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Confinement of excitations induces quasilocalized dynamics in disorder-free isolated quantum many-body
systems in one spatial dimension. This occurrence is signaled by severe suppression of quantum correlation
spreading and of entanglement growth, long-time persistence of spatial inhomogeneities, and long-lived coherent
oscillations of local observables. In this work, we present a unified understanding of these dramatic effects.
The slow dynamical behavior is shown to be related to the Schwinger effect in quantum electrodynamics. We
demonstrate that it is quantitatively captured for long-time scales by effective Hamiltonians exhibiting Stark
localization of excitations and weak growth of the entanglement entropy for arbitrary coupling strength. This
analysis explains the phenomenology of real-time string dynamics investigated in a number of lattice gauge
theories, as well as the anomalous dynamics observed in quantum Ising chains after quenches. Our findings
establish confinement as a robust mechanism for hindering the approach to equilibrium in translationally
invariant quantum statistical systems with local interactions.
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Introduction. Elementary particles such as quarks ex-
perience spatial confinement into composite particles, due
to forces acting at arbitrary distances mediated by gauge
fields [1]. An analogous effect is also present in condensed-
matter systems. In one spatial dimension, confinement typ-
ically arises in the ordered phases of systems with a
spontaneously broken discrete symmetry: their elementary
particle/antiparticle excitations consist of kink/antikink con-
figurations which locally connect different degenerate ground
states (vacua). Upon breaking the symmetry via external
fields, the various vacua acquire different energy densities. As
a result, separating a kink-antikink pair requires a configura-
tional energy cost which grows proportionally to their distance
[2–19].

Several recent numerical studies of one-dimensional lattice
gauge theories and quantum spin chains have found that
confinement may give rise to anomalous real-time dynam-
ics [20–38] and spectral properties [39–41] at finite energy
density above the ground state, in contrast with the gener-
ically expected thermalization [42–49]. The signatures of
these phenomena include extraordinary long-lived coherent
oscillations of local observables [20–25,34,50], suppression
of the light-cone spreading of quantum correlations [22,34]
and of the entanglement growth [22,27,34], and persistent in-
homogeneities [26–33,35]. While these observations suggest
that confinement is related to a suppression of thermalization,
the nature of this connection has not yet been clarified.

*These authors equally contributed to this work.

In this work we investigate the relationship between the
aforementioned dynamical effects of confinement and pro-
totypical aspects of the localization of interacting particles
[51–71]. We demonstrate that confinement causes quasilo-
calized dynamics of states with dilute excitations. In fact,
the route towards thermalization involves the decay of these
states into entropically favored many-particle states: the en-
ergy stored in confining strings has to be converted into mass
via the creation of new pairs of excitations from the vacuum.
We show that these processes can become dramatically slow,
in close analogy with the Schwinger effect, i.e., with the
suppressed decay of false vacua in quantum electrodynamics
[72]. In this regime, fast spatial propagation of excitations
is prevented by their Stark localization [73] in the mutual
confining potentials.

Remarkably, these two phenomenona stabilize nonthermal
behavior and low entanglement for extremely long times in a
thermodynamically relevant portion of the many-body Hilbert
space, as illustrated in Fig. 1.

