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Time-reversal symmetric charge and spin transport through a molecule comprising two-orbital channels and
connected to two leads is analyzed. It is demonstrated that spin-resolved currents are generated when spin-
flip processes are accompanied by a flip of the orbital channels. This surprising finding does not contradict
Bardarson’s theorem [J. H. Bardarson, J. Phys. A: Math. Theor. 41, 405203 (2008)] for two-terminal junctions:
the transmission does possess two pairs of doubly degenerate eigenvalues as required by the theorem. The spin-
filtering effect is explicitly demonstrated for a two-terminal chiral molecular junction, modeled by a two-orbital
tight-binding chain with intra-atomic spin-orbit interactions (SOI). In the context of transport through organic
molecules like DNA, this effect is termed “chirality-induced spin selectivity” (CISS). The model exhibits spin
splitting without breaking time-reversal symmetry: the intra-atomic SOI induces concomitant spin and orbital
flips. Examining these transitions from the point of view of the Bloch states in an infinite molecule, it is shown
that they cause shifts in the Bloch wave numbers, of the size of the reciprocal single turn, whose directions
depend on the left and right handedness of the helix. As a result, spin-up and -down states propagate in the
opposite directions, leading to the CISS effect. To further substantiate our picture, we present an analytically
tractable expression for the 8 × 8 scattering matrix of such a (single) molecule.
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I. INTRODUCTION

Unexpectedly, a large spin-filtering effect has been ob-
served in chiral molecules [1–3]: injected electrons be-
come spin polarized after being transmitted through a DNA
molecule. This effect has been called the “chirality-induced
spin selectivity” (CISS) [4–6]. It is a remarkable effect since
the organic molecules do not contain magnetic atoms, which
would be apparent candidates for inducing spin-dependent
phenomena. Early theoretical attempts to explain this phe-
nomenon attributed the preferential transmission of elec-
trons polarized along the same direction as the sense of
advance of the helical molecule [7] or to the combination
of a weak Rashba interaction [8] with weakly dispersive
electronic bands [9]. An early theoretical paper [10] claimed
that the CISS effect results from the interplay between the
spin-orbit interaction (SOI), the double-helix structure, and
the dissipation induced by leakage currents. However, it was
later pointed out that in the presence of long-range tunneling
amplitudes connecting the atoms on the molecule it suffices to
consider just leakage currents from a single-stranded helix in
order to produce the effect [11,12]. Other theoretical papers
discussed CISS by considering electron transport through a
double-helical pathway [13], in a double-stranded DNA [14],
and in a helical-tube geometry [15,16]. These papers are
largely based on the linear-response regime of the transport,
though the model proposed in Ref. [17] relies on the possi-
bility of the bias across the junction to select a specific spin
orientation. Recently, the possible significance of transport in
the nonlinear regime was arguably considered [18], followed
by a proposal for detecting the chirality from magnetoresis-
tance measurements [19].

Most of these theoretical models [9–16,20] exploit the
Rashba-type SOI, which acts on bonds between atoms on
the chain. Then, in order to obtain an amount of spin fil-
tering comparable with the experimentally detected values,
one needs to invoke a rather strong Rashba SOI. A strong
interatomic SOI can be achieved when the σ and π orbitals
on neighboring atoms are mixed due to the curved geometry
[21,22]. An example is the intra-atomic SOI, of the order of
10 meV ∼ 100 K for carbon atoms [23,24], which induces
transitions from a π orbital to a σ orbital. In such a case
the curved geometry allows for electron hopping to the π

orbital of a nearest neighbor [21]. These processes induce
perturbatively an effective interatomic SOI proportional to the
intra-atomic one [25]. It was also suggested that the electric
fields associated with the hydrogen bonds of the base pairs
can enhance the Rashba SOI by as much as a few tens meV
[26]. Such models, in which the effective Rashba SOI acts on
electron transfer between π orbitals of DNA bases [22,26],
were recently claimed to yield spin selectivity [27]. Recently,
it was also proposed that the geometry-dependent relativistic
origin of the SOI can be of order 100 meV in a nanoscale
helix [28].

A major constraint on spin-resolved transport between
two terminals arises from Bardarson’s theorem [29]: for
the simplest case of a single-channel junction, spin selec-
tivity through two-terminal time-reversal symmetric systems
is forbidden. Several papers proposed ways to overcome
this constraint in that simple case. One such way is to break
time-reversal symmetry by including magnetic fields [30].
Magnetic fields applied on the reservoirs connected to the
junction may also produce spin selectivity [31]. However,
since many of the experiments on the CISS effect did not
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include magnetic fields, it is desirable to find theoretical ways
which generate spin filtering without breaking time-reversal
symmetry. This can be achieved by utilizing junctions con-
nected to three (or more) terminals [20,32,33]. An example of
that is the leak currents mentioned above [10–12], which are
accounted for by connecting more leads, i.e., Büttiker probes
[34].

In this paper we follow an alternative route, in which the
spin-orbit interaction causes scattering between subbands in
the junction. This idea was introduced in Ref. [35] as a way
to establish spin filtering in quantum point contacts (QPC’s)
[36,37], in tubular two-dimensional gases [38], and in quasi-
one-dimensional quantum wires [39]. A common feature of
these setups is that they involve more than two channels, each
of which comprises up- and down-spin channels, e.g., the first
and second subbands of the QPC. In the context of the CISS
theory, Refs. [13–17] may fall into this category.

A widely spread belief in the CISS community is that
the two-terminal system cannot exhibit the CISS effect. One
possible reason for this might arise from an extended inter-
pretation of Bardarson’s theorem [29]. Bardarson showed that
in time-reversal symmetric systems with half-integer spins,
the transmission eigenvalues of the scattering matrix come
in degenerate pairs. Assuming that this Kramers-type degen-
eracy involves spins with opposite eigenvalues, the theorem
prohibits the two-terminal spin filtering because each pair of
doubly degenerate transmission eigenvalues carries the same
amount of up and down spins. However, the theorem does
not specify which spin states are associated with the doubly
degenerate transmission eigenvalues. Therefore, it is possible
to consider, e.g., two pairs of doubly degenerate transmission
eigenvalues in which one pair carries two up spins in one
direction and the other pair carries two down spins in the
opposite direction. Hence, the theorem does not rule out the
“counterexamples” [36–39] of the no-go theorem of spin
filtering by two-terminal setups.

In this paper we present a detailed analysis of a spin filter
that consists of a two-orbital molecule (in total, four channels
when spin indices are included), which is connected to two
terminals. Like most of the earlier work on two-terminal
systems, we consider only elastic scattering, which must obey
the Bardarson theorem. The corresponding (8 × 8) scattering
matrix, in which spin and channel flips occur simultaneously
in a way that preserves time-reversal symmetry, is analyzed
and the two doubly degenerate transmission eigenvalues are
identified. Importantly, each such an eigenvalue corresponds
to two spin states which are not oppositely directed, and
therefore we do obtain a spin-polarized conductance through
a two-terminal, time-reversal symmetric junction.

Following this general idea, we introduce a specific exam-
ple of a toy model describing a single strand of a double-
stranded DNA: a two-orbital helical tight-binding chain with
an intra-atomic SOI. Our model possesses two advantages:
(1) it does not require leaky leads, and thus is close to the
experimental setups [1,2]; (2) the amount of spin splitting
achieved in this model is comparable to the bare intra-atomic
SOI coupling, multiplied by the “normalized” curvature of
the helix. As opposed, the magnitude of the Rashba-type
interaction [8] due to the mixing of the σ and π orbitals,
which results from the curved geometry as discussed above,

is smaller than the bare intra-atomic SOI, by more than a
factor of 100 according to Ref. [21]. We use our model to
demonstrate numerically the spin filtering in a two-terminal
setup.

Our findings are substantiated in two ways: First we ex-
plore the band structure of an infinite chain of such molecules
and identify certain features in it that are related to the
possibility of spin-resolved transport. Second, we examine
analytically a simplified version of our model and show that
the spin polarization calculated within it complies with the
numerical results.

The structure of the paper is as follows. Section II begins
with a review of Bardarson’s theorem and an analysis of an
8 × 8 two-orbital scattering matrix (Sec. II A). Section II B
continues with the derivation of the two-terminal spin and
charge conductances and presents a discussion of the condi-
tions required to realize spin filtering. The latter is shown in
Sec. II C to be finite for the two-orbital junction. Section II D
(augmented by Appendix A) demonstrates that our picture
pertains also to spin filtering in a quantum point contact
in which the Rashba interaction is active. We introduce in
Sec. III A the Hamiltonian of our two-orbital helical tight-
binding chain with intra-atomic SOI (with more details given
in Appendix B), and in Sec. III B we derive the corresponding
scattering matrix. These are used in Sec. III C to compute
numerically the spin polarization of our model. As mentioned,
the band structure of the infinite helix, calculated in Sec. IV,
allows one to explore certain features related to the CISS
effect. Section V is separated into two parts. Section V A
discusses certain symmetry properties of the scattering matrix
of the two-channel junction, while Sec. V B presents an ana-
lytical solution of the 8 × 8 scattering matrix of a simplified
version of our toy model, which yields analytically tractable
exact results for the spin polarization (details are given in
Appendix C). We believe that the lack of such tractable ex-
pressions has left doubts in the CISS community concerning
the possibility to obtain spin filtering in a two-terminal setup
obeying time-reversal symmetry. Our results are summarized
in Sec. VI. Throughout the paper we set h̄ = e = 1, and use
the terms “orbital” and “channel” alternatively; those do not
include the spin degrees of freedom.

