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Robust subgap edge conduction in bilayer graphene with disordered edge termination
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The subgap transport in electrostatically gapped bilayer graphene (BLG) is explored by adopting ultrashort
constrictions of BLG. We confirmed the emergence of the edge conducting channels, with a residual conductance
of ∼2e2/h per edge of realistic disorder. Transport along the edge state exhibits either Coulomb blockade
oscillations or Fabry-Perot interference, depending on the interfacial transparency between the reservoirs and
the edge channel. Both residual conductance and band-gap dependence of the penetration range of the edge state
from a constriction edge coincide well with the behavior of the theoretically predicted robust edge conducting
channel, which forms irrespective of the degree of edge disorder.
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The nontrivial topological electronic structure [1,2] of
gapped bilayer graphene (BLG) [3,4] provides zero-energy
states at the boundary between the regions of distinct topo-
logical order, which is one of the most distinguishing features
from those of ordinary insulators. The electronic transport
along the zero-energy states, counterpropagating for two
nonequivalent valleys of BLG, is directly linked to the valley-
specific pseudospin polarization in the material (see Fig. S1 of
the Supplemental Material [5]). Emergence of a topological
zero-energy state inside the band gap was proposed [6,7] and
observed in BLG at the boundary between regions with either
opposite stacking order [8,9] or electrically inverted band
gaps [10,11]. The counterpropagating valley-chiral mode
for different valleys inside the band gap was predicted to
emerge at ideally zigzag-terminated edges of BLG [12,13],
with conductance of 2e2/h per edge with spin degeneracy
[14] (e: electron charge; h: Planck’s constant).

However, observation of this topologically nontrivial edge
state has proven elusive due to unavoidable atomic disorder at
the physically tailored graphene edges, which causes severe
intervalley scattering. Nevertheless, it has been theoretically
predicted that a conducting edge state can exist in a spatially
localized form even in the presence of strong atomic disorder
at graphene edges, either structural or chemical [1]. According
to the theory, the edge state at a randomly distributed zigzag
segment is predicted to decay exponentially into the bulk
from the edge with a penetration range (d), which is closely
associated with the band gap (Egap) of BLG. The penetrated
edge states overlap with each other, forming a conducting
channel along an edge with a localization length (λ) of tens
of nanometers, which is proportional to d [1]. For a d much
larger than the interatomic distance of BLG (a ∼ 0.14 nm),
the electronic transport along the edge channel within the
localization length is less affected by the atomic disorder
confined to an edge, leading to the mean free path comparable

*Corresponding author: lghman@postech.ac.kr
†Corresponding author: hjlee@postech.ac.kr

to λ [1]. This forms a robust edge conducting channel with
valley-selective chirality, irrespective of the degree of edge
disorder, as long as the length of device is within λ. Although
the one-dimensional (1D) edge transport has been suggested
by recent studies on gapped BLG via scaling analysis [15]
and superconducting interferometry [16,17], the evidence for
the topological nature of the 1D edge transport has not been
explicitly confirmed to date. In this study, we illustrate experi-
mentally that the edge conducting channels emerge in gapped
BLG constrictions, where observed ballistic edge conductance
and Egap dependence of d indicate that the corresponding edge
conducting state is topologically nontrivial.

Devices in this study consist of a dual-gated nanoconstric-
tion that is connected to bottom-only-gated BLG reservoirs,
as shown in the schematics in Figs. 1(a) and 1(b). For the
fabrication, we first prepared a heterostructure incorporat-
ing graphite (Gr), hexagonal boron nitride (hBN), and BLG
(Gr/hBN/BLG/hBN/Gr), by multiple dry transfer processes
[18], where the top and bottom Gr layers were employed
for dual gating. A metallic mask of a Cr/Au (3/12 nm)
bilayer stack for the top-gate lead was deposited on top of
the Gr/hBN/BLG/hBN/Gr heterostructure. The part of the top
Gr layer that was not covered with the metallic mask was
removed by reactive ion etching, to separate the dual-gated
constriction from the BLG reservoirs. An ultrashort constric-
tion was realized by the undercut etching technique [19] with
the use of a 30-nm-thick Al2O3 mask layer [not shown in
Fig. 1(a) for simplicity]. More details of fabrication processes
are described in the Supplemental Material [5]. In the main
text, we focus on the results from a representative device
A, among eight devices with different lengths L and widths
W (see Table S1 of the Supplemental Material [5]). The
physical dimensions of the constrictions (i.e., L ∼ 50 nm and
W ∼ 650 nm for device A) were determined by scanning elec-
tron microscopy (SEM). Except for the temperature depen-
dence measurements, all of the transport data were obtained
at 4.2 K.