Confinement and gauge invariance in one dimension. The
occurrence of the phenomena mentioned above relies solely
on the presence of confinement, and hence they emerge in
both lattice gauge theories (LGTs) and statistical-physics
models such as quantum spin chains. An exact correspon-
dence between the two can be formulated in one spatial di-
mension, via the introduction/elimination of ancillary degrees
of freedom together with local dynamical constraints. This
leads to a unified framework for this broad class of systems
[9,75]. In this Rapid Communication, for concreteness, we fo-
cus on the paradigmatic quantum Ising chain. To illustrate the
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FIG. 1. Effects of confinement: nonequilibrium evolution of the
magnetization profile [panels (a) and (b)] and of entanglement (c) in
a quantum Ising chain. L = 100 spins are initialized in a random
product state with a density p = 0.1 of longitudinal domain walls.
The quantum evolution is simulated via the time-evolving block-
decimation algorithm on matrix-product states with maximum bond
dimension D = 300 [74]. The dynamics are generated by H in
Eq. (1) with J = 5g, and (a) h = 0: in the absence of confinement,
domain walls freely propagate, smoothening out all spatial inhomo-
geneities; (b) h = 0.75g: while confined bound states of close-by
domain walls diffuse (upper half of the plot), isolated domain walls
are Stark-localized by linear confining potentials, and perform co-
herent Bloch oscillations of spatial amplitude ξloc = g/h (lower half
of the plot). Panel (c): dynamics of the von Neumann entanglement
entropy Sj (t ) for different position j of the bipartition cut, averaged
over 500 initial states. Sj (t ) grows linearly in the deconfined limit
(a), ξloc = ∞, and logarithmically in the presence of confinement
(b), ξloc = 4/3, as also emphasized by the inset. These qualitative
features are unaltered upon varying the localization length ξloc while
keeping p � 1/(2ξloc ) and J � |g|, |h|.

general equivalence above, we show how this model can be
exactly mapped onto a LGT with local U (1) symmetry. In the
Supplemental Material [76], we consider other models with
confined excitations, including the lattice Schwinger model of
quantum electrodynamics [77–81] and the antiferromagnetic
XXZ spin chain in a staggered field, which describes certain
anisotropic magnetic insulators [16,18,19,82,83].

The quantum Ising chain is defined by the Hamiltonian

H = −J
L−1∑

j=1

σ z
j σ

z
j+1 − h

L∑

j=1

σ z
j − g

L∑

j=1

σ x
j , (1)

where σ
x,y,z
j are Pauli matrices acting on site j. The corre-

spondence is based on the interpretation of the spin polariza-
tion operator sz

j ≡ σ z
j /2 as a local “electric flux.” Fictitious

fermionic matter degrees of freedom are introduced on the
sites of the dual chain (i.e., on the bonds of the original
chain [80,84,85]): they represent “positrons” and “electrons.”
Thus, crucially, one enforces local dynamical constraints that

FIG. 2. Mapping between a quantum spin chain and a LGT:
Cartoon of the mapping of the quantum Ising chain in Eq. (1) onto the
(1 + 1)-dimensional U (1) lattice gauge theory in Eq. (2) (top), and of
the two key mechanisms which render the resulting dynamics slow:
suppression of false vacuum decay for weak coupling (“Schwinger
effect,” bottom left), and Stark localization of particles in a linear
potential (“Bloch oscillations,” bottom right).

associate a kink (antikink) in the spin configuration with
the presence of a positron (electron) on the corresponding
bond, as described in Fig. 2, top panel. These constraints are
interpreted as implementing a discrete Gauss law and result
from the U (1) gauge invariance of matter-field interactions.

To make this construction explicit, we define two species
of fermions, positively (p) and negatively (e) charged, respec-
tively, residing on the chain bonds (denoted as half-integer
sites), with corresponding creation operators (cp,e

j+1/2)† and
occupation numbers np,e

j+1/2 = (cp,e
j+1/2)†cp,e

j+1/2. We introduce a
spin-1/2 U (1)-quantum link model [86,87],

HU (1) = Hm + Hg + Hint, (2)

with

Hm = m
∑

j

(
np

j+1/2 + ne
j+1/2

) + U
∑

j

np
j+1/2ne

j+1/2,

Hg = τ

2

∑

j

σ z
j ,

Hint = w
∑

j

{[(
cp

j−1/2

)† + ce
j−1/2

]
σ+

j

[
cp

j+1/2 + (
ce

j+1/2

)†]