II. GENERAL THEORY OF SPIN FILTERING IN A
TWO-TERMINAL TWO-ORBITAL JUNCTION

A. Bardarson’s theorem

We begin our discussion with a short summary of Ref. [29];
this will also serve to introduce our notations. According to
Bardarson [29], there are two ways to represent the time-
reversal operation. In one approach [40], the time-reversal
operator � changes the wave incoming from lead s with wave
vector k and spin index σ , |k; ασ 〉s, into the outgoing wave
|−k; ασ̄ 〉s,

�|k; ασ 〉s = σ |−k; ασ̄ 〉s, (1)

where σ̄ =↓ (↑) for σ =↑ (↓) and α is the channel (orbital)
index. When σ appears as a coefficient it should be read as
σ = +1 (−1) for σ =↑ (↓). Hence, the scattering state in the
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left (s = L) terminal or in the right (s = R) one becomes

|ψ〉s = |k; ασ 〉sc
in
s + (�|k; ασ 〉s)c̄out

s . (2)

The amplitudes cin
s and cout

s (the latter is the time-reversed
partner of the former) are defined as follows. For Ns channels
in terminal s, the ket vector consists of 2Ns components

|k〉s = [|k; 1 ↑〉s, |k; 1 ↓〉s, . . . , |k; Ns ↑〉s, |k; Ns ↓〉s]. (3)

Correspondingly, the amplitudes cin
s and cout

s are 2Ns-
component vectors

cin
s =

⎡
⎢⎢⎢⎢⎢⎢⎣

cin
1↑s

cin
1↓s
...

cin
Ns↑s

cin
Ns↓s

⎤
⎥⎥⎥⎥⎥⎥⎦

, c̄out
s =

⎡
⎢⎢⎢⎢⎢⎢⎣

c̄out
1↓s

c̄out
1↑s
...

c̄out
Ns↓s

c̄out
Ns↑s

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4)

The scattering matrix connects the coefficients of the in-
coming and outgoing waves

c̄out = S̄cin, c̄out =
[

c̄out
L

c̄out
R

]
, cin =

[
cin

L

cin
R

]
, (5)

where

S̄ =
[

r̄ t̄ ′
t̄ r̄′

]
. (6)

The “bar” notation on the scattering-matrix entries indicates
the time-reversal operation (1). When Ns = NL = NR, each
submatrix in Eq. (6) is of order 2Ns × 2Ns. The unitarity
relation S̄S̄† = S̄†S̄ = 14Ns

(where 14Ns
is the 4Ns × 4Ns unit

matrix), ensures the relations

r̄r̄† + t̄ ′t̄ ′† = r̄†r̄ + t̄†t̄ = 12Ns
. (7)

The time reversal of the scattering state in Eq. (2) is

�|ψ〉s = (�|k; ασ 〉s)
(
cin

s

)∗ − |k; ασ 〉s

(
c̄out

s

)∗
, (8)

where the property �2 = −1, and the fact that � includes
the complex-conjugation operation, have been used. As seen,
the new scattering state (8) is just the original scattering state
(2), with the replacements cin

s → −(c̄out
s )∗ and c̄out

s → (cin
s )∗.

It therefore follows from Eq. (5) that

(cin )∗ = S̄(−c̄out )∗. (9)

Then, comparing Eqs. (5) and (9) and exploiting the uni-
tarity of the scattering matrix S̄, Bardarson [29] con-
cluded that the scattering matrix is antisymmetric. This
implies that the reflection-amplitude matrix is also an-
tisymmetric, and hence can be represented as [41] r̄ =
V diag(iλ1σy, . . . , iλNs

σy)V T , where V is a unitary matrix, and
the superscript T indicates a transposed matrix. It follows that
r̄†r̄ = V diag(λ2

1σ0, . . . , λ
2
Ns

σ0)V T and thus the transmission
eigenvalues, i.e., the eigenvalues λ2

α of t̄†t̄ = 12Ns
− r̄†r̄, come

in degenerate pairs [29]. Here, σ0 = 12 and σy is the usual
Pauli matrix.

Alternatively, the ubiquitous way of implementing the
time-reversal operation, which is also used in the following,
defines the scattering state as

|ψ〉s = |k〉sc
in
s + |−k〉sc

out
s , (10)

where the scattering matrix S comprises the time-reversed
partners of the entries of S̄ [Eq. (6)]:

S =
[

r t ′
t r′

]
. (11)

In this basis

cout = Scin, cout =
[

cout
L

cout
R

]
, cin =

[
cin

L
cin

R

]
. (12)

Since the time-reversed state and the outgoing state are related
by �|k〉s = | − k〉s[12N ⊗ (iσy)] a comparison of Eqs. (2) and
(10) yields

cout
s = 12N ⊗ (iσy)c̄out

s (13)

(i.e., cout
α↑s = c̄out

α↑s and cout
α↓s = −c̄out

α↓s) and thus the scattering
matrix satisfies the relation S = 12Ns

⊗ (iσy) S̄, and is self-
dual [29]:

S = (
12Ns

⊗ σy

)
ST

(
12Ns

⊗ σy

)
, (14)

where ST is the transposed scattering matrix. The block-
diagonal component of the scattering matrix, i.e., the matrix
of the reflection coefficients, satisfies r = (1Ns

⊗ σy)rT (1Ns
⊗

σy). Hence, the reflection amplitude from the state with orbital
α′ and spin index σ ′ into the state with orbital α and spin index
σ , rασ,α′σ ′ , is such that

rασ,α′σ ′ = σσ ′ rα′σ̄ ′,ασ̄ . (15)

This relation is very useful for the following considerations.

B. Charge and spin conductances

Here we present the definitions of the linear-response con-
ductances for charge and spin flows, in terms of the scattering-
matrix elements. Our derivation is specific for a two-terminal,
two-channel junction, in which the spin degree of freedom is
relevant, implying an 8 × 8 matrix.

Assign a chemical potential μs to the s terminal, and denote
the charge and spin currents into the s terminal by I j;s, where
j = 0 pertains to the charge current and j = x, y, and z to
the three spin currents. Then, the formal expressions for the
conductances in terms of the scattering matrix S are

Gj;ss = ∂Is; j

∂μs

= 1

2π
Tr{(	s ⊗ τ0 ⊗ σ j )

× [18 − S(	s ⊗ τ0 ⊗ σ0)S†]} (16)

and

Gj;ss̄ = −∂Is; j

∂μs̄

= 1

2π
Tr{(	s ⊗ τ0 ⊗ σ j )S(	s̄ ⊗ τ0 ⊗ σ0)S†}. (17)

Here, 	L = diag(1, 0) and 	R = diag(0, 1) are matrices of
projection operators. The unit matrix in the orbital space is
τ0 = 12, and σ j is the jth Pauli matrix.

Exploiting the decomposition of the scattering matrix
into submatrices of transmission and reflection amplitudes,
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Eq. (11), one obtains

Gj;LL = Tr{τ0 ⊗ σ j (14 − rr†)}/(2π ),

Gj;LR = Tr{τ0 ⊗ σ jt
′t ′†}/(2π ),

Gj;RL = Tr{τ0 ⊗ σ jtt
†}/(2π ),

Gj;RR = Tr{τ0 ⊗ σ j (14 − r′r′†)}/(2π ). (18)

The self-duality of the scattering matrix (14) leads to another
peculiar feature of the spin conductances. Whereas inter-
changing the order of the reflection (transmission) matrix
and its Hermitian conjugate (for instance, rr† → r†r) in the
expressions in Eq. (18) does not change the charge conduc-
tances (for which j = 0), it reverses the sign of the spin
conductances, j = x, y, z. By the unitarity of the scattering
matrix SS† = 18, one easily verifies that

Gj;ss = Gj;ss̄, (19)

which ensures that the net charge and spin currents at equilib-
rium vanish. Note that for the charge current, i.e., for j = 0,
the unitarity of the scattering matrix leads to

G0;ss = G0;s̄s, (20)

which implies that the charge currents measured in the two
leads are identical.

When the chemical potentials in the two leads differ
slightly, such that μs = μ + δμs and μs̄ = μ + δμs̄, the net
spin or charge current flowing out of lead s is

I j;s(δμs, δμs̄) = Gj;ssδμs − Gj;ss̄δμs̄

= Gj;ss(δμs − δμs̄). (21)

Another consequence of Eqs. (19) and (21) is that the po-
larization direction of the spin current is independent of the
direction of the chemical potential bias,

I j;s(δμ, 0) = −I j;s(0, δμ), (22)

which is a specific feature of the two-terminal setup. The spin-
polarization factor, defined as

Pj;s = Gj;ss/G0;ss = Gj;ss̄/G0;ss̄, (23)

is also insensitive to the direction of the chemical-potential
bias (i.e., whether μs > μs̄ or else), as follows from Eq. (19).
This feature does not necessitate time-reversal symmetry of
the scatterer and is independent of the number of channels;
it applies to a two-terminal single-channel spin filter. For
example, it was found in transport through a spin-orbit active
weak link in the presence of a magnetic field [42].

C. Spin polarization

We first consider the simplest configuration of a two-
terminal junction with a single channel, for which Ns = 1,
implying a 4 × 4 scattering matrix. Its 2 × 2 reflection ma-
trix is self-dual and consequently is diagonal [29], as by
Eq. (15) r↑,↑ = r↓,↓ = r0 and r↑,↓ = −r↑,↓ = 0. It follows
that t†t = σ0 − r†r = (1 − |r0|2)σ0 and thus the transmission
eigenvalues are degenerate. As a result, the spin conductance
and with it the spin polarization vanish, Gj;ss = 0 and Pj;s = 0
( j = x, y, z).

