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Characterization of a Weyl semimetal using a unique feature of surface plasmon polaritons
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We theoretically investigate the decay constant of surface plasmon polaritons in a Weyl semimetal and propose
an experimental method for detecting Weyl semimetals. It is revealed that the surface plasmon polariton in a
Weyl semimetal exhibits various characteristics depending on the plasmon wave vector. It can be a pure surface
wave, a pseudosurface wave that couples with a bulk plasmon, or a generalized surface wave with complex
decay constants. Such diverse surface plasmon characteristics are peculiar to Weyl semimetals that obey axion
electrodynamics. The results suggest that the measurement of the decay length, the inverse of the decay constant,
can be a powerful experimental probe for identifying Weyl semimetals.
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I. INTRODUCTION

The Weyl fermion, which is a massless spin-1/2 parti-
cle satisfying the Weyl equation, was theoretically predicted
in 1929 [1]. Its experimental verification has been a long-
standing problem in the field of high-energy physics. In the
field of condensed-matter physics, it has recently been pre-
dicted that low-energy elementary excitations (quasiparticles)
in some kinds of topological materials can be regarded as
Weyl fermions [2–7]. The experimental verification and syn-
thesis of such materials, referred to as Weyl semimetals, has
attracted attention [8–25]. Due to the nontrivial band topology
[26–28] of Weyl semimetals that consist of a pair of Dirac
dispersions (Fig. 1), it has been theoretically predicted that
Weyl semimetals exhibit surface state effects by Fermi arc
[29–33], anomalous transport phenomena [3,7,26,31,34–43],
optical [16,44–53], electromagnetic [7,51,54–65], and density
responses [66–69].

In particular, Weyl semimetals exhibit exotic
electromagnetic effects because they are effectively
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described by Maxwell’s equations with axion modifications
[16,44,51,54,70]. Electromagnetic properties in a Weyl
semimetal are derived from the effective action

S = e2

4π h̄c

∫
dtdrθ (r, t )E · B, (1)

where E (B) is the electric (magnetic) field and θ (r, t ) char-
acterizes a topological property. For a time-reversal-breaking
system, which is studied in the present paper, θ (r) = 2b · r,
where b is the wave vector that connects the two Weyl points
in the reciprocal space, as shown in Fig. 1.

A wave vector b can be controlled by modifying material
parameters. Indeed, once a Hamiltonian is given, b can be
expressed as variables in the Hamiltonian. For example, the
following expression of the magnitude of b has been given for
the topological insulator superlattice [4]

|b| = 2

d
cos−1

(
�2

S + �2
D − m2

2�S�D

)
, (2)

where d is the multilayer period of the superlattice, �S (�D) is
the hopping parameter, which describes tunneling between top
and bottom surfaces within a given (neighboring) topological
insulator layer(s), and m is the amplitude of the exchange
spin splitting of the surface states induced by doped magnetic
impurities. It is noted that Eq. (2) is valid only in a Weyl
semimetal region that satisfies −m + �S � �D � m + �S

2469-9950/2020/102(3)/035443(8) 035443-1 ©2020 American Physical Society

https://orcid.org/0000-0003-2081-1110
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.035443&domain=pdf&date_stamp=2020-07-30
https://doi.org/10.1103/PhysRevB.102.035443


KOTA TSUCHIKAWA et al. PHYSICAL REVIEW B 102, 035443 (2020)

bE

kx

ky

FIG. 1. Energy band of a Weyl semimetal with vector b that
connects the Weyl points.

and �D � m − �S . A Weyl semimetallic state arising from
the topological superlattice is expected to be realized in GeTe-
Sb2Te3 superlattices [71].