+ H.c.
}
,

where σ±
j = (σ x

j ± iσ y
j )/2 act as U (1) parallel transporters

[80]. Hm encodes the fermion mass and on-site Hubbard-
like interaction, and Hg can be interpreted as the energy
shift caused by a background field (or topological θ angle
[33,88]). In Hint , the various terms describe hopping and pair
creation/annihilation of fermions. The U (1) gauge invariance
of these interactions is expressed by the local symmetries
[H, Gj+1/2] = 0 with Gj+1/2 = σ z

j+1/2 − σ z
j /2 − (np

j+1/2 −
ne

j+1/2). Accordingly, the complete Hilbert space decomposes
into dynamically disconnected subspaces, labeled by the set of
eigenvalues {q j+1/2 = 0,±1,±2} of {Gj+1/2}, interpreted as
static background charges. Here we focus on the neutral gauge
sector, i.e., on the space of the states |ψ〉 for which the Gauss
law Gj+1/2|ψ〉 ≡ 0 is satisfied at all sites j, i.e., q j+1/2 ≡ 0
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[80]. This law asserts that the variation of the gauge field
strength σ z/2 upon crossing a bond ( j, j + 1) equals the
dynamical charge Qj+1/2 = np

j+1/2 − ne
j+1/2 located on it.

In the presence of a strong Hubbard repulsion U → ∞,
each “classical configuration” of the gauge field (eigenstate
of all σ z

j operators) fully determines a unique configuration
of the matter particles via the Gauss law. This allows one to
eliminate the redundant matter degrees of freedom [33,89]
and write the model in terms of a locally self-interacting
gauge field [88,90]. In this case, all matrix elements of the
Hamiltonian (2) between two classical gauge-field configura-
tions coincide with the corresponding matrix elements of the
quantum Ising chain [Eq. (1)] in the σ z basis, upon identifying
m = 2J , τ = −2h, w = −g, and up to an overall energy
shift (see the Supplemental Material [76] for details). Within
this LGT picture, the longitudinal field h in the quantum
Ising chain plays the role of the electrostatic string tension
τ , leading to particle confinement. In passing, we mention
that the Ising chain can also be mapped onto a Z2-LGT (see
Ref. [76]).

Below we will analyze in detail the quantum Ising chain,
but the conclusions apply to the general class of quantum
chains with confinement of excitations [76].

Exponential suppression of pair creation. When a particle
and an antiparticle in the vacuum are adiabatically separated
at a distance d , the energy E (d ) ∼ τd associated with the
gauge-field string linking them grows proportionally to d
and eventually it overcomes the threshold Emin ∼ 2m for the
creation of a new pair. We argue that the dynamical breaking
of strings after a quench of the interactions takes anomalously
long times for large values of the mass. The mechanism for
this suppression may be essentially understood as a tunneling
process across a high-energy barrier. In fact, the decay process
which converts the large amount of potential energy stored in
long gauge-field strings into the energy of additional particle-
antiparticle pairs is energetically allowed and entropically
favorable, because a string state is very atypical compared to
many-particle states with the same total energy. Accordingly,
thermalization requires string breaking. However, due to the
energy conservation, the created particle and antiparticle of a
pair must be separated at such a distance d that the energy τd
they subtract from the broken string portion equals their mass,
i.e., τd ∼ 2m. If the string tension τ is small compared to the
particle mass m, local pair creation is not possible, and virtual
particles have to tunnel across a distance d ∼ 2m/τ � 1 in
order for the string to decay [see the bottom left panel of Fig. 2
for an illustration (here the lattice spacing is the unit length)].
This occurs through increasingly high-order processes in the
interactions, and hence the decay is extremely slow.