Figure 1(c) shows a color-coded plot of the zero-bias con-
striction resistance (R) obtained under configuration 1 given
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FIG. 1. (a) Schematic of the BLG constriction with a four-probe
measurement configuration (configuration 1); the serial resistance of
the BLG reservoirs was only a few hundreds of ohms. (b) Schematic
of a cross-sectional view of the BLG constriction with the penetration
range (d) of conducting state (red) from an edge. (c) Color-coded
plot of the four-probe zero-bias resistance of the BLG constriction,
measured at 4.2 K as a function of the top gate voltage (VTG) and
bottom gate voltage (VBG). (d) Resistance at the charge neutrality
point (CNP, RCNP) is plotted as a function of the displacement field
(D) for two different measurement configurations. The red and blue
curves correspond to configuration 1 of (a) and configuration 2 of
the inset in (d), respectively. The grey dotted line represents the
resistance value of h/2e2. Resistance peaks in both curves (grey and
black arrows) correspond to the CNP of each of the bottom-only-
gated BLG reservoirs.

in Fig. 1(a), as a function of the top gate voltage (VTG) and
bottom gate voltage (VBG) using the low-frequency (7.78 Hz)
lock-in technique (all results were obtained under config-
uration 1, unless stated otherwise). Using a parallel-plate
capacitor model, the bulk carrier density (nb) and displace-
ment field (D) for the bulk of the constriction are expressed
by nb = CA

TG(VTG − V 0
TG)/e + CA

BG(VBG − V 0
BG)/e and D =

CA
BG(VBG − V 0

BG)/2ε0 − CA
TG(VTG − V 0

TG)/2ε0, where CA
BG(TG)

is the bottom (top) gate capacitance per unit area and V 0
BG(TG)

is the bottom (top) gate voltage of the charge neutrality
point (CNP). The top and bottom hBN layers have the same
thickness (thBN) of 20 nm, thus we have the capacitance ratio
CA

TG/CA
BG ∼ 1, which corresponds to the absolute slope of the

CNP line in Fig. 1(c). The two horizontal enhanced-resistance
lines in Fig. 1(c) correspond to the CNPs of the two bottom-
only-gated reservoirs, which are not coincident because of
possible unintended doping of the top layer of BLG during
device fabrication.

To see the details of the emerging signature of the edge
state involved in the transport, the resistance at the CNP
(RCNP) measured in two different configurations is plotted as
a function of D in Fig. 1(d). When measured across the dual-
gated BLG in configuration 2 [inset of Fig. 1(d)], the edge
channels are not connected between the bottom-only-gated

BLG reservoirs in the sides of the source and drain. Thus
RCNP in this case represents the conduction through the bulk
of the BLG, and increases as the bulk band gap grows with
increasing magnitude of D (see Fig. S6 in the Supplemental
Material for more data [5]). Meanwhile, for configuration 1,
RCNP represents the conduction mainly along an edge channel
on one side of the nanoconstriction, and is therefore saturated
as D becomes more negative. In configuration 1 with large
|D|, the bulk BLG is insulating so that the edge state at
one side of the constriction provides the only conducting
channel for residual conductance of 2e2/h [grey dotted line in
Fig. 1(d)]. The saturation behavior of the conduction close to
2e2/h provides clear evidence for ballistic and valley-specific
chiral transport in the topological edge states in the ultrashort
constriction. On the other hand, measurements obtained on
relatively long constrictions of L > 200 nm showed signifi-
cantly suppressed residual conductance (see Fig. S4), which
suggests that the edge states are localized with a characteristic
length λ that is significantly shorter than ∼200 nm [1].

