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We consider strongly correlated quantum circuits where a dc drive is added on top of an initial out-of-
equilibrium (OE) stationary state. Within a perturbative approach, we derive unifying OE fluctuation relations for
high-frequency current noise, shown to be completely determined by zero-frequency noise and dc current. We
apply them to the fractional quantum Hall effect at arbitrary incompressible filling factors, driven by OE sources,
without knowledge of the underlying model. We show that such OE relations provide robust methods for an
unambiguous determination of the fractional charge or of key interaction parameters entering in the exploration
of anyonic statistics within an anyon collider.
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Out-of-equilibrium (OE) current noise is a valuable tool
to explore strongly correlated mesoscopic conductors and
circuits, especially in the high-frequency domain, where it
unveils underlying dynamics and models [1–9,11–15]. It is
a major tool in electron quantum optics [16] where it is
essential for characterizing quantum states of electrons [17]
or of emitted photons [18,19]. It also unveils fascinating
collective phenomena within strongly correlated conductors
as fractional charges [14,19–21] and statistics in the fractional
quantum Hall effect (FQHE) [22] or charge splitting in the
integer quantum Hall effect (IQHE) [6,23,24].

The effect of strong correlations in such systems calls
for quantum laws of electronic transport independent of
interactions and the microscopic model of the system. At
equilibrium, the fluctuation-dissipation theorem (FDT) which
uses the differential conductance at zero voltage is such a
robust law even in the presence of a nonlinear current at high
voltages [25].

In the OE regime, fluctuation-dissipation relations (FDRs)
have been long studied but mostly at zero frequency [26,27].
A widely used perturbative OE FDR for high-frequency noise,
expressed in terms of the dc current, has been derived by
Rogovin and Scalapino [2] for independent particles. As-
suming also an initial thermalization, we have extended this
FDR to strongly correlated conductors and quantum circuits
[7,11,14,15], permitting as well a departure from current
inversion symmetry to which Ref. [2] is restricted.

Finally, in a general OE situation, including a multiter-
minal setup with time-dependent voltages, we have derived
universal nonperturbative FDRs [28] which concern only
asymmetries between the emission (positive frequency) and
absorption (negative frequency) parts of the noise spectrum,
expressed in terms of OE nonlinear admittance elements.

However, the recent developments of interferometry exper-
iments involving OE stationary sources in the FQHE, such as
the anyon collider shown in Fig. 1 used to probe the nontrivial
statistics of anyons emitted by nontrivial sources [29], calls
for an in-depth exploration of new FDRs for the full finite-
frequency noise, valid in the absence of an initial thermal
state. In this Rapid Communication, we derive perturbative

OE FDRs for the full finite-frequency noise without assuming
initial thermalization [6,30–32]. We show that, as long as
the perturbative approach remains valid, high-frequency non-
symmetrized noise is not fully determined by the dc current,
as in the initially thermalized case [2,14,15], but also by its
zero-frequency counterpart. This relation illustrates the power
of the OE perturbative approach, since it can be applied
to a variety of situations independently of any underlying
microscopic model.

This is especially relevant for the FQHE: The OE FDRs
derived for the photoassisted noise [14] and for the high-
frequency noise under a dc voltage [14,15] have already
provided robust methods implemented in recent experiments
to determine the fractional charge [19,21] for filling factors
ν which are not simple fractions, though no experimental
signature of the validity of the generic effective models was
observed [33,34]. We illustrate furthermore the interest of the
OE FDRs derived here for the anyon collider. We show that
they give access to effective interaction-dependent parameters
which are important for the exploration of anyonic statistics,
proposed in Ref. [35] and recently implemented in Ref. [29].

Model. The underlying Hamiltonian of the OE perturbative
approach in the stationary regime [14,36],

H(t ) = H0 + e−iωJ t Â + eiωJ t Â†, (1)

involves an unspecified Hamiltonian H0 and perturbing op-
erator Â. The Josephson-like frequency ωJ must enter only
through eiωJ t in H(t ) and is added on top of other dc drives
already present in the system. For concreteness, we will focus
here on charge transport, though the theory extends beyond
that. We thus assume that there is a charge operator Q̂,
conserved by H0, translated by a model-dependent charge e∗
when acting upon by Â. Then, Eq. (1) implies that

∂t Q̂ = Î (t ) = ie∗

h̄
(e−iωJ t Â − eiωJ t Â†). (2)

This is true when Â contains the unitary operator eiϕ̂ where
the phase operator ϕ̂ obeys [ϕ̂, Q̂] = e∗. In many situations,
∂t ϕ̂ obeys a Josephson-type relation with e∗ instead of 2e
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FIG. 1. An anyon collider setup in the FQHE. Two QPCs at
possibly different temperatures Tel,1 and Tel,2, are subject to dc biases
V1 and V2. They inject N1 and N2 anyons into the upper/down edges
which collide at the central QPC. The finite-frequency noise of the
backscattering current Idc obeys the OE FDRs, independently of
the (incompressible) fractional filling factor ν and the microscopic
model.