Next, we continue to the two-channel case where Ns = 2,
which corresponds to an 8 × 8 scattering matrix. The am-
plitude vectors cin

s and cout
s given in Eqs. (4) are then four

dimensional. In the specific situation in which each reflec-
tion process changes or preserves both the spin and channel
indices, the corresponding reflection matrix takes the form

r =

⎡
⎢⎢⎣

r1↑,1↑ 0 0 r1↑,2↓
0 r1↓,1↓ r1↓,2↑ 0
0 r2↑,1↓ r2↑,2↑ 0

r2↓,1↑ 0 0 r2↓,2↓

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

r1↑,1↑ 0 0 r1↑,2↓
0 r1↑,1↑ −r2↓,1↑ 0
0 −r1↑,2↓ r2↓,2↓ 0

r2↓,1↑ 0 0 r2↓,2↓

⎤
⎥⎥⎦, (24)

where we have used the self-duality property (15). The ma-
trix (24) can be rearranged in a block-diagonal form r =
diag(r+, r−), where

r+ =
[

r1↑,1↑ r1↑,2↓
r2↓,1↑ r2↓,2↓

]
, r− =

[
r2↓,2↓ −r1↑,2↓

−r2↓,1↑ r1↑,1↑

]
. (25)

The two matrices r+ and r− are time reversed of one another,
r− = σyrT

+σy. The four transmission eigenvalues are the solu-
tions of the characteristic polynomial equation

det{�14 − t†t} = (det{(� − 1)12 + r†
±r±})2 = 0, (26)

and obviously come in pairs of degenerate eigenvalues �+
and �−, implying that our model complies with Bardarson’s
theorem [29]. Explicitly, the degenerate eigenvalues are

�± = 1 − X ±
√

X 2 − |Y |2,
X = [|r1↑,1↑|2 + |r1↑,2↓|2 + |r2↓,1↑|2 + |r2↓,2↓|2]/2,

Y = r1↑,1↑r2↓,2↓ − r1↑,2↓r2↓,1↑. (27)

Inserting these results into the first of Eqs. (18) yields

G0;LL = (�+ + �−)/π,

Gz;LL = (|r2↓,1↑|2 − |r1↑,2↓|2)/π,

Gx;LL = Gy;LL = 0. (28)

It therefore follows from Eq. (23) that the spin polarization
along z is finite,

Pz;L = (|r2↓,1↑|2 − |r1↑,2↓|2)/(�+ + �−). (29)

The fact that our model for the reflection matrix, Eq. (24),
leads to spin polarization along z alone, can be explained
by inspecting the scattering states. The scattering state of an
electron with wave number k and spin index σ injected in
channel α is

|ψασ 〉L = |k; ασ 〉L + |δψασ 〉L, (30)

where the reflected wave, as dictated by Eq. (24), is a super-
position of states of different spins and channel indices,

|δψασ 〉L = |−k; ασ 〉L rασ,ασ + |−k; ᾱσ̄ 〉L rᾱσ̄ ,ασ , (31)

with ᾱ = 2 (1) for α = 1 (2). Since the spin operator
is diagonal in the channel index L〈k; ασ |σ̂ j |k′; α′σ ′〉L =
δk′,kδα′,α (σ j )σ ′,σ , the spin components for j = x and y vanish.
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Only the charge conductance ( j = 0) and the spin-z conduc-
tance ( j = z) remain,

Gj;LL = 1

2π

∑
α,γ=±

Tr[	γ σ j	γ (σ0 − rαr†
α )], (32)

where 	+ = diag(1, 0) and 	− = diag(0, 1) are matrices of
projection operators.

From Eq. (29), one can deduce the condition for a perfect
spin filtering:

Pz;L =
{

1 [|r2↓,1↑|2 = 1 − (|r1↑,1↑|2 + |r2↓,2↓|2)/2],
−1 [|r1↑,2↓|2 = 1 − (|r1↑,1↑|2 + |r2↓,2↓|2)/2].

(33)

This perfect polarization, achieved in a two-orbital, two-
terminal junction, is in contrast with the locking of the di-
rections of spin and momentum discussed in Ref. [17], in
which ↑ and ↓ spins propagate in opposite directions. In that
case, the direction of the spin polarization changes when the
chemical potential bias is reversed. On the other hand, in our
scenario the direction of the spin polarization in each lead is
independent of the direction of the chemical potential bias as
indicated by Eq. (23).

Since the matrices r+ and r− are self-dual to one another,
they can be presented as quaternion numbers r± = A0σ0 ±
iA · σ. In terms of these quaternions

r±r†
± = |A0|2 + |ReA|2 + |ImA|2

+ 2[±Im(A0A) + ReA × ImA] · σ, (34)

which implies that although r+ and r− are dual to one another,
r+r†

+ is not necessarily the dual of r−r†
−, that is, r−r†

− =
σy(r†

+r∗
+)T σy �= σy(r+r†

+)T σy. This implies that the directions
of the two reflected states are not necessarily opposite, and
opens the possibility to create a finite conductance of the z
component of the spin,

Gz;LL = − 8

2π
(ReA × ImA)z. (35)

Combining this result with the charge conductance expressed
in terms of the quaternions,

G0;LL = 8

2π
(1 − |A0|2 − |ReA|2 − |ImA|2), (36)

we find for the z-polarization factor (23)

Pz;L = − (ReA × ImA)z

1 − |A0|2 − |ReA|2 − |ImA|2 . (37)

This implies that to obtain the spin-filtering effect, r± should
be a complex quaternion number in the pseudospin space
comprising the states (α, σ ) and (α, σ ).

D. Filtering by a point contact subjected to the
Rashba interaction

From the above discussion it follows that mixing an even
number of channels by spin-orbit interactions is crucial for
realizing spin filtering without breaking time-reversal sym-
metry. The importance of such mixing was emphasized in
previous papers, in which it was found that SOI-induced
mixing of two subbands in a quantum point contact (QPC)

FIG. 1. (a) Schematics of a quantum point contact subjected to
the Rashba spin-orbit interaction caused by the electric field Ey along
y. (b) The effective potential induced by the spatial adiabatic change
of the confining potential, as represented by the subbands E⊥,1(x)
and E⊥,2(x) (see text). (c) The dispersion relations of the first two
subbands for electron traveling along x. The spin-orbit interaction
mixes the 1 ↓ and 2 ↑ subbands as well as the 1 ↑ and 2 ↓ ones.

enables spin filtering [35,36]. Here, we demonstrate that our
two-terminal, two-channel scenario applies also to a QPC
subjected to the Rashba SOI. This adds a formal basis and
further insights for the findings of Ref. [35].

Figure 1(a) depicts a schematic drawing of a QPC: a
two-dimensional electron gas is confined to the x-z plane,
and subjected to a uniform electric field along y, Ey, which
appears since the confining potential lacks the mirror sym-
metry y → −y. This electric field gives rise to the Rashba
interaction [8] HSOR = kso(σx p̂z − σz p̂x )/me, which couples
the momentum (p̂) and the spin degrees of freedom. Here,
kso ∝ Ey characterizes the strength of the Rashba interaction,
and me is the electron mass.

The confining potential along the z direction, U (z; x), is
assumed to vary adiabatically as a function of x. Under these
conditions, one is able to construct a quasi-one-dimensional
Hamiltonian that describes the motion along x. Consider first
the motion along z, at a fixed value of x, which is described by
the Hamiltonian H⊥ = p̂2

z/(2me) + U (z; x), with eigenener-
gies E⊥,α (x) and orthonormal eigenfunctions χα (z; x), where
α is the subband index. The energies E⊥,1(x) and E⊥,2(x) of
the first two subbands are depicted in Fig. 1(b). They act as an
adiabatic potential for the motion in the x direction.

Setting the wave function of the entire Hamiltonian to
be ϕ(x, z) = ∑∞

α=1 ψα (x)χα (z; x), where ψα (x) is a two-
component spinor belonging to channel α, we derive the
Schrödinger equation for the quasi-one-dimensional propa-
gation along the x direction,

∑∞
α′=1 Hα,α′ψα′ (x) = Eψα (x),

within the adiabatic approximation. [Put differently, the trans-
verse wave function varies very slowly along x, such that
∂xχα (z; x) ≈ 0 [43].] This effective quasi-one-dimensional
Hamiltonian is (see Appendix A)

Hα,α′ ≈
[

( p̂x − ksoσz )2

2me

+ E⊥,α (x)

]
δα,α′ + Vα,α′σx. (38)

[A constant energy shift, k2
so/(2me), was omitted.] The spin-

flip mixing between subbands α and α′ is caused by the
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change of the transverse wave function in the z direction:

Vα,α′ = kso

me

∫
dz χ∗

α (z; x) p̂zχα′ (z; x). (39)

The dispersion relations of the first two subbands (for propa-
gation along x far from the constriction region around x ∼ 0)
are portrayed in Fig. 1(c); they are split by ±kso for the two z
components of the spin.

In the absence of Vα,α′ , an electron injected from x = −∞
in subband 2 with energy E such that E⊥,2(0) > E will be
reflected backward to x = −∞ since in the constriction region
its energy is not enough to traverse the potential barrier
formed by E⊥,2(0) [see Fig. 1(b)]. On the other hand, an
electron in subband 1 with energy E > E⊥,1(x) is transmitted
to x = ∞ without being reflected. However, the Rashba SOI
in Eq. (38), aside from splitting the bands according to the
spin indices by ±kso, leads also to avoided crossings between
the 1 ↓ and 2 ↑ subbands, and between the 1 ↑ and 2 ↓ ones,
as shown in Fig. 1(c): the term Vα,α′σx can flip both the spin
and the subband indices, causing scattering between the 1 ↓
(↑) and 2 ↑ (↓) subbands. Eventually, during the scattering
process, two right-going states 2 ↑ and 1 ↓ and one left-going
state 2 ↑ [the filled circles and the empty circle in Fig. 1(c)]
can be mixed. In the same way, their time-reversed partners,
two left-going states 2 ↓ and 1 ↑ and one right-going state
2 ↓ [the filled squares and the empty square in Fig. 1(c)]
are mixed. Neglecting the remaining scattering processes, the
reflection matrix that expresses these possibilities is

r ≈

⎡
⎢⎢⎣

0 0 0 r1↑,2↓
0 0 0 0
0 −r1↑,2↓ r2↓,2↓ 0
0 0 0 r2↓,2↓

⎤
⎥⎥⎦. (40)

The doubly degenerate transmission eigenvalues, Eq. (27),
of this matrix are �+ = 0 and �− = 1 − |r1↑,2↓|2 − |r2↓,2↓|2,
leading to a polarization factor (29) for the z component of the
spin:

Pz;L ≈ −|r1↑,2↓|2
2 − |r2↓,2↓|2 − |r1↑,2↓|2 . (41)

In the same way, the matrix of reflection amplitudes for an
electron impinging from x = ∞ is

r′ ≈

⎡
⎢⎢⎣

0 0 0 0
0 0 −r′

2↓,1↑ 0
0 0 r′

2↓,2↓ 0
r′

2↓,1↑ 0 0 r′
2↓,2↓

⎤
⎥⎥⎦, (42)

with the transmission eigenvalues �+ = 0 and �− = 1 −
|r′

2↓,1↑|2 − |r′
2↓,2↓|2. In this case the polarization factor (29)

for spins along z is

Pz;R ≈ |r′
2↓,1↑|2

2 − |r′
2↓,2↓|2 − |r′

2↓,1↑|2 . (43)

For a system possessing a mirror symmetry with respect to
the y-z plane, one expects that r′

2↓,1↑ = r2↑,1↓ = −r1↑,2↓ and
r′

2↓,2↓ = r2↑,2↑ = r2↓,2↓ [see Eq. (A5)], which implies that the
polarization factors observed in the left and right leads are

opposite:

Pz;R = −Pz;L. (44)

In the absence of this symmetry, one may imagine that upon
reflecting the system through that plane the direction of the
electric field is reversed, Ey → −Ey. Were this field the only
source of the spin-orbit coupling, then kso will reverse its
sign as well. This reflection effectively reverses the direction
of spin σx → −σx and σz → −σz in the Hamiltonian (38),
and also reverses the sign of Vα,α′ , Eq. (39). The symmetry
of the scattering matrix [see Eq. (A7)] then implies that the
sign of the spin-polarization factor is reversed. This property
is reminiscent of the one predicted for the CISS effect (see,
e.g., Refs. [4,10,12,17]): the interchange of left and right
handedness reverses the sign of spin polarization.