We attribute the asymmetric RCNP vs D in configuration 1
to different D-dependent coupling between a BLG reservoir
and the edge state of the BLG constriction at the interface.
Maintaining the dual-gated bulk region of the BLG constric-
tion at the CNP, BLG reservoirs are either electron (n)-doped
for positive D or hole (p)-doped for negative D, as they are
only affected by the bottom gate. The D dependence of RCNP

for configuration 1 suggests that the edges of the nanocon-
striction were heavily p-doped irrespective of gate voltages.
Then, a p-n′ barrier would have formed [20] at the interface
between the n-doped reservoir and the p-doped edge-localized
state for positive D [Fig. 2(a)]. This led to lower transmission
than that of a unipolar p-p’ barrier for negative D. We argue
that such heavy p doping at the edges was due to the exposure
of the edges to oxygen plasma during the etching process
[21]. In fact, we observed that the asymmetry in RCNP was
inverted when recooling the same device after exposing it
to air at room temperature [Fig. S5(b) of the Supplemental
Material [5]]. Interestingly, the original asymmetry of RCNP

of the air-exposed device was resumed when the device was
reexposed to oxygen plasma [Fig. S5(c) [5]]. This suggests
that the doping of edges is mainly determined by the ambient
conditions to which the edges are exposed.

Here we discuss the gate- and bias-voltage dependence
of the edge-state transport in the context of the low trans-
mission for positive D. Figure 2(b) shows the zero-bias
conductance (G) in configuration 1 as a function of nb at
fixed D = 1.0 V/nm [see Fig. 1(c)]. In a highly hole-doped
regime (nb < 0), a p-n′ barrier forms between the bulk of
the BLG constriction and the BLG reservoirs so that the
conductance is smaller than that in the highly electron-doped
regime (nb > 0). Near the CNP, where the bulk of the BLG
constriction is insulating, the conductance is much smaller
than 2e2/h and shows Coulomb blockade (CB) oscillations
[inset of Fig. 2(b)]. In the shaded region of Fig. 2(b), Coulomb
diamonds are also revealed in the source-drain bias (VSD)
dependence of the differential conductance dI/dV [Fig. 2(c)].
Observation of the CB behavior suggests that the edge state
forms a quantum dot (QD) connected to the BLG reservoirs
with low transmission [22]. As no magnetic impurities are
expected in the constriction, the alternating intervals of nb
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FIG. 2. (a) Upper panel: schematic top view of one of the edges.
The purple region represents the edge conducting channel located
at one side of the constriction. Red circles denote the location of
partially opaque p-n interfaces between the edge state and the reser-
voirs. Lower panel: schematic configuration of the electrochemical
potential (U ) of the electron-doped reservoirs and hole-doped edge
state. (b) Zero-bias differential conductance (G) plotted as a function
of nb with a fixed displacement field D = +1.0 V/nm. Near the CNP
(shaded area), Coulomb blockade oscillations are observed. Inset:
a magnified plot of the shaded region. The alternating intervals of
nb between the resonant conductance peaks (red and blue arrows)
indicate two-fold shell filling in the QD. (c) Color-coded differential
conductance dI/dV versus source-drain bias (VSD) and nb. (d) Gate
capacitance ratio CTG/CBG as a function of d into the bulk BLG. This
was estimated by numerical calculation based on the configuration
shown in Fig. 1(b) (see Fig. S14 for details [5]). Inset: transconduc-
tance dG/dnb as a function of VTG and VBG for D ∼ 1.0 V/nm.

between resonant conductance peaks [red and blue arrows
in the inset of Fig. 2(b)] indicates that the edge state has
only spin degeneracy [23], which corresponds to the valley-
specific chiral transport along the topological edge states. The
Coulomb diamonds of comparable heights to each other in
VSD without overlap suggests the presence of a single QD
along the edge of the constriction [24]. The smaller spacing in
nb between oscillations [blue arrows in the inset of Figs. 2(b)
and 2(c)] is related to the charging energy of the QD. The
Coulomb diamonds are better developed for large values of
D and disappear for D < 0.6 V/nm, where the p-n′ barrier
between the QD at the edge and the BLG reservoirs becomes
weaker, along with gradual delocalization of the QD (see Sec.
S6 of the Supplemental Material [5] for more data).