[19,21,37] therefore,

ωJ = e∗

h̄
Vdc, (3)

where Vdc is the voltage bias. Quantum averages, denoted by
〈· · · 〉, are taken over a stationary OE initial density operator
ρ0 ([ρ0,H0] = 0), thereby corresponding to nonthermal occu-
pation probabilities of many-body H0 eigenstates. These can,
for example, arise from temperature and dc-voltage biases.

Let us give some examples. In tunneling junctions between
two similar or different (hybrid) conductors, such as NIN
or SIN junctions [27], Â and Î (t ) respectively correspond to
the tunneling and electrical current operators. In Josephson
junctions, Î (t ) is either the quasiparticle (e∗ = e) or the pair
current (e∗ = 2e). But the form in Eq. (1) goes beyond the
transfer Hamiltonian approach, as H0 is not split into right and
left terms [38], so that it can incorporate all relevant screened
Coulomb interactions. One can also include in H0 and Â
strong coupling to a linear or a nonlinear electromagnetic
environment.

In the IQHE or the FQHE at arbitrary incompressible
filling factors ν, Â corresponds to a weak spatially extended
backscattering of electrons or quasiparticles with a fractional
charge e∗ through a QPC, acting as a beam splitter, and Î (t ) is
the backscattering current. The unperturbed Hamiltonian H0

may include edge reconstruction or inhomogeneous Coulomb
interactions [23], or even extended tunneling processes be-
tween counterpropagating edges. As those emanate from dif-
ferent contacts, such processes may not be sufficient to ensure
their equilibration [33], a situation one could address as well.

One may also consider OE quasiparticle sources, such
as quantum dots acting as energy filters or biased QPCs.
As will be illustrated later in the anyon collider depicted in
Fig. 1, the Josephson-type relation in Eq. (3) may break down,
motivating us to keep ωJ as a free parameter.

Main OE relations. Letting δÎH(t ) = ÎH(t ) − Idc(ωJ ),
where the subscript H refers to the Heisenberg representation
with respect to H(t ) in Eq. (1), we focus on the current noise,

S(ωJ ; t ) = 〈δÎH(0)δÎH(t )〉. (4)

To express S at second order in Â, we replace δÎH(t ) by ÎH0 (t ),
or, in Eq. (2), ÂH(t ) by ÂH0 (t ) = eiH0t Â e−iH0t . We obtain
these two building blocks,

h̄2X→(t ) = 〈
Â†
H0

(t )ÂH0 (0)
〉
, (5a)

h̄2X←(t ) = 〈
ÂH0 (0)Â†

H0
(t )

〉
. (5b)

Being evaluated in the OE regime characterized by H0 and
ρ̂0, these are OE correlators which do not satisfy any kind of
detailed balance equations. They determine the current noise
in Eq. (4) and its Fourier transform at ω,

S(ωJ ; t )/e∗2 � e−iωJ t X→(−t ) + eiωJ t X→(t ), (6a)

S(ωJ ; ω)/e∗2 � X→(ωJ − ω) + X←(ωJ + ω) . (6b)

In particular, the zero-frequency noise reads

S(ωJ ; ω = 0)/e∗2 � X→(ωJ ) + X←(ωJ ), (7)

and the dc average current

Idc(ωJ ) = 〈ÎH(t )〉 � e∗[X→(ωJ ) − X←(ωJ )] (8)

can be interpreted as the difference of two transfer rates
X→, X← in opposite directions [14].