The above qualitative picture is made quantitative by
constructing the effective Hamiltonian in perturbation theory
in 1/m. We formally split the Hamiltonian into the mass
term H0, possessing highly degenerate blocks, and the rest
V , which involves gauge field and interactions. H0 defines
sectors of the Hilbert space labeled by the number of par-
ticles and well-separated in energy. V may contain block-
diagonal matrix elements H1, describing particle/antiparticle
energy and motion, and block-off-diagonal ones R1 = V −
H1, corresponding to particle-antiparticle pair creation or

annihilation. The latter processes are eliminated through a
unitary transformation eS1 . For the quantum Ising chain, the
resulting effective Hamiltonian is H (1)

eff = −J
∑

j σ
z
j σ

z
j+1 −

h
∑

j σ
z
j − g

∑
j (P

↑
j−1σ

x
j P↓

j+1 + P↓
j−1σ

x
j P↑

j+1), where P↑
j (P↓

j )
projects onto the “up” (“down”) state of the jth spin along
z.

This standard procedure [91–93] (often termed Schrieffer-
Wolff transformation) can be carried out to any arbitrary
order n in perturbation theory: One introduces higher-order
terms S2, S3, . . . in the generator of the unitary transformation
eS�n , with S�n = −S†

�n = S1 + S2 + · · · + Sn. These terms are
determined order by order in such a way that the transformed
Hamiltonian commutes with H0 up to the (n + 1)th power
of the perturbation strength, i.e., H ′ = eS�n He−S�n = H (n)

eff +
V>n, with H (n)

eff ≡ H0 + H1 + · · · + Hn, and [Hj, H0] = 0 (see
the Supplemental Material [76] for details). The effective
Hamiltonian H (n)

eff preserves the block-diagonal structure of
H0 and accounts for all transitions within each sector of H0

occurring through up to n intermediate transitions involving
states in different blocks (virtual particle pairs).

The perturbative series generated by this transformation
are generally divergent at finite energy density, pointing to
an asymptotic hybridization of the various blocks and hence
thermalization. However, by adapting the rigorous theory in
Ref. [94] (see also the recent Ref. [95]), one finds that by
truncating the series at an “optimal order” n∗ that scales
linearly with the particle mass m, the rest V>n∗ can be made
exponentially small in m. Consequently, the effect of the
latter can be neglected for exponentially long times. Denoting
H (n∗ )

eff ≡ Heff and S�n∗ ≡ S, the nonequilibrium evolution of
the system is accurately described by

|�(t )〉 � e−Se−itHeff eS|�(t = 0)〉. (3)

Within this transformed picture, the number of particles is
exactly conserved by Heff, and hence it is approximately con-
served by H in the original picture at least for exponentially
long times. This implies the emergence of nonthermal behav-
ior in highly excited states, signaled by the time evolution of
local observables such as the particle mass density, the gauge
field, and the energy density. In fact, the analysis above shows
that the bulk of a long gauge string is stable against pair
creation, since the “string-breaking” (or “vacuum-decay”)
timescale is exponentially long in m. This bulk stability per-
sists in the continuum limit [10], and, within the mapping in
Eq. (2), it is reminiscent of the Schwinger effect in quantum
electrodynamics [72], in that the decay rate �(E ) per unit
volume of a false vacuum in the presence of a background
electric field E into particle pairs, is exponentially small in
the ratio between the electron mass m and the electrostatic
energy |eE | × 1/m contained within a Compton length, i.e.,
�(E ) ∝ (eE )2 exp(−πm2

|eE| ), where e is the electron charge and
h̄ = c = 1 [72,96].

In the Supplemental Material [76], we provide the details
of the construction of Heff and discuss the quantum Ising
chain in Eq. (1) and the lattice Schwinger model as specific
cases. In the former, for J � |g|, |h| the estimates adapted
from Refs. [94,97] lead to the quasiconservation of the spatial

041118-3



ALESSIO LEROSE et al. PHYSICAL REVIEW B 102, 041118(R) (2020)

density of domain walls at times t � Tsb, where

Tsb � g−1 exp(const × J/
√

h2 + g2), (4)

and the constant is independent of the parameters [76].
Stark localization. The nonequilibrium dynamics starting

from a generic initial state may be expected to undergo
prethermalization to the Gibbs ensemble e−βHeff/Z defined
by the effective (nonintegrable) Hamiltonian Heff discussed
above, at the inverse temperature β uniquely determined by
the energy density of the initial state [94,98]. Contrarily to
this expectation, we demonstrate that the combination of con-
finement and lattice effects leads to a dramatic slowdown of
prethermalization in a thermodynamically significant portion
of the many-body Hilbert space. This phenomenon is due to
the Stark localization of particles [73] in their mutual linear
confining potential, which suppresses spatial propagation and
energy transport for arbitrary interaction strength.