For quantitative analysis of the top and bottom gate effi-
ciency for the QD at the edge, we measured transconductance
(dG/dnb) with respect to VBG and VTG for D ∼ 1.0 V/nm,
as shown in inset of Fig. 2(d). From the slope of the res-
onant peak (red dotted line in the inset), we obtained the
capacitance ratio of the top to bottom gate for the QD,

CTG, QD/CBG, QD = 0.36, which is in sharp contrast to the bulk
value of CA

TG/CA
BG = 1. This discrepancy may be understood

by the stray electric field at the QD located at the edge [25].
A numerical simulation on the effect of a stray electric field
(see Fig. S14 [5]) can be used to estimate the capacitance
ratio (CTG/CBG) for the edge state with different penetration
ranges [d , see Fig. 2(d)]. Here, for simplicity, we assume a
rectangular shape of QD with length (LQD) along the length
of the BLG constriction and depth (dQD = d ) into the bulk
BLG, with an inclined angle of ∼45◦ at the edge of the
hBN/BLG/hBN stack [18,19]. Combining the observed value
of CTG, QD/CBG, QD = 0.36 and the electric-field simulation in
Fig. 2(d) yields dQD = 19 nm. Then, the capacitance per unit
area for the QD is obtained as CA

TG,QD = 0.50 CA
bulk for the

top gate and CA
BG,QD = 1.4 CA

bulk for the bottom gate, where
CA

bulk = CA
TG = CA

BG = εhBNε0/thBN with a relative dielectric
constant of hBN (εhBN = 3.9) and vacuum permittivity (ε0).
The difference between CA

TG,QD and CA
BG,QD mainly arises

from the difference in coverage between the top and bottom
gate electrode on the QD. The gate capacitance for the QD
is also estimated from the size of the diamonds, �nb ∼
1.0 × 1011 cm−2 [blue arrows in the insets of Figs. 2(b) and
2(c)], which corresponds to a change of VTG (�VTG,QD = 0.05
V) and VBG (�VBG,QD = 0.05 V). Using the relationship e =
CTG, QD�VTG,QD + CBG, QD�VBG,QD and CTG, QD/CBG, QD =
0.36, we obtain CTG,QD = 0.87 aF and CBG,QD = 2.4 aF.
Combining these with the areal capacitance, the area of QD is
estimated to be A = LQDdQD = CBG,QD/CA

BG,QD = 1010 nm2.
With dQD = 19 nm, we obtain LQD = 52 nm, which corre-
sponds to λ. The dimensions of edge localized states estimated
from this analysis, combining Coulomb blockade feature and
electrostatic field simulation, match well with the physical
length of the constriction, L ∼ 50 nm, determined by SEM.
This suggests that our simplified model of the edge state is
reliable. The discrepancy in the value of λ between the numer-
ical simulation (∼20 nm) [1] and the estimation in our device
(∼50 nm) may be caused by the detailed disorder profile in
the edge of a real device. Here, it should be emphasized that d
is a more fundamental physical quantity of edge state, which
is to be compared with the theoretical prediction, rather than
λ. d can be estimated by determining the band gap of BLG,
but λ may vary with the details of the edge structure. In
the simulation [1] the localization length is predicted to be
λ ∼ cd with a constant c (∼5) for particular realization of
edge disorder.

Now we focus on the edge-state transport for high trans-
mission at negative D. Figure 3(a) shows the conductance G
for configurations 1 and 2 with respect to nb at a fixed value
of D = −1.0 V/nm [see Fig. 1(c)]. The subgap conductance
in configuration 1 is predominantly from an edge conducting
channel, as the insulating bulk of BLG provides the subgap
conductance lower than ∼0.1e2/h as estimated from G in
configuration 2 [blue curve in Fig. 3(a)]. In contrast to the
QD behavior for low transmission, the conductance of the
edge conducting channel near the CNP is close to ∼2e2/h,
which corresponds to the ballistic-limit value of the subgap
edge state with valley polarization. Furthermore, we observed
conductance oscillations [green arrows in Fig. 3(a)] in con-
figuration 1, which become prominent in the gapped region
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FIG. 3. (a) Zero-bias differential conductance (G) vs the carrier density of bulk nb in measurement configurations 1 (red) and 2 (blue),
with a fixed displacement field D = −1.0 V/nm. G in configuration 1 shows resonant peaks (green arrows) near the CNP. (b) Dual-gated
transconductance dG/dnb is plotted as a function of VTG and VBG near D = −1.0 V/nm. (c) Upper panel: schematic top view of the expected
conducting channel through the edge state at |D| = 1 V/nm. The outermost red rectangle close to the disordered edge and the inner blue
rectangle represent the hard scattering region and the ballistically conducting channel (FP cavity), respectively. Middle panel: a schematic
configuration of the electrochemical potential (U ) of the hole-doped reservoirs and hole-doped edge state. Lower panel: a schematic illustrating
the FP interference path in the edge channel (blue region).