Then, at a finite frequency ω, the rescaled noise in Eq. (6b)
is a sum of these transfer rates evaluated at two effective po-
tential drops in two opposite directions ±ωJ − ω. A transfer
of a charge e∗ in each direction is associated with the emission
(absorption) of a photon if ω > 0 (ω < 0) by the correlated
many-body eigenstates, thus the effective potential ±ωJ − ω

decreases (increases) with respect to ±ωJ .
Comparing Eq. (6b) to Eqs. (7) and (8), we derive the

central result of this Rapid Communication, an OE FDR
expressing the OE current noise at finite frequency in terms
of OE current average and noise at zero frequency [39],

2S(ωJ ; ω) = S(ωJ + ω; 0) + S(ωJ − ω; 0)

− e∗Idc(ωJ + ω) + e∗Idc(ωJ − ω). (9)

Note that the first and second lines on the right-hand
side yield the symmetric and antisymmetric parts of
the noise 2S±(ωJ ; ω) = S(ωJ , ω) ± S(ωJ ,−ω). The high-
frequency behavior of S+ is indeed totally determined by its
dependence on the dc bias at zero frequency,

2S+(ωJ ; ω) = S+(ωJ + ω; 0) + S+(ωJ − ω; 0). (10)

Moreover, using the exact relation [7,28] S−(ωJ ; ω) =
−2h̄ω Re[Y (ωJ , ω)] connecting the antisymmetric part of the
noise to the OE admittance Y (ωJ , ω) [40], Eq. (9) enables us
to extend the validity of the relation

2h̄ω Re[Y (ωJ , ω)] = e∗[Idc(ωJ − ω) − Idc(ωJ + ω)] (11)

beyond the hypothesis of initial thermalization adopted in
Refs. [14,15,36]. Since the Kramers-Kronig relation also
yields Im[Y (ωJ ; ω)] in terms of Idc, the admittance Y (ωJ , ω)
is totally determined by the dc-current/voltage characteristic.

The heart of our perturbative approach, underlying the
previous relations, is the fact that OE current and noise can be
expressed only through the two OE correlators X→ and X← in
Eqs. (5a) and (5b). These are generally independent, as we do
not impose any of two hypotheses generically adopted: an odd
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dc current and thermalization. We can formulate separately
these two restrictions, not adopted here, through two links
between X→ and X←. The first one extends the particle-hole
symmetry to strongly correlated systems [14],

X→(ωJ ) = X←(−ωJ ). (12)

Thus the transfer rate in one direction is obtained by reversing
the sign of the dc drive, so that the dc current in Eq. (8)
becomes odd, Idc(ωJ ) = −Idc(−ωJ ), and the noise in Eq. (6b)
is even/ωJ , S(ωJ ; ω) = S(−ωJ ; ω).

The second link expresses thermalization at an electronic
temperature Tel = 1/kBβ, X→(ω) = eβωX←(ω). In that case,
the OE FDR (9) reduces to the previously obtained [14,15]
FDR,

S(ωJ ; ω)/e∗2 = [1 + N (ωJ + ω)]Idc(ωJ + ω)

+ N (ωJ − ω)Idc(ωJ − ω), (13)

in which N (ω) = (eβω − 1)−1, thereby repositioning a
long stream of model-dependent derivations of this re-
lation [3,6–8,11,18] into a unified framework. Note that
Rogovin and Scalapino’s FDR [2] is recovered from
(13) by considering the symmetric noise, S+(ωJ ; ω) =
e∗ ∑

± coth [β(ωJ ± ω)/2]Idc(ωJ ± ω), which we have ex-
tended beyond its original context and without assuming an
odd current Eq. (12) [41]. Indeed, for an initial thermal state,
the dc current in Eq. (8), though not odd, has the sign of the
dc bias [14],

ωJ Idc(ωJ ) � 0, (14)

but in the general OE case, the current may have the opposite
sign of ωJ [27].

Also, two important generic features, obtained at zero and
finite frequencies, follow from Eq. (13) at a very low tempera-
ture: the Poissonian statistics and the existence of a threshold
for the emitted noise at ω > ωJ [28]. We now exploit Eq. (9)
to show their common origin and their breakdown for initial
OE states. For this, we use the properties of X→,←(ωJ ) in
Eqs. (5a) and (5b) derived from their spectral decomposition
[14]. Indeed, X→,←(ωJ ) � 0, so that the zero-frequency noise
in Eq. (7), compared to Eq. (8), obeys

S(ωJ ; 0) � e∗|Idc(ωJ )|. (15)

This leads to a lower bound on the high-frequency noise in
Eq. (9) (	 is the Heaviside function),

2S(ωJ ; ω) �
∑
±

e∗	(∓Idc(ωJ ± ω))|Idc(ωJ ± ω)|. (16)

Let us consider first the case when the system is initially
in the ground many-body eigenstate of H0. Then, by spec-
tral decomposition, we can show that only one transfer rate
survives [X→(ωJ < 0) = X←(ωJ > 0) = 0], so that Eq. (14)
holds, and Eqs. (6b) and (8) imply that the inequality (15) re-
duces to an equality: Zero-frequency noise is Poissonian. As a
consequence, (16) is also saturated, from which one infers the
threshold for the emission noise at ωJ > 0, S(ωJ ; ω > ωJ ) =
0. Therefore, single charge-transfer processes are Poissonian
and impose energy conservation underlying the threshold.