We consider below many-particle states, with a diluteness
parameter p, i.e., with an average separation of 1/p lattice
sites between consecutive particles. To disentangle the effect
of having a finite particle mass—leading to exponentially slow
pair creation—from the intrinsic slow dynamics of Heff, we
analyze the nonequilibrium dynamics generated by the latter
truncated at the lowest order. The effective picture consists of
a system of hopping hard-core particles in a constant electric
field, subject to interactions. Higher-order terms in Heff do
not alter the physics qualitatively, as they just renormalize the
hopping amplitudes with small longer-range terms [76].

In the extremely dilute limit p � 1 the system consists
of isolated particles moving in a linear potential, a so-called
Wannier-Stark ladder. This problem can be solved exactly
[99]: eigenstates are product states of localized orbitals with
equispaced energy levels En ∝ n. For the quantum Ising chain
in Eq. (1), En = 2hn and the localized wave function centered
around the site n reads �

(n)
j = Jn− j (g/h), where Jν is the

Bessel function of order ν [76]. The tails of these localized
orbitals decay faster than exponentially for |n − j| � g/h ≡
ξloc. If the distance between consecutive particles is much
larger than ξloc, transport and thermalization are suppressed,
and particles perform coherent (Bloch) oscillations around
their initial position, with spatial amplitude ξloc and temporal
period π/h [26].

However, delocalization gradually occurs as � = 1/p is
made comparable with twice the localization length 2ξloc. To
understand this phenomenon and the associated timescales,
we consider an isolated string with a particle (kink) at
site n1 and an antiparticle (antikink) at site n2 > n1. In the
center-of-mass frame described by the relative coordinate
n− = n2 − n1 > 0, the problem reduces to a single-particle
Wannier-Stark ladder with hopping 2gcos K , where K is
the center-of-mass momentum, and subject to a hard wall
at the origin, i.e., to the boundary condition ψn−=0 ≡ 0
[76,100]. The solution consists of a discrete sequence of
particle-antiparticle bound states (“mesons”) labeled by
� = 1, 2, . . . with dispersion relations E�(K ). The wave
functions � (�,K )

n− = J�−n− (2gcos K/h) with � � 2ξloc are
localized far away from the boundary n− = 0: they are
hardly affected by it, and hence their energy E� = 2h�

is independent of K . This implies that spatially extended

bound states have asymptotically flat bands: the two particles
perform uncorrelated Bloch oscillations at the edges of the
string connecting them, while the quantum diffusion of their
center of mass is suppressed. However, the presence of the
boundary bends the dispersion relation E�(K ) of bound states
with an extension comparable to that of the Bloch oscillations.
This leads to correlated (“rigid”) motion of the string edges,
and hence spatial delocalization and entanglement growth.

The correction δE�(K ) to the energy level E� in the
dilute regime � � 2ξloc is found to be approximately
−2gcos KJ�(2ξloc cos K )J�−1(2ξloc cos K ) [76]. The analysis
of the resulting spreading velocities vmax

� = MaxK |∂K E�(K )|
of bound states for varying quantum number �, leads to
a sequence of delocalization timescales Tdloc(�, ξloc) rapidly
increasing as the ratio �/ξloc increases; for large � � ξ 2

loc, one
has [76]

Tdloc(�, ξloc) ∼ g−1(�!)2�−3/2ξ−2�+1
loc . (5)

As a result, the typical delocalization timescale is state depen-
dent via the diluteness parameter p, unlike the string-breaking
timescale Tsb in Eq. (4). We stress that the above equations are
nonperturbative in g/h = ξloc and hence valid for arbitrarily
large values of this ratio.