near the CNP. However, the oscillations almost vanish with
increasing temperature while the background conductance
increases (see Fig. S11 [5]), which arises as the transport
only along the edge of the constriction at low temperatures
diffuses into the entire constriction including the bulk at
high temperatures. Variations of the differential conductance
(�dI/dV ) as a function of VSD and nb for negative values of D
by subtracting the smooth background from dI/dV produces
a checkerboard feature (Fig. S9 [5]). These indicate that
the subgap transport exhibits Fabry-Perot (FP) interference,
arising as electrons are partially reflected at the interfaces
between the edge channel and the BLG reservoirs. Whenever
the traveling electrons in the edge channel accumulate the
dynamic phase of modulo 2π , the constructive interference in-
duces resonant conductance peaks. Both subgap conductance
and the signature of FP interference provide strong evidence
for ballistic transport of the edge state within the length of the
constriction [26,27].

The observation of ballistic transport of the subgap edge
state may seem surprising since the edge of BLG constrictions
was physically tailored using oxygen plasma, with substan-
tial random edge disorder, either structural or chemical. We
estimated the size of d of the edge states to be ∼19 nm
for |D| = 1 V/nm, which is extracted from the Coulomb
blockade features at D = 1.0 V/nm, considering the fact
that the value of d of the edge state should depend only
on the magnitude of D but not on its polarity. The pene-
tration range in our measurements is predicted to be tens
of nanometers, which is much larger than the interatomic
distance of BLG (a ∼ 0.14 nm). As a result, the edge states
penetrated into the bulk could be far less affected by atomic
disorders confined to the edges, leading to the formation
of a ballistic 1D conducting channel inside the bulk [blue
rectangle in Fig. 3(c)]. The dual-gated transconductance map
near D ∼ −1.0 V/nm is shown in Fig. 3(b). From the slope
of the resonant peak, we obtain the capacitance ratio of the
FP cavity for the top and bottom gates, CTG,FP/CBG,FP ∼
0.53. For the same magnitude of D, the observed value of
capacitance ratio for the FP interference turns out to be
larger than the one for the CB oscillations (CTG,FP/CBG,FP >

CTG, QD/CBG, QD(∼ 0.36), at |D| = 1 V/nm). This supports
that part of the edge-localized state away from the edge, where
most of the short-ranged scatterers reside, forms a ballistic
edge conducting channel [blue rectangle in Fig. 3(c)], because
the capacitance ratio for the blue rectangle (CTG,FP/CBG,FP)
is larger than the one for the entire region of the edge
state (CTG, QD/CBG, QD) corresponding to the red and blue
rectangular regions combined. Comparing with the simulation
result, the observed CTG,FP/CBG,FP ∼ 0.53 corresponds to a
12-nm-wide FP cavity that is located in the range of 7–19
nm inward from an edge (see Sec. S10 of the Supplemental
Material for details [5]). We thus roughly consider that the
7-nm-wide outermost part of the edge channel [red rectangle
in Fig. 3(c)] was not involved in the ballistic transport due to
severe short-range scattering there. The capacitance of each
gate per unit area for the FP cavity, the blue-rectangular
region in Fig. 3(c), is estimated to be CA

TG,FP = 0.59CA
bulk for

the top gate and CA
BG,FP = 1.1CA

bulk for the bottom gate. FP
conductance peaks occur under the constructive interference
condition �kF = π/LFP, where �kF is the difference of Fermi
wave number between successive conductance peaks and LFP

is the FP cavity length. Considering the edge state as a 1D
system without valley degeneracy, the carrier density of FP
cavity per unit length is expressed as nL