These two features are violated when considering OE
initial states: The inequality in Eq. (15) is strict, leading to

a super-Poissonian zero-frequency noise. So is the inequality
in Eq. (16), smoothing out the threshold at ωJ , due to the
nonvanishing emission noise above ωJ , S(ωJ ; ω > ωJ ) > 0.
These purely OE effects persist even at vanishing tempera-
tures. In order to distinguish them from thermal fluctuations,
which also lead to strict inequalities in Eqs. (15) and (16) [see
Eqs. (14) and (13) with a finite Tel], let us deduce the OE noise
at ωJ = 0 from Eq. (9). For simplicity, we assume that current
inversion symmetry, thus Eq. (12), holds, so that we get

S(ωJ = 0; ω) = S(ωJ = ω; ω = 0) − e∗Idc(ωJ = ω). (17)

This shows that a finite emission noise S(ωJ = 0; ω > 0)
quantifies deviations both from the Poissonian regime and
from initial thermalization, for which it would vanish.

Applications. The FDRs are alternative laws in the OE
regime to the equilibrium FDT, thus providing similarly a
robust test of analytical, numerical, or experimental results
for OE noise. One can, inversely, test the validity of the
underlying hypotheses of our perturbative approach by check-
ing Eqs. (9) and (10) [5], whereas the signature of a depar-
ture from initial thermalization [42] would be a violation of
Eq. (13). In strongly correlated conductors with OE initial
many-body states, a key issue is to determine ωJ in terms of
the experimentally controlled parameters, such as dc voltages
and temperatures when e∗ 	= e or when the Josephson-type
relation Eq. (3) breaks down.

This can be achieved either by measuring the admittance,
using Eq. (11), or by measuring the noise both at finite and
zero frequency, using Eqs. (9) and (10). One can infer ωJ from
the coincidence of the functions of ω on both sides of these
OE FDRs.

First, these methods could be especially relevant for ther-
moelectricity [31]. The determination of ωJ provides the
voltage drop across a strongly correlated junction in the
presence of a temperature gradient 
T . In particular, by im-
posing Idc(ωJ ) = 0, it offers a method based on current noise
measurement to infer the Seebeck coefficient from ωJ/
T .
Note that at zero-bias voltage, the temperature gradient 
T
generates a thermoelectric current Idc(ωJ = 0) 	= 0 [14].

Second, the determination of ωJ is an especially acute
question in the FQHE context, which goes beyond that of
the fractional charge e∗ using Eq. (3) when valid, as in recent
experiments [19,21]. The important point is that, at a given in-
compressible filling factor ν, for example, 2/3, the theoretical
description by effective models cannot favor one among mul-
tiple competing candidates, which may even predict different
values of e∗ [34]. As of now, because of Coulomb-induced
nonuniversal effects such as edge reconstruction, there is no
clear agreement between experiments [19,21] and effective
models, predicting power laws [33]. In this context, the OE
FDR can help us sort out, among the various models, the most
suitable one for the experimental data.

Let us illustrate this point in an anyon collider, to show
how the determination of ωJ can help us to pinpoint the best
candidate model. As depicted on Fig. 1, two dc-biased QPCs
inject anyons with a fractional charge e∗, characterized by
number operators N̂1,2 and averages N1,2, which collide on
the central QPC. Since equilibrium reservoirs are replaced
by OE sources, the backscattering noise obeys the OE FDRs
given by Eqs. (9) and (10), but not that given by Eq. (13)
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[41]. Let us adopt for the edge states, as in Ref. [35], an
effective model characterized by two free parameters λ, δ

which need to be known to fix the model [34]. While λ

refers to an effective dimensionless charge, δ monitors the
statistical phase of quasiparticles. In the case ν = 1/(2n +
1), one has λ = δ = ν, but λ, δ may be renormalized by
Coulomb interactions and edge reconstruction, whose role can
be evaluated by determining experimentally λ, δ. Importantly,
λ, δ intervene directly in the cross correlations of the anyon
collider [29,35], thus affecting the interpretation of the latter
in terms of anyonic statistics.