III. SPIN FILTERING THROUGH A
TWO-TERMINAL JUNCTION

A. Two-orbital tight-binding Hamiltonian of a helical chain
with intra-atomic spin-orbit interaction

We exemplify the general discussion given in Sec. II by
studying a toy model: a single strand of a double-stranded
DNA molecule [Fig. 2(a)], coupled to two leads [Fig. 2(b)].
The molecule is represented by a helical tight-binding chain,
where each atom accommodates three p orbitals with intra-
atomic spin-orbit interaction. This interaction is assumed to
be strongly anisotropic, such that the py orbital [lying along
the tangential direction of the thick curved line in Fig. 2(a)] is
not accessible, and only the px and pz orbitals participate in
the electron dynamics. This restriction renders the sites in our
tight-binding chain to be occupied only by the orbitals |px〉 =
|x〉 and |pz〉 = |z〉. The construction of the Hamiltonian of the
molecule is detailed in Appendix B, where we show that it
takes the form

Hmol =
Nmol−1∑

n=1

(−Jc†
n+1cn + H.c.) +

Nmol∑
n=1

ε0c†
ncn

+ �εc†
nτz ⊗ σ0cn + �soc†

nτy ⊗ t (φn) · σcn, (45)

where Nmol is the number of sites on the molecule. The
creation operator on site n,

c†
n = [c†

n;x↑ c†
n;x↓ c†

n;z↑ c†
n;z↓], (46)

has four components as required for a two-orbital description
that includes the spin degree of freedom. The first three terms
on the right-hand side of Eq. (45) are those of a standard tight-
binding model, where J is the tunneling amplitude between
nearest-neighbor sites (assumed for simplicity to be identical
for the two orbital and spin indices), ε0 is the onsite energy,
and �ε is the energy difference between the px and pz orbitals.
We assume that the unit cell of the helical molecule contains
N sites; the location of the nth site is specified by φn = 2πn/N
[see Fig. 2(a) and Appendix B].

The key ingredient of the Hamiltonian is the fourth term
on the right-hand side of Eq. (45), which describes the intra-
atomic spin-orbit coupling, of strength �so (τ j , with j =
0, x, y, z, are the Pauli matrices in the orbital space comprising
px and pz). As seen, this term is proportional to the inner
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FIG. 2. (a) Schematic picture of a single strand of a double-
stranded DNA. R(φn) is the radius vector of site n within the Frenet-
Serret scheme [Eq. (B1)], �h is the pitch, �φ = 2π/N , and φn =
n�φ. The original tight-binding Hamiltonian (B4) is expressed in the
coordinate system x, y, and z, shown in the figure. (b) A molecular
junction. The left and right leads are attached to two edges of the
single strand of the DNA molecule. A difference in the chemical
potentials of the left and right leads, μL and μR, induces a flow of
electrons.

product of the Pauli matrix vector σ = {σx, σy, σz}, and the
tangent vector along the spiral axis of the molecule t(φ). [The
term “spiral axis” refers to the thick curved line in Fig. 2(a).]
Written in terms of the radius R of the helix and its pitch �h,
the tangent vector is

t(φ) = L{−κ̃ sin(φ), pκ̃ cos(φ), |τ̃ |}, (47)

where L =
√

R2 + [�h/(2π )]2, and p specifies the chirality
of helix: p = 1 (−1) for a right-handed (left-handed) helix
[12]. The radius and the pitch determine the curvature κ̃ and
torsion τ̃ of the helix:

κ̃ = R/L2, τ̃ = p�h/(2π )/L2. (48)

In the following we use normalized values for those, given in
Eqs. (B3), τ = τ̃L and κ = κ̃L, and thus κ = √

1 − τ 2. (The
torsion τ should not be confused with the Pauli matrices in
orbital space, τ j .) One easily verifies that the Hamiltonian is
time-reversal symmetric.

The molecule is attached to two terminals [see Fig. 2(b)],
such that the total Hamiltonian of the system is

H = Hmol + HL + HR + V . (49)

Here, Hs, with s = L, R, is the Hamiltonian of the s lead,

Hs = −J0

Nlead,s∑
n=1

c†
s,n+1cs,n + H.c., (50)

where c†
s,n is an operator in the spinor representation (46)

with Nlead,s entries, and Nlead,s is the number of sites on the
s lead, which eventually is assumed to approach infinity.
The tunneling Hamiltonian connecting the molecule with the
terminals reads as

V = vc†
1cR,1 + vc†

Nmol
cL,1 + H.c., (51)

where the tunneling matrix element v is taken to be a real
number to preserve the time-reversal symmetry of the entire
Hamiltonian. As seen, the right terminal is connected with the
first site on the molecule, and the left terminal with the last
one; it is assumed that the tunneling between the molecule
and the leads does not mix the orbitals or the spin states.

B. Scattering matrix of the helical junction

The scattering matrix corresponding to our helical junction
is an 8 × 8 matrix, as the scattering waves comprise four-
dimensional spinors [see Eq. (46)]. It is given by the canonical
expression

S = 18 − 2iπW (E )†G(E )W (E ), (52)

where G(E ) is the Green’s function at energy E of the entire
system, the molecule, and the attached terminals. Obviously,
the Green’s function is a matrix of order 4Nmol × 4Nmol, of the
form

G(E )−1 = (E + iη)14Nmol
− Hmol − �(E ), (53)

where η is a positive infinitesimal. The Hamiltonian Hmol is a
4Nmol × 4Nmol matrix derived from Hmol given in Eq. (45),

Hmol = c†
molHmolcmol, (54)

where c†
mol = [c†

1, . . . , c†
Nmol

], each entry of which is the spinor
in Eq. (46). The self energy �(E ) arises from the coupling of
the molecule to the leads,

� = (�L	1 + �R	Nmol
) ⊗ 14, (55)

where 	 j = diag(e j ), e j being an Nmol-component horizon-
tal unit vector whose only nonzero component is the jth
entry which is 1. The self-energy �s, with s = L, R, is the
{1ασ, 1ασ } entry of the lead-s Hamiltonian (50),

�s(E ) = v2
[
(E + iη)14Nlead,s

− Hs)−1
]

1ασ,1ασ

= (v2/J0)
(
z0/2 − i

[
1 − z2

0/4
]1/2)

, (56)

where z0 = (E + iη)/J0, and Hs is written in terms of c†
s =

[c†
s,1, . . . , c†

s,Nlead,s
], as derived from Eq. (50):

Hs = c†
s Hscs. (57)

[Equation (56) is the well-known result for the self-energy
due to coupling with a semi-infinite one-dimensional chain.]
Finally, the hybridization with the leads W (E ) [see Eq. (52)]
is a 8 × 4Nmol matrix

W (E )† = (w† ⊗ 14)vρ(E )1/2, (58)

035445-7



UTSUMI, ENTIN-WOHLMAN, AND AHARONY PHYSICAL REVIEW B 102, 035445 (2020)

where

w† =
[

e1
eNmol

]
=

[
1 0 . . . 0 0
0 0 . . . 0 1

]
(59)

is a 2×Nmol matrix. The matrix of the density of states in
the leads is related to the self-energy −2π iv2ρ(E ) = �(E ) −
�(E )†.

The scattering matrix is self-dual. This can be verified by
noting that the self-energy matrix � is diagonal (and thus
it is obviously self-dual) and the Hamiltonian (54) is self-
dual, Hmol = (1Nmol

⊗ τ0 ⊗ σy)HT
mol(1Nmol

⊗ τ0 ⊗ σy), which
is a consequence of the self-duality of spin-orbit interaction.

C. Numerical results for the spin polarization

As explained in Sec. II C, our two-terminal, two-channel
junction allows for spin polarization solely along z. That
polarization requires explicit results only for the conduc-
tances Gz;ss and G0;ss [the latter is the charge conductance,
see Eqs. (18)]. Exploiting our expressions for the scattering
matrix in Sec. III B, we have computed numerically these
conductances and extracted from them the spin polarization
as a function of the energy E , for right-handed chirality, i.e.,
p = 1 in Eq. (47). All energies are measured in units of J ,
and the bandwidth in the leads is assumed to be equal to that
of the molecule J = J0. (We have found that when this is not
the case, the spin polarization is suppressed.). The strength
of the spin-orbit coupling is chosen to be �so/J = 0.4. This
estimate is based on a bandwidth [9] of 4J ∼ 120 meV and the
intra-atomic spin-orbit coupling energy in carbon nanotubes
[21] �so ∼ 12 meV.

The two panels in Fig. 3 show the z component of the
spin-polarization factor (23), measured at the left lead (a) and
at the right one (b). The thick solid lines correspond to an
optimal configuration explained in the caption. As seen, the
spin polarization is large in the range 2J − 2�so < |E | < 2J ,
and the spin-polarization factors have opposite signs in the
two leads. Since the chirality of the molecule is reversed
when observed from the opposite lead, this fact implies that
the chirality determines the direction of the spin polarization.
In other words, the directions of the spin-polarized currents
flowing through the left and right leads are opposite. This
feature, which might be checked experimentally, is apparently
specific for the two-terminal CISS effect. It was also found
in a study of a non-CISS system, where spin filtering is
established by applying a magnetic field [42].