FP = 2kF/π . Then
the interval between adjacent FP conductance peaks �nL

FP =
2�kF/π corresponds to a change in VTG of �VTG,FP =
0.13 V, and in VBG of �VBG,FP = 0.13 V [green arrows in
Fig. 3(a)], i.e., �nL

FP = (CL
TG,FP�VTG,FP + CL

BG,FP�VBG,FP)/e,
where CL

TG(BG),FP = dFPCA
TG(BG),FP is the capacitance per unit

length of the FP cavity for the top (bottom) gate. Thus, the
length of the FP cavity is estimated to be LFP = 2/�nL

FP ∼
70 nm for D = −1 V/nm, which is somewhat longer than the
actual length of the constriction, L ∼ 50 nm.

Topologically trivial edge states can also be generated by
local doping of BLG in a stray electric field from the top
and bottom gates. According to the numerical simulation in
Fig. 4(a), as |D| increases, the trivial edge states accumulate
more carriers while expanding deeper into the bulk BLG.
Thus, the stray field applied to the edge will lead to an increase
in residual conductance at the CNP with increasing |D|, which
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theoretical prediction for the penetration range (d = αh̄/

√
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is contrary to the saturation of conductance shown in Fig. 1(d)
for high values of negative |D|. Meanwhile, the previous
study using the superconducting interferometry showed that
edge conduction in gapped BLG occurs regardless of the
existence of additional charge accumulation at the edges [16].
This result supports that the edge conduction observed in
our study can occur even in the absence of additional charge
accumulation by either stray field or chemical doping.

The penetration range of edge states in the limit of strong
disorder was predicted to be an order ∼h̄/

√
mEgap [28], where

m is the effective mass of electron in BLG and h̄ is the
reduced Planck constant [1]. We fit d estimated from the QD
behavior to d = αћ/

√
mEgap [red line in Fig. 4(b)] with α

as a constant of order unity. Both the order of magnitude
and the Egap dependence of d well match the theoretical
prediction, which provides additional strong evidence that
the edge conduction in our gapped BLG originated from the
topologically nontrivial edge states.

At low temperatures, the residual conductance in gapped
BLG is predicted to be governed by the localization length
of edge states as far as impurity-mediated conducting chan-
nels in the bulk of BLG are suppressed [29]. According to
the theoretical calculation [1], the edge localization length
is proportional to the d , regardless of the strength of edge
disorder. Four different BLG constrictions used in this study,
with comparable length of ∼50 nm, showed that the residual
conductance with negative D side is either ∼2e2/h (devices

A and B) or ∼4e2/h (devices C and D), depending on the
number of edges involved in the transport (see Fig. S3 and
Table S1 [5]). This reconfirms that the length of the constric-
tions (L ∼ 50 nm) is smaller than the localization length, and
that the residual conductance in gapped BLG arises from the
subgap edge states with valley-associated chirality.

In sum, we report detailed subgap conductance measure-
ments in BLG constrictions. The observed Coulomb blockade
oscillations and Fabry-Perot interference in the ultrashort
devices indicate the formation of quantum dot structure and
ballistic transport, respectively, with the residual conductance
close to ∼2e2/h per edge. Together with an analysis, this
strongly indicates that it was hosted by the ballistic and robust
valley-specific edge conducting channels, irrespective of the
degree of edge disorder, as long as the length of device is
within the localization length, confirming the theoretical pre-
diction [1]. It may seem to be counterintuitive to have ballistic
transport along a randomly disordered edge of BLG. How-
ever, penetration of the edge states into the bulk of gapped
BLG with a range much larger than the in-plane interatomic
distance drives carriers to detour atomic disorders at the edges,
leading to the formation of 1D conducting channel away
from the edge. In this case, carriers within the localization
length experience much weaker potential of the edge disorder,
thus avoiding scattering and intervalley mixing. Both the near
convergence of the conductance per channel and the band gap
dependence of the penetration range of the edge state from a
constriction edge, observed in this study, indicate robustness
of the edge state, which is rooted in the underlying topology
of the bulk band structure of BLG, even in the absence of
the strong topological protection of time-reversal symmetry.
The insensitivity of the edge state to the edge disorder and
its robustness in gapped BLG provide a pivotal step forward
for the fault-tolerant and in situ controllable device realization
based on topological states.
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