In Ref. [35], λ renormalizes N̂1, N̂2 in the OE part of Â,
Â → e2iπλ(N̂1−N̂2 )Â. This derives from the equation of motion
method for bosonic fields with boundary conditions fixed by
N̂1, N̂2 [23]. Indeed, we can show that λ describes plasmonic
propagation between the injection point and the central QPC,
thus we can relate it to the dc conductance by using the
scattering approach for plasmons [23]. The OE bosonization
extends the latter by taking into account higher cumulants
of N̂1, N̂2 [32]. If we assume weak transmission coefficients
of the two OE source QPCs, N̂1, N̂2 are Poissonian, so that
their cumulants are proportional to their small average values
N1, N2. We notice that a perturbative analysis with respect to
N1, N2 fails when both temperatures of the sources are low and
their voltages become close, V1 � V2; the origin of this failure,
to which Ref. [43] was faced, has been explained in Ref. [10].
It is circumvented by incorporating higher cumulants of the
Poissonian N̂1, N̂2 [32], which are proportional to the injected
average currents I1,2 = dN1,2/dt , leading to an effective dc
drive given by [35]

ωJ = 2π

e∗ sin(2πλ)I−, (18)

with I− = I1 − I2. Due to the strongly correlated Hall liquid in
the sources, I1, I2 have a nonlinear behavior on V1,V2, and so
does ωJ , which violates the Josephson-type relation in Eq. (3)
(with Vdc = V1 − V2). By using the OE FDR to determine ωJ ,
and assuming e∗ is already inferred from intrinsic noise of the
QPCs, one can determine sin(2πλ), thus λ, from Eq. (18), as
I1, I2, thus I−, can be measured directly in the outgoing edges
[29]. One can infer the second parameter δ from the model-
dependent expressions of the dc current and zero-frequency
noise in Ref. [35],

Idc(ωJ ) = C′ sin(πδ)Im(ω+ + iωJ )2δ−1, (19a)

S(ωJ ; ω = 0) = e∗C′ cos(πδ)Re(ω+ + iωJ )2δ−1. (19b)

Here, C′ is a prefactor, ωJ given by Eq. (18), and ω+ =
4π sin2(πλ) I+/e∗, with I+ = I1 + I2. Though δ controls the

power law, this is not an easy way to extract it, so we
propose an alternative way. We notice first that, compared to
equilibrium reservoirs, the validity domain of perturbation is
extended: For high enough ω+, one can lower ωJ down to 0
by injecting equal currents I1 = I2 through tuning V1 � V2.
This is precisely the regime where anyonic statistics is best
revealed [35]. Then using Eqs. (19a) and (19b), one has

S(ωJ = 0; ω = 0) = e∗ cot(πδ)

1 − 2δ
cot(πλ) I+

(
∂Idc

∂I−

)
I−=0

,

proportional to the total injected current I+ and the derivative
of Idc at ωJ = 0 (depending on I+). The atypical “Fano factor”
cot(πδ) cot(πλ)/(1 − 2δ) then provides δ once λ is deter-
mined. Now we can express explicitly the high-frequency
backscattering noise in Eq. (10), by injecting the dc expres-
sions in Eqs. (19a) and (19b). In particular, at I− = 0, as
current inversion symmetry now holds, we can use Eq. (17)
with a fixed ω+, S(ωJ = 0; ω) = −C′ Im(−ω + iω+)2δ−1.

Conclusion. In this Rapid Communication, we have de-
rived perturbative FDRs showing that high-frequency noise
is completely determined by zero-frequency transport. Due
to OE initial states, zero-frequency noise is super-Poissonian,
and washes out the threshold for the emitted spectrum above
the dc drive. The OE FDRs offer experimental tests of their
underlying hypothesis [5], in particular the breakdown of
initial thermalization. They provide a noise measurement
method of the Seebeck coefficient in a strongly correlated
junction. In the FQHE, the OE FDRs permit one to probe the
fractional charges without relying on the microscopic model
[14,19,21] or on initial thermal equilibrium. The latter breaks
down in the anyon collider used to prove anyonic statistics
[29,35]. The high-frequency backscattering noise does not
obey the previously derived FDRs [14,15] but the OE FDR ob-
tained herein, which offers a protocol to extract a nonuniversal
parameter that depends on the structure of the edge chan-
nels and enters anyonic statistics. This may prove useful in
forthcoming investigations of anyonic statistics through finite-
frequency correlations. Future perspectives include using the
OE FDRs for shot-noise thermometry [31,44], as well as for
thermoelectricity in the anyon collider. Beyond current noise,
they can be applied to the voltage noise across a phase-slip
Josephson junction [45] as well as to the spin current noise in
spin Hall insulators [46,47].
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