Figure 4 shows the length dependence of the spin-
polarization factor for a fixed energy E/J = −1.8, where
the positive spin-polarization factor in Fig. 3(b) is the
largest. The spin polarization increases as the molecule
lengthens, as was found in a previous study [12], in ac-
cordance with experiments [1,2]. Importantly, the spin po-
larization becomes almost independent of the length of the
molecule, once the latter exceeds the length of the unit
cell.

Our numerical studies show that a finite value for the
onsite energy ε0 suppresses the spin polarization [Fig. 3(a)].
Likewise, a finite difference �ε between the energies of
two orbitals suppresses the spin polarization [Fig. 3(a)]. The
spin-filtering effect is rather sensitive to the value of the

FIG. 3. Energy dependence of the spin-polarization factor along
z for a right-handed helical molecule of length Nmol = 20, in which
the number of sites in the unit cells is N = 10. The spin-orbit
coupling is �so/J = 0.4. The spin polarization in the left lead, Pz;L , is
shown in (a) and the one for the right lead, Pz;R, is shown in (b). The
thick solid lines are for an optimal configuration: the onsite energies
are all identical for the two orbitals, and the torsion τ vanishes,
�ε/J = ε0/J = τ = 0. The tunnel coupling of the molecule with
the leads is v/J = 1.2. The other curves present the polarization for
deviations away from the optimal situation, as marked in the legends.

tunnel matrix element v [Fig. 3(b)]. Furthermore, one notes
that a reduction in the curvature κ reduces considerably the
spin polarization [Fig. 3(b)]. In our case, �h/R = 18.1 (see
Ref. [44]), and thus the “normalized” curvature is κ ≈ 0.33.
The spin polarization seems to be sensitive to perturbations
which mix left- and right-going waves, such as interface
scattering and scattering between the subsystems induced by a
finite torsion [see Sec. IV for the definition of the subsystems,
in particular, Eq. (63)].

In the next two sections, we substantiate these findings in
two ways. First, we analyze the band structure of an infinite
molecule, and try to relate its characteristics to the appearance
of spin polarization in the transport. Second, we present
explicit expressions for the scattering matrix of the smallest
possible molecule, which are used to derive an analytic result
for the spin polarization.

035445-8



SPIN SELECTIVITY THROUGH TIME-REVERSAL … PHYSICAL REVIEW B 102, 035445 (2020)

FIG. 4. The length dependence of z component of the spin-
polarization factor in the right lead. The energy is fixed at E/J =
−1.8. Other parameters are as in Fig. 3.

IV. BAND STRUCTURE

The energy spectrum of a closed system, i.e., the band
structure, helps to access the origin of the CISS effect
[12,14,17,22]. We derive the spectrum of the Hamiltonian (45)
assuming that the molecule comprises M unit cells and obeys
periodic boundary conditions (the Born–von Karman condi-
tions [45]). It is useful to change the site index n to Nm + n,
where n runs on the sites in the unit cell, n = 1, 2, . . . , N , and
m numbers the unit cells. The periodic boundary condition is
then

cn+NM = cn. (60)

The energy spectrum is discussed for a very long molecule,
i.e., for M → ∞.

The Hamiltonian of the molecule, Eq. (45), is expressed
in terms of the spinors given in Eq. (46). That scheme was
used for studying numerically the scattering matrix of a single
molecule (Sec. III C). However, in order to use all symmetries
in the calculation of the band structure, it is expedient to
reorganize the spinors such that the chain separates into two
subsystems. Accordingly, we define

c†
n;+ = [c†

n;x↑ c†
n;z↓], c†

n;− = [c†
n;z↑ c†

n;x↓], (61)

which are time-reversed partners [46] �c†
n;±σ �−1 = σc†

n;∓σ̄ .
Note that the Pauli matrices act in the pseudospin space,
where up and down spins reside on different orbitals. The
Hamiltonian (45) becomes

Hmol = H+ + H− + H+−, (62)

where H+ and H− correspond to two subsystems

H± =
NM∑
n=1

(
[−Jc†

n+1;±cn;± + H.c.] ± �ε c†
n;±σzcn;±

± pκ�so c†
n;±

[
0 e−ipφn

eipφn 0

]
cn;±

)
(63)

FIG. 5. Ladders threaded by a fractional flux induced by the
helical structure, for three sites in the unit cell. The double arrows
connect the time-reversed partners. The vertical lines represent the
tunneling amplitudes ±�so exp[i2πn/3], connecting the ↑- and ↓-
spin states (that belong to different orbitals) at the nth rung. The site
index n increases from left to right.

are coupled together by H+−,

H+− =
MN∑
n=1

i|τ |�so(c†
n;+cn;− − c†

n;−cn;+). (64)

(The band center ε0 is chosen as the energy reference, ε0 = 0.)
The two Hamiltonians H+ and H− are time-reversed partners,
i.e., �H±�−1 = H∓. Each of those describes a ladder with a
fractional flux resulting from the helical structure, that threads
each window (see Fig. 5). When the “normalized” torsion τ

vanishes (which consequently increases the spin-orbit cou-
pling since the “normalized” curvature κ = √

1 − τ 2 is then
increased), H+− = 0 and the two subsystems are decoupled.

We next apply the Bloch theorem to our periodic system,
using the discrete Fourier expansion

cn;± = 1√
MN

MN−1∑
�=0

eik�n/N ck
�
;±, k� = 2π�

M
, (65)

which obeys the periodic boundary condition (60). Inserting
the expansion (65) into the spin-orbit term of the Hamiltonian
gives

NM∑
n=1

c†
n;±

[
0 e−ipφn

eipφn 0

]
cn;±

=
NM−1∑
�=0

[
0 c†

k�;±↑ck�+2π p;±↓
c†

k�+2π p;±↓ck
�
;±↑ 0

]
. (66)

It follows that it is useful to define new operators ak�;±, such
that

a†
k
�
;+ = [c†

k�;x↑ c†
k�+2π p;z↓],

a†
k�;− = [c†

k�;z↑ c†
k�+2π p;x↓], (67)

to obtain

H± =
MN−1∑
�=0

a†
k�;±H±(k�)ak

�
;±, (68)

with

H±(k�) =
[

E (k�) ± �ε ±pκ�so
±pκ�so E (k� + 2π p) ∓ �ε

]
(69)
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FIG. 6. (a) States mixed by the effective rotating Zeeman field
induced by the spin-orbit interaction (p = 1 and N = 3), as indicated
by the double arrows. States at k = π and −π satisfy the condition
E (k) = E (k + 2π p) (�ε is taken to be finite in both panels, to
distinguish ↑ and ↓ states.) The left (right) panel is for H+ (H−).
Here τ = 0 so that the two subsystems are uncoupled. (b) Cartoon
pictures explaining the origin of ↑- and ↓-spin-polarized states
propagating in the opposite directions (N = 10). The left and middle
panels are for the twosub systems H+ and H−, respectively. The
right panel is for the entire system, H+ + H−. The coordinate axes
x, y, and z refer to the spin directions. The site index n in Eq. (63)
increases along the z axis.

and

E (k�) = −2J cos(k�/N ). (70)

The coupling Hamiltonian connecting the two subsystems, in
terms of the operators (67), is

H+− =
MN−1∑
�=0

i|τ |�so

(
a†

k�;+ak�;− − a†
k�;−ak�;+

)
(71)

and, as mentioned, vanishes when τ = 0.
Notice that in the Bloch Hamiltonian (69), the wave num-

ber of the down spin is shifted to k� + 2π p [see Eq. (67)]. In
the absence of the spin-orbit interaction, this corresponds just
to a shift in the band index, which (as explained below) does
not entail any physical consequences. However, when �so �=
0 this chirality-dependent additional momentum is crucial. In
fact, the effect of the spin-orbit interaction is equivalent to that
of an effective Zeeman field which rotates in the x-y plane
and which causes transitions, between the states |k, x ↑〉 and
|k + 2π p, z ↓〉 for H+, and likewise between the states |k, z ↑
〉 and |k + 2π p, x ↓〉 for H−. This scattering between the
two states is dominant when they are energetically degenerate
E (k) = E (k + 2π p). For �ε = 0, this condition is realized
for k = π (N j − p), where j is an integer. The two panels in
Fig. 6(a) show the states that are mixed when this condition is

realized for a right-handed helix p = 1. The left-going ↑-spin
state with k = −π and the right-going ↓-spin state with k = π

are mixed considerably due to the effective rotating Zeeman
field. On the other hand, the right-going ↑-spin state with
k = π and the left-going ↓-spin state with k = −π are less
affected and thus propagate through the helix. The change of
the chirality from right handedness to left handedness reverses
the direction of this propagation.

Figure 6(b) presents cartoon pictures, meant to explain
intuitively the origin of ↑- and ↓-spin-polarized states propa-
gating in opposite directions. In both subsystems the effective
Zeeman fields rotate around the z axis in the right-hand
direction (left and middle panels). However, the directions of
the effective fields for H+ and H− are opposite (as marked
by the green arrows in the left and middle panels) and they
cancel one another (right panel). Since in each subsystem the
rotating effective field induces a ↑-spin state propagating in
one direction (along the chain in the panels) and a ↓-spin
state propagating in the other direction (thick red and blue
arrows in the left and middle panels), two spin-polarized states
are realized without breaking time-reversal symmetry (right
panel).

