = 0. Thus, more general than W,, the real-space WJ’ can
give a unified description to the FTPs of the non-Hermitian
system both for the translation-invariant and variant cases.
Figure 4 shows the winding numbers W, and the
quasienergies with the change of the disorder strength. We
can see from Figs. 4(a) and 4(c) that the topological trivial
character of the disorder-free case is robust when the disorder
is weak for d < 2¢;. With the increase of d, it is remarkable
to find that a 0-mode edge state is triggered in a wide range

;:n |n§f), and Tr’ denotes the trace over the middle

@ O

FIG. 4. Real-space winding numbers W, (blue solid) and W,
(red dashed) in (a),(b) and the corresponding quasienergies in
(c),(d) with the change of the disorder strength. 7} =7, = 0.8t !
in (a),(c) and 0.9¢] 'in (b),(d). Other parameters are y = 0.2f,,
f=0.48t, g = 3.0, L = 160, and ¢ = 40. (a),(b) is obtained after
250 times average to the disorder.

d € (2, 10)t;. The disorder-induced edge state has been found
in static Hermitian systems [86—89]. Analogous to that, we
call the similar state occurred in our periodically driven non-
Hermitian system as Floquet topological Anderson insulator
phase. Its presence can be further confirmed by Figs. 4(b) and
4(d), where a /T -mode edge state exists in the disorder-free
case. Here, it is interesting to observe a coexisted regime of
the 7 /T-mode edge state and 0-mode Floquet topological
Anderson insulator state. Both of the states are absent in
the static system. However, in the strong disorder regime,
the bands close and all the edge states disappear, which is
compatible to the result in the Hermitian case [90].

Discussions and conclusion. Note the chiral symmetry is
not recoverable in some driving cases [91], where the non-
Hermitian FTPs can be described by a Z, topological invariant
[81]. Our result is realizable in the present experimental state
of art of photonics, where the non-Hermitian topological
phases of the SSH model [34,92] and the Hermitian FTPs
[54,55] have been observed.

We have investigated the topological phases in periodically

driven non-Hermitian systems. A scheme is proposed to re-
trieve the BBC, based on which a complete description to the
FTPs is established for such non-Hermitian systems both with
and without the translation invariance. Taking the SSH model
as an example, we have found that diverse exotic FTPs can be
created from the topologically trivial static system by the peri-
odic driving. Further study reveals that the Floquet topological
Anderson topological insulator phases can be triggered by the
moderate-strength disorder. Exhibiting a wide perspective of
controllability, our results hopefully promote further studies
of both fundamental physics and potential applications of rich
non-Hermitian FTPs.
Acknowledgments. The work is supported by the National
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