Slow entanglement growth. The scenario outlined above
sheds light on the effects of confinement on the nonequi-
librium evolution of entanglement. While the entanglement
entropy S(t ) is expected to increase linearly in time in generic
quantum many-body systems which dynamically relax to
equilibrium [101–107], the quasilocalization discussed above
is expected to cause a severe suppression of the growth of

FIG. 3. Signatures of slow dynamics: Growth of the von Neu-
mann entanglement entropy S(t ) in the nonequilibrium dynamics of
the quantum Ising chain in Eq. (1), numerically simulated via the
TEBD algorithm, starting from a state with equally spaced domain
walls at a distance �; the cartoon above the plots indicates the position
of the bipartition cuts along the chain. Left: S(t ) exhibits pronounced
coherent oscillations with frequency 2h superimposed to a slow
growth (the straight line is a guide for the eye). Right: The growth
of S(t ) slows down upon increasing the diluteness. Dotted lines
represent the growth of S(t ) in the evolution of a single isolated string
formed by the two domain walls adjacent to the cut. The latter can
be obtained analytically [76], is upper-bounded by log � + const, and
reaches its maximum around the time Tdloc [cf., Eq. (5)]. Parameters:
ξloc = 2, L = 120.
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S(t ) despite the finite energy density, in analogy with disor-
dered and glassy quantum systems [54–56,58,63,66–68,108–
110]. This expectation is confirmed by numerical simulations
using the time-evolving-block-decimation (TEBD) algorithm
on matrix-product states [74], with maximum bond dimension
D = 300. In particular, we initialize a quantum Ising chain of
L = 100 spins in nonentangled product states with a spatial
density p of domain walls: in Fig. 1 these states are drawn
from a thermal ensemble ρ0 = e−μH0/Z of the “unperturbed”
classical Ising chain with p = [1 − tanh(μJ )]/2. (Similar
dilute states with tunable p can be experimentally realized
via the quantum Kibble-Zurek mechanism [111,112].) The
numerical results reported in Fig. 1 are compatible with a
logarithmic growth of the bipartite entanglement entropy Sj (t )
superimposed to coherent oscillations of period π/h, ascribed
to Bloch oscillations. In Fig. 3, instead, regularly arranged
initial states are considered with equispaced domain walls
at a distance � = 1/p and L = 120. The fast convergence
of S(t ) to that generated by the effective Hamiltonian Heff

upon increasing J (Fig. 3, left panel) leads us to rule out the
hypothesis that the slow vacuum decay is responsible for the
entanglement growth. Furthermore, the bottom right panel of
Fig. 3 shows that the initial growth of S(t ) is captured by the
delocalization of individual strings described in Eq. (5) above
[76]; however, at longer times, many-particle effects lead to a
slow unbounded growth.

Outlook. In the framework of localization phenomena in
disorder-free quantum systems [60–71,113,114], this work
establishes the role of confinement as a robust mechanism
capable of dramatically slowing down the approach to equilib-
rium [22,26,33–37,109,110,115]. It is interesting to highlight

the connection with the recently proposed “Stark many-body
localization” [70,71,116,117], in that the effective dynamics
of the systems considered in the present work may be viewed
as that of interacting particles in a constant field. Our prelim-
inary numerical results suggest that rare high-density regions
embedded in dilute systems do not thermalize the rest of the
system within the relevant timescales in this work; however, a
complete analysis of this problem and of the various stages of
the dynamics [118] calls for further investigations, which we
leave to future studies.

Our discussion applies to generic one-dimensional lattice
models with confined excitations, including Abelian and non-
Abelian LGTs [27,78,119]. The extension of our work to
confining theories in higher dimensions stands as a chal-
lenging direction for future work, inasmuch as their real-
time dynamics has hardly been explored in the framework of
nonequilibrium statistical mechanics.
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