For τ = 0 and κ = 1 the Hamiltonians H± given in
Eq. (69) are easily diagonalized. Denoting the band index
by q, q = 1, 2, . . . , N , the energy takes the form Eq(k) ≡
E (k + 2πq). Each of these (uncoupled) Hamiltonians can be
written as

H±(k) = εc(k, q)

+
√

[εd (k, q) ± �ε]2 + �2
son̂±(k, q) · σ, (72)

where

εc(k, q) = [Eq(k) + Eq+1(k)]/2,

εd (k, q) = [Eq(k) − Eq+1(k)]/2, (73)

and

n̂±(k, q) = {sin[θ±(k, q)], 0, cos[θ±(k, q)]}. (74)

The angles θ±(k, q) are the tilting angles of the pseudospin
away from the z axis, caused by the spin-orbit interaction
within each ladder,

θ±(k, q) = arctan{±�so/[εd (k, q) ± �ε]}. (75)

The eigenvalues of the matrix n̂±(k, q) · σ are β ≡
±1 and the eigenenergies are E±,β (k, q) = εc(k, q) +
β[(ε−(k, q) ± �ε)2 + �2

so]1/2, with E+,β (−k, N − 1 − q) =
E−,β (k, q). The z component of the quantum average
of the spin is given by 〈β; n̂±(k, q)|σz|β; n̂±(k, q)〉 =
β cos[θ±(k, q)], where |n̂±(k, q)〉 is the eigenket of H±(k, q),
and cos[θ+(−k, N − 1 − q)] = cos[θ−(k, q)].

The energy dispersion is presented in Fig. 7, within the
extended-zone scheme: the first Brillouin zone is in the range
−π < k � π , while the bands are given in the range −πN <

k � πN . The spectrum is calculated for τ = 0, when the two
subsystems are not coupled, and p = 1 for the handedness.
The corresponding spectra are shown in the left (for H+)
and right (for H−) panels. Time-reversed pairs of states
�ak�;±σ �−1 = σa−k�−2π p;∓σ̄ are connected by double arrows.
In each panel, the color scheme indicates the z component of
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FIG. 7. Two energy bands in the extended-zone scheme for 10
sites in the unit cell and right-handed chirality, calculated for τ = 0,
i.e., when the two subsystems described by H+ and H− are decou-
pled. The color scheme indicates the z component of the average
spin (red for ↑ spins and blue for ↓ spins, see the color bar), and
the double arrows connect time-reversed partners. The top (bottom)
panels are for zero (finite) spin-orbit coupling, marked in the figures.
In all plots, the onsite energies vanish for both orbitals. In the absence
of the spin-orbit interaction, the ↓-spin band is shifted by −2π with
respect to the ↑-spin band. A finite value of this coupling (bottom
panels) causes avoided crossings. These occur at the boundaries of
the Brillouin zone [k/(2π ) = − 1

2 , 9
2 ].

the pseudospin β cos[θ±(k, q)], and the spin-resolved bands
are shifted by −2π with respect to one another. In the top
panels, the spin-orbit coupling is set to be zero; in that
case −2π only changes the band index in the extended-zone
scheme. When the spin-orbit interaction is active (the bottom
panels of Fig. 7), there appear avoided crossings at boundaries
of the Brillouin zone, k = −π and 9π . As seen, there are
two ↑ - (↓ -) spin-polarized right- (left-) going modes within
the energy range −2J < E < −2J + 2�so, which implies
positive spin polarization in the right lead, Pz;R > 0. On the
other hand, in the range 2J − 2�so < E < 2J , there are two
↓ - (↑ -) spin-polarized right- (left-) going modes, which
implies negative spin polarization in the right lead, Pz;R < 0.
This explains qualitatively the tendency seen in the numerical
result, Fig. 3(b). (Recall that the polarization is almost length
independent once the molecule comprises more than a single
unit cell, Fig. 4.)

The avoided crossings in the two bottom panels of Fig. 7
result from the interplay between the helical structure and the
spin-orbit interaction. Such an interplay has been pointed out
before for the Rashba-type SOI, where it appeared as a cutoff
of the period of oscillation of the mechanical torque (which
is equivalent to spin current) as a function of the length of
molecule [44].

It is worthwhile to emphasize that the separation of the
molecule into two subsystems described by H±, realized
when torsion τ vanishes (and is beneficial for increasing the
spin-orbit coupling), implies a reflection matrix as the one
given by Eq. (24). This is further detailed in Sec. V. For zero

torsion, an electron moving on the periodic chain encircles
the spiral curved line of the molecule [see Eqs. (45) and (47)]:
the right- (left-) going electron encircles the path in the anti-
clockwise (clockwise) sense, propagating toward the positive
(negative) direction of the curved helix (cf. Fig. 7), drawn for
p = 1. In this respect, the directions of spin and propagation
are parallel [in the energy range −2J < E < −2(J − �so)]
or antiparallel [for 2(J − �so) < E < 2J]. Such states were
discussed previously in Ref. [17].

V. ANALYTIC RESULTS FOR THE SCATTERING MATRIX

A. Symmetries of the scattering matrix

It is illuminating to study the symmetries of our model
Hamiltonian, as those are reflected in the scattering matrix,
in particular in the “spin conductance” Gj;ss̄ for j �= 0, given
in Eq. (17). We first show that Gz;s̄s is independent of the
sign of the intra-atomic spin-orbit coupling �so. This feature
contradicts our findings in Sec. II D for spin filtering in a
quantum point contact: in that case, the chirality depends on
the sign of the electric field inducing the Rashba interaction
and consequently the spin-polarization factor changes sign
with the sign of that coupling.

The sign of the spin-orbit coupling in the Hamiltonian is
reversed by transforming the tangent vector t(φn) [Eq. (47)]:

(τz ⊗ σ0)[�soτy ⊗ t (φn) · σ](τz ⊗ σ0)

= −�soτy ⊗ t (φn) · σ, (76)

that is, the Hamiltonian (54) satisfies

Hmol(−�so)

= (1Nmol
⊗ τz ⊗ σ0)Hmol(�so)(1Nmol ⊗ τz ⊗ σ0). (77)

As the scattering matrix obeys the same symmetry, it follows
that Gz;s̄s(�so) = Gz;s̄s(−�so).

The symmetry with respect to the interchange of the left
and right leads is also of interest. The interchange of the two
edges of the molecule corresponds to a change of the site in-
dex n → Nmol + 1 − n, transforming in turn the Hamiltonian
(45) into

H̃mol =
Nmol−1∑

n=1

(−Jc†
n+1cn + H.c.) +

Nmol∑
n=1

ε0c†
ncn

+ �εc†
nτz ⊗ σ0cn

+ �soc†
nτy ⊗ t

(
φNmol+1 − φn

) · σcn

= (
τz ⊗ σxUNmol+1

)
Hmol

(
τz ⊗ U †

Nmol+1
σx

)
, (78)

where Un is given in Eq. (B10). The scattering matrix is
transformed as well:(

12 ⊗ τz ⊗ σxUNmol+1

)
S
(
12 ⊗ τz ⊗ σxU

†
Nmol+1

)
. (79)

Equation (17) then implies that the interchange of the left and
right leads changes the sign of the spin-polarization factor
Gz;ss̄(p) = −Gz;s̄s(p). Using the relation between the original
scattering matrix and the scattering matrix in the pseudospin
basis (89),

S =
∑
±

(12 ⊗ q±†)S±(12 ⊗ q±), (80)
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where q± = (	±,	∓), and the relation(
τz ⊗ σxUNmol+1

)
q†

− = q†
+(iσy)U †

Nmol+1, (81)

it is seen that the analytic expression for the scattering matrix
satisfies the relation (79).

Next, consider the transformation that reverses the sign of
the chirality index p. Since (τx ⊗ σy)[τy ⊗ t (φn, p) · σ](τx ⊗
σy) = τy ⊗ t (φn,−p) · σ, we find

Hmol(−p) = (
1Nmol

⊗ τz ⊗ σy

)
Hmol(p)

(
1Nmol ⊗ τz ⊗ σy

)
.

(82)

Then, Eq. (17) (keeping in mind that the scattering ma-
trix obeys the same symmetry) implies that Gz;s̄s(p) =
−Gz;s̄s(−p). Since p appears only in conjunction with the
spin-orbit coupling �so, it follows that in the absence of this
coupling Gz;s̄s = −Gz;s̄s = 0, as anticipated.

However, there is a situation in which the spin-orbit cou-
pling is finite, yet Gz;s̄s = 0. This happens when there are two
sites in the unit cell, and hence φn = πn which implies that the
x component of the tangent vector t(φn) [Eq. (47)] vanishes.
As a result, the Hamiltonian is independent of σx. In that case,
one may apply a transformation that flips the spin and the
orbital, which has the same form as in Eq. (82), except that

σy there is replaced by σx and the sign of p is unchanged.
The Hamiltonian and the scattering matrix are invariant under
such a transformation, but Gz;s̄s = −Gz;s̄s, which prevents spin
filtering.

B. Analytic expressions

It follows that the minimal number of sites in the unit cell,
required for spin filtering, is N = 3. In the remaining part of
this section we examine the scattering matrix of a molecule
comprising a single unit cell with three sites. The calculation
is carried out exploiting the wide-band limit which assumes
that J0 → ∞ while the self-energy �s(E ) = −iv2/J0 ≡ −i�
[Eq. (56)] remains finite. In that limit, the Green’s function
(53) of the entire system becomes

G(E )−1 =E14Nmol
− Hmol + iπWW †, (83)

where

π WW † = �[diag({1, 0, 0}) + diag({0, 0, 1})] ⊗ 14. (84)

The Hamiltonian Hmol is presented in Secs. III A and III B
in the spinor scheme (46), and in Sec. IV by the spinor scheme
(61). Within the first scheme, the Hamiltonian for the three-
site molecule (N = 3, M = 1) is

Hmol = J

⎡
⎢⎢⎢⎢⎢⎣

0 −it (φ1) · σ −σ0 0 0 0
it (φ1) · σ 0 0 −σ0 0 0

−σ0 0 0 −it (φ2) · σ −σ0 0
0 −σ0 it (φ2) · σ 0 0 −σ0
0 0 −σ0 0 0 −it (φ3) · σ

0 0 0 −σ0 it (φ3) · σ 0

⎤
⎥⎥⎥⎥⎥⎦, (85)

where each entry is a real quaternion number, which ensures that the Hamiltonian is a self-dual matrix [47]. Our aim in this
section is to derive analytically the spin polarization pertaining to a self-dual Hamiltonian, for the simplified situation where the
torsion τ vanishes (and then the curvature parameter κ is simply 1). In that case, as shown in Sec. IV, the Hamiltonian separates
within the spinor scheme (61) into two decoupled Hamiltonians Hmol;±, which is rather advantageous for the algebra. Choosing
in addition �so = J , Eq. (63) [see also Eq. (54)] yields

Hmol,± = −J

⎡
⎣±pUσxU

† σ0 0
σ0 ±pU 2σx(U †)2 σ0
0 σ0 ±pU 3σx(U †)3

⎤
⎦, U = exp[−ipπσz/3] = (σ0 − ip

√
3σz )/2, (86)

with U 3 = −σ0 and Uσx = σxU
†. The Green’s function corresponding to the Hamiltonian (86) is also a block-diagonal matrix

G−1 = diag(G−1
+ , G−1

− ); assuming for simplicity that � = J , and using the notation z = E/J , we find

G−1
± =JU †

⎡
⎣g−1

± σ0 0
σ0 h−1

± σ0
0 σ0 σxg−1

± σx

⎤
⎦U, (87)

where

g−1
± =(z + i)σ0 ± U † pσxU, h−1

± = zσ0 ± pσx. (88)

The scattering matrix requires the entries 11, 13, 31, and 33 of the inverse matrix (87) because only those sites are connected
with the leads [48]. These entries correspond to RR, RL, LR, and LL, respectively [see Fig. 2(b)]. For our simple model, it is

S±(E ) = 14 − 2iJ

[
[G±]11 [G±]13

[G±]31 [G±]33

]
=

[
σ0 − 2iU †[g± + g±D±g±]U −2iU †g±D±σxg±σxU

−2iU †σxg±σxD±g±U σ0 − 2iU †[σxg±σx + σxg±D±g±σx]U

]
(89)

with D± = [h−1
± − g± − σxg±σx]−1, which commutes with σx.

The explicit calculations of the scattering matrix are presented in Appendix C. There, it is found that

− 2iJ[G±]13 = B0σ0 ± i[pBxσx + Byσy] + ipBzσz, (90)
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where

B0 = [2 f1(z) + 2 − iz]/
[

f 2
1 (z) + f 2

2 (z)
]
,

Bx = (1 + iz)/
[

f 2
1 (z) + f 2

2 (z)
]
,

By =
√

3(1 + iz)/
[

f 2
1 (z) + f 2

2 (z)
]
,

Bz = −
√

3(2 − iz)/
[

f 2
1 (z) + f 2

2 (z)
]
, (91)

and

12 − 2iJ[G±]11 = A0σ0 ± i(pAxσx + Ayσy), (92)

where

A0 = 1 − 2[(1 − iz − z2) f1(z)

+ (1 − iz) f2(z)]/
[

f 2
1 (z) + f 2

2 (z)
]
,

Ax = −iz f1(z)/
[

f 2
1 (z) + f 2

2 (z)
]
,

Ay = −
√

3
[ − iz f1(z) + 2 f2(z)

]
/
[

f 2
1 (z) + f 2

2 (z)
]
. (93)

Here, we have introduced

f1(z) = 2(1 − iz)2 + iz3,

f2(z) = 2 + (1 − iz)2. (94)

The other two entries of the scattering matrix are derived in a
similar way. Thus, at zero energy (z = 0) the scattering matrix
comprises real quaternions.

The results derived above pave the way to obtain an explicit
expression for the spin polarization. As seen from Eq. (23),
the polarization is a quotient of two conductances, given in
Eq. (17):

Gj;RL = 1

2π
Tr

⎧⎨
⎩

∑
γ ′=±

(	γ ′σ j	γ ′ )
∑
γ=±

([Sγ ]RL[S†
γ ]LR)

⎫⎬
⎭, (95)

where 	+ = diag(1, 0) and 	− = diag(0, 1), and the trace
is carried out in the pseudospin space. Put differently, the
conductances corresponding to the two subsystems are added
together. The first factor in the trace implies that in our model
only G0,RL and Gz,RL differ from zero. Using Eqs. (90) and
(91) one finds

Gz;RL = 48
√

3pz/
(
2π | f 2

1 (z) + f 2
2 (z)|2), (96)

while Eqs. (92) and (93) yield

G0;RL = 1

2π

8[9 + 2z2 − z4 + | f1(z)|2]

| f 2
1 (z) + f 2

2 (z)|2 . (97)

Consequently,

Pz;R = 6
√

3pz

9 + 2z2 − z4 + | f1(z)|2 . (98)

This expression for the polarization is in full agreement with
the numerical results presented in Sec. III C for large enough
J0, v/J = √

J0/J = √
100. In particular, it shows that the po-

larization vanishes at zero energy (z = E/J = 0) and reverses
its sign with that of the chirality parameter p. As seen in
Sec. V A, interchanging the roles of the left and right leads
reverses the direction of the spin polarization Pz;R = −Pz;L .

VI. SUMMARY

We have demonstrated that spin-resolved transport can
be achieved in a helix-shaped system described by a time-
reversal symmetric Hamiltonian and connected to two leads.
Whether such a phenomenon is possible in principle has
been debated and discussed in the literature for quite some
time. Indeed, while the Bardarson theorem prevents spin
selectivity in a single channel, or a single subband, junctions
obeying time-reversal symmetry, this is not the case with such
junctions that support more channels, or subbands. Focusing
on the two-channel case, we show that quite generally, its
8 × 8 scattering matrix has two pairs of doubly degenerate
transmission eigenvalues (the central point in Bardarson’s
theorem) but those correspond to pairs of identical spins
belonging to different channels (or different subbands), and
hence allow for spin selectivity. Technically speaking, we
find that the scattering matrix of the the two-orbital-channel
junction consists of complex quaternions, a property identical
to spin selectivity.

We substantiate our scenario by introducing a toy model for
a DNA-like molecule, that supports p orbitals with anisotropic
intra-atom spin-orbit interactions. Solving numerically the
scattering matrix of such a molecule, we obtain the resulting
spin polarization, and relate it to the band structure of the
molecule when detached from the leads. Our model can
be mapped onto two single-orbital tight-binding chains with
effective rotating Zeeman fields induced by the spin-orbit
interaction. The key feature is that although the effective ro-
tating fields in the two subsystems possess the same chirality,
i.e., left or right handedness, their directions are opposite
and they cancel each other in the entire system. To further
affirm the numerical results, we consider a particularly simple
version of the toy model, and solve it analytically, obtaining
an expression for the spin polarization.

The effective fields resulting from the spin-orbit interaction
induce two spin-polarized states, with ↑ and ↓ spins propa-
gating in opposite directions, without breaking time-reversal
symmetry. Although the scenario we propose yields signif-
icant spin polarization for zero torsion (and a finite torsion
spoils the perfect spin polarization), it may explain the origin
of the chirality-induced spin selectivity in certain organic
molecules. In a recent paper [49], it has been demonstrated
quite generally that chiral crystals with spin-orbit coupling
host Kramers-Weyl fermions, which cause unconventional
transport properties. It would be interesting to analyze the
CISS effect from such a general viewpoint.

From the experimental point of view, perhaps the main fea-
ture that we find is the strong dependence of the spin-filtering
effect on the energy of the charge carriers, in addition to its
dependence on the chirality parameter of the helix-shaped
molecule. The latter results in an experimentally accessible
property: the directions of the spin polarizations in the left
and the right leads are opposite.
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APPENDIX A: EFFECTIVE QUASI-ONE-DIMENSIONAL
HAMILTONIAN FOR A QUANTUM POINT CONTACT

The full Hamiltonian of a two-dimensional electron gas
confined to a point contact potential and subjected to the
Rashba interaction is

HQPC = p̂2
x + p̂2

z

2me

+ U (x; z) + kso

me

(σx p̂z − σz p̂x ), (A1)

where p̂x(z) = −i∂x(z) are the components of the momen-
tum. As stated in the main text, the wave function is de-
composed to be ϕ(x, z) = ∑

α′ ψα′ (x)χα′ (z; x). Multiplying
the resulting Schrödinger equation HQPCϕ(x, z) = Eϕ(x, z)
on both sides by χ∗

α (z; x), and integrating over z, yields∑∞
α′=1 Hα,α′ψα′ (x) = Eψα (x), where

Hα,α′ = 1

2me

∞∑
α′′=1

[( p̂x − ksoσz )δα,α′′ + Aα,α′′ (x)]

× [( p̂x − ksoσz )δα′′,α′ + Aα′′,α′ (x)]

+ E⊥,α (x)δα,α′ + Vα,α′σx − k2
so

2me

δα,α′ . (A2)

This expression is still exact [50]. Here,

Aα,α′ (x) =
∫

dz χ∗
α (z; x) p̂xχα′ (z; x) = A∗

α′,α (x).

Equation (A2) is derived by exploiting the completeness
relation [50]

∞∑
α=1

χα (z; x)χ∗
α (z′; x) = δ(z − z′), (A3)

which yields

p̂xAα,α′ =
∫

dz χ∗
α (z; x) p̂2

xχα′ (z; x) −
∞∑

α′′=1

Aα,α′′Aα′′,α′ .

(A4)

For | p̂x ln ψα (x) ± kso| � |Aα′,α′′ | the matrix element Aαα′
can be discarded for the relevant channels α and α′; in that
case, one obtains Eq. (38).

When the confining potential is mirror symmetric,
U (z; x) = U (z; −x), the quasi-one-dimensional Hamiltonian
(A2) is invariant under the simultaneous reflections x →
−x and p̂x → −p̂x, together with a spin flip σz → −σz
[since Aα,α′ (x) → −Aα,α′ (x) as χα (z; x) = χα (z; −x); note
that x acts as a parameter in the Schrödinger equation
H⊥(z; x)χα (z; x) = E⊥,α (x)χα (z; x)]. As a result, the reflec-
tion parts of the scattering matrix are invariant under a swap
of the lead indices L ↔ R and the spin indices ↑↔↓:

rασ,α′σ ′ = r′
ασ̄ ,α′σ ′ . (A5)

The quasi-one-dimensional Hamiltonian (A2) satisfies

Hα,α′ (−kso) = σyHα,α′ (kso)σy. (A6)

This symmetry is reflected in the symmetry of the scattering
matrix

S(−kso) = (12 ⊗ 1Ns
⊗ σy)S(kso)(12 ⊗ 1Ns

⊗ σy), (A7)

where Ns = ∞ is the number of channels (see Sec. V for a
discussion of symmetries of the scattering matrix). It follows
that reversing the sign of kso would reverse the signs of the z
and x components of the spin.

APPENDIX B: EFFECTIVE HAMILTONIAN OF A
TWO-ORBITAL SINGLE-STRANDED DNA WITH

INTRA-ATOMIC SPIN-ORBIT COUPLING

The radius vector to a point on a continuous helix of radius
R and pitch �h is conveniently represented by the Frenet-
Serret formulas. For the helix in Fig. 2(a),

R(φ) = {R cos(φ), R sin(pφ),�h φ/(2π )}, (B1)

where p = 1 (p = −1) for a helix twisted in the right-handed
(left-handed) sense. In the Frenet-Serret frame, the tangent t
(along the helix), normal n, and binormal b vectors at a point
on the helix are

t (φ) = {−κ sin(φ), pκ cos(φ), |τ |},
n(φ) = {− cos(φ),−p sin(φ), 0},
b(φ) = t (φ) × n(φ) = {p|τ | sin(φ),−|τ | cos(φ), pκ}, (B2)

where the normalized curvature and torsion, κ and τ , are

κ = R√
R2 + [�h/(2π )]2

≡ cos(θ ),

τ = p�h/(2π )√
R2 + [�h/(2π )]2

≡ p sin(θ ). (B3)

The position of the nth site in the tight-binding scheme is
specified by the radius vector R(φn), where the increment of φ

between neighboring sites is �φ = 2π/N , and φn = 2πn/N .
Using Eq. (B1), the wave function of the pα orbital (α =
x, y, z) at the nth site is ψα[r − R(φn)]δσ ′,σ = 〈r|n; α, σ 〉. The
ket vector is expressed in terms of the “bare” creation spinor
operator and the vacuum state, i.e., |n; α, σ 〉 = c̃†

n;α,σ |0〉. The
time reversal of the bare annihilation operator is given by
�c̃n;α�−1 = iσyc̃n;α . In terms of the bare operators, the tight-
binding Hamiltonian for the model of a single-stranded DNA
molecule is

Hmol =
( Nmol−1∑

n=1

−c̃†
n+1J ⊗ σ0c̃n + H.c.

)
+

Nmol∑
n=1

ε0 c̃†
nc̃n

− 2�so c̃†
nL · Sc̃n + Kt c̃†

n[(t (φn) · L)2 − 13]c̃n

+ �ε c̃†
n[(b(φn) · L)2 − (n(φn) · L)2]c̃n, (B4)

where

c̃†
n = [c̃†

n;x↑ c̃†
n;x↓ c̃†

n;y↑ c̃†
n;y↓ c̃†

n;z↑ c̃†
n;z↓]. (B5)

The first term on the right-hand side of Eq. (B4) describes the
tunneling between nearest-neighbor sites, with the tunneling
amplitude J being a 3 × 3 matrix in the orbital space. For
simplicity we assume that this matrix is isotropic, J = J13.
In the second term ε0 is the onsite potential energy. The

035445-14



SPIN SELECTIVITY THROUGH TIME-REVERSAL … PHYSICAL REVIEW B 102, 035445 (2020)

third term on the right-hand side of Eq. (B4) represents the
intra-atomic spin-orbit interaction whose strength is denoted
�so. Here, L = (Lx, Ly, Lz ) is the vector of the orbital angular-
momentum operators

Lx =
⎡
⎣0 0 0

0 0 −i
0 i 0

⎤
⎦, Ly =

⎡
⎣ 0 0 i

0 0 0
−i 0 0

⎤
⎦,

Lz =
⎡
⎣0 −i 0

i 0 0
0 0 0

⎤
⎦, (B6)

and S = σ/2 is the vector of the spin angular momentum,
with σ being the vector of the Pauli matrices. The other terms
in the Hamiltonian describe orbital anisotropies. We assume
that all electric fields generated by neighboring atoms are
accounted for by the onsite orbital anisotropies. The leading
anisotropy (the fourth term in the Hamiltonian) is the one
along the spiral axis, i.e., along the tangential direction t (φn);
the corresponding energy Kt is assumed to be much larger than
the other anisotropies. This assumption may be justified by
noting that the wave function spreading along the spiral axis
is strongly affected by the crystal field generated by atoms
in the neighboring sites. The last term on the right-hand side
of Eq. (B4) refers to the other two anisotropies, with �ε

being the difference between the anisotropy energies along the
normal direction n(φn) and the binormal direction b(φn).

It is convenient to perform a rotation in real space of the
“bare” operators c̃n, such that

cn = Onc̃n, (B7)

where

On = eiLxθpeiLz pφn . (B8)

Here, θp = θ for p = 1 and θp = π − θ for p = −1. This
unitary transformation does not change the time-reversal rela-
tion of the annihilation operator, as �cn�

−1 = On�c̃n�
−1 =

iσycn. The orthonormal basis vectors of a local coordinate
system are chosen to be {−n(φ), t (φ), b(φ)} [Eqs. (B2)].
(Although not the standard choice of the Frenet-Serret frame,
it is a convenient one because for φ = 0 and θ = 0 the
vectors −n, ±t , and ±b are along the x, y, and z axes for
p = ±1, respectively.) The inner products in Eq. (B4) for
the Hamiltonian are then all diagonal: −n(φn) · L = O†

nLxOn,
t (φn) · L = O†

nLyOn, and b(φn) · L = O†
nLzOn.

By exploiting the relation L2
α = 13 − |α〉〈α| (α = x, y, z),

we obtain

c̃†
n[13 − (t (φn) · L)2]c̃n = c†

n|y〉〈y|cn,

c̃†
n[13 − (n(φn) · L)2]c̃n = c†

n|x〉〈x|cn,

c̃†
n[13 − (b(φn) · L)2]c̃n = c†

n|z〉〈z|cn. (B9)

Since the spin-orbit coupling conserves the total angular
moment [L + S, L · S] = 0 for each component of the total
angular momentum, the unitary transformation

Un = eiSxθpeiSz pφn , (B10)

in conjunction with the rotation (B8) commutes with L · S,
i.e., [UnOn, L · S] = 0. It follows that

c̃†
nL · Sc̃n = c†

nOn L · S O†
ncn

= c†
nU †

n UnOn L · S O†
nU †

n Uncn

= c†
nL · U †

n SUncn. (B11)

As a result, the Hamiltonian (B4) is diagonal in the orbital
anisotropy terms

Hmol =
∑

n

−c†
n+1J13 ⊗ σ0cn + H.c. + ε0c†

ncn

− 2�soc†
n L · (U †

n SUn) cn

+ �εc†
n(|x〉〈x| − |z〉〈z|)cn − Kt c

†
n|y〉〈y|cn. (B12)

The price to pay is the rotation of spin axis.
In the limit of a strong orbital anisotropy, i.e., Kt → ∞,

only the px and pz orbitals contribute to the transport. In
this limit, the effective Hamiltonian acts in the px and pz

orbital space, and the operator vector cn contains only four
components [see Eq. (46)]. Introducing the Pauli matrices
that act on the orbital degrees of freedom τα , we obtain the
effective Hamiltonian

Hmol =
(∑

n

−c†
n+1Jτ0 ⊗ σ0cn + H.c.

)
+ �ε c†

nτz ⊗ σ0cn

− +2�soc†
n τy(U †

n SyUn)cn + ε0c†
ncn. (B13)

The Hamiltonian (45) is obtained upon using

2�soτy(U †
n SyUn) = �soτy ⊗ t (φn) · σ. (B14)

Note that this effective Hamiltonian describes a quasi-one-
dimensional wire since the px and pz orbitals allow for a rota-
tion around the spiral axis, the thick curved line in Fig. 2(a).
Therefore, our scheme shares a certain similarity with the
helix-shaped tube model discussed in Refs. [15,16].

APPENDIX C: TECHNICAL DETAILS FOR SEC. V

It is expedient to present the entries of the matrix in
Eq. (89) in terms of (complex) quaternions. This is achieved
by noting that

ig± = g0σ0 ∓ ig · σ, (C1)
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where

g0 = (1 − iz)/[(1 − iz)2 + 1],

g = {gx, gy, 0} = ({p,
√

3, 0}/2)/[(1 − iz)2 + 1]. (C2)

It follows that

iD± = D0σ0 ± iD · σ, (C3)

where

D0 = f1(z)[(1 − iz)2 + 1]/ f 2
1 (z) + f 2

2 (z),

D = x̂p f2(z)[(1 − iz)2 + 1]/ f 2
1 (z) + f 2

2 (z), (C4)

with

f1(z) = 2(1 − iz)2 + iz3,

f2(z) = 2 + (1 − iz)2. (C5)

For z = 0, both ig± and iD± are real quaternions.
The explicit expressions for the entries of the matrix in

Eq. (89) are straightforward to derive. Thus, the expression
that appears in upper off-diagonal entry is

− ig±D±σxg±σx

= 1

f 2
1 (z) + f 2

2 (z)

([
f1(z) + 1 − iz

2

]
σ0

+ i

{
∓ p(1 + iz) , 0 ,−p

√
3

(
1 − iz

2

)}
· σ

)
. (C6)

The transformation U rotates an arbitrary vector v in the x-y
plane

U †σ · vU = σx

[
−1

2
vx + p

√
3

2
vy

]

+ σy

[
− p

√
3

2
vx − 1

2
vy

]
+ σzvz, (C7)

making the upper off-diagonal entry of the scattering matrix
(89) to be

− 2iJ[G±]13 = −2iU †g±D±σxg±σxU, (C8)

leading to Eqs. (90) and (91) in the main text.
Likewise, the expression that determines the upper diago-

nal entry is

− ig± − ig±D±g±

= 1

f 2
1 (z) + f 2

2 (z)

×
(

− [(1 − iz − z2) f1 + (1 − iz) f2]σ0

± i

{
p

2
[−iz f1 + 3 f2] ,

√
3

2
[−iz f1 + f2] , 0

})
, (C9)

which leads to

12 − 2iJ[G±]11 = σ0 − 2iU †[g± + g±D±g±]U . (C10)

This expression yields Eqs. (92) and (93) in the main text.
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