In Ref. [51], Hofmann and Das Sarma theoretically showed
a peculiar surface plasmon polariton (SPP) dispersion in
Weyl semimetals, where the dispersion curve disappears in a
certain wave-vector region. However, the details of the elec-
tromagnetic phenomena in the coexistence region are not fully
understood. In this paper, we thus theoretically investigate the
decay constant of the SPP in Weyl semimetals, which is the
inverse of the decay length of SPPs into a bulk region. From
the analysis of the decay constant, we elucidate the peculiar
feature of the SPP in Weyl semimetals.

II. THEORY

In this section, we briefly review the theory of SPPs in
Weyl semimetals [51]. For a Weyl semimetal under the condi-
tions of neutral charge and zero current, the wave equation for
electric field E (that for magnetic field H is not shown here)
can be easily derived from the action (1) as

∇ × (∇ × E ) + 1

c2

∂2

∂t2
D = 0, (3)

where D is given as

D = ε1(ω)E + iε2(ω)êb × E, (4)

where êb ≡ b/|b|. For Eq. (4), we define the dielectric func-
tions

ε1(ω) = ε0εb

(
1 − ω2

p

ω2

)
, (5)

ε2(ω) = ε0εb
ω2

b

ω2
, (6)

where ωp =
√

4e2

3π h̄vFεb

EF
h̄ is the plasmon frequency of a Weyl

semimetal [68], where vF is the Fermi velocity and EF is the
Fermi energy, and ωb ≡ 2e2|b|/π h̄εb. Throughout this paper,

Case A Case B Case C

b b b
q q q
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FIG. 2. Geometry of the interface between a vacuum and a Weyl
semimetal. The Weyl semimetal is located in the negative half z � 0,
and there is a vacuum in the positive half z > 0.

we adopt the following value for the static dielectric constant
of a Weyl semimetal, εb = 13 for Eu2Ir2O7 [16], which is a
candidate Weyl semimetal.

It is apparent from Eq. (4) that the dielectric tensor has off-
diagonal components ε2 due to the chiral anomaly represented
by the θ term. Therefore, a Weyl semimetal may exhibit
an anisotropic response to an electromagnetic field, similar
to other materials doing so in the presence of an external
magnetic field.

For solving the wave equation [Eq. (3)], we assume the
following geometry: A Weyl semimetal is located in the
negative half z � 0, and there is a vacuum in the positive half
z > 0 (see Fig. 2). The wave equation is solved assuming the
plane wave

E = E0eiqxx+iqyye−κ|z|e−iωt , (7)

where qx(qy) and ω are, respectively, the wave vector and
frequency of a plasmon at the interface of the Weyl semimetal
and the vacuum (the xy plane), and κ is the decay constant
used to express the inverse of the decay length for the evanes-
cent wave along the z direction.

For considering the SPP, the following three configurations
are possible depending on the relative direction between the
wave vector q of the plasmon and the vector b (see also Fig. 2)
[51].

(i) Case A (Perpendicular configuration):
q ‖ xy plane and b ‖ z axis,

(ii) Case B (Faraday configuration):
q ‖ xy plane and b ‖ xy plane (q ‖ b),

(iii) Case C (Voigt configuration):
q ‖ xy plane and b ‖ xy plane (q ⊥ b).

We set q = (q, 0, 0) hereafter. The SPP dispersion is deter-
mined by enforcing the continuity of the parallel components
of E and B and that of the perpendicular components of D and
B.

For case A, the boundary condition provides the following
equation

[κ+(q, ω) − κ−(q, ω)]M⊥(q, ω, κ+, κ−) = 0, (8)

where

M⊥(q, ω, κ+, κ−)

= [κ+κ− + κ0(κ+ + κ−) + q2] q2 + ε2
1ω

2q2

c2

+ ε1

[
κ2

0 (κ2
+ + κ+κ− + κ2

− − q2)
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+ κ0(κ+ + κ−)

(
κ+κ− − ω2

c2

)

− (κ+κ− + 2q2)ω2

c2

]
. (9)

Here, κ2
0 = q2 − (ω/c)2 for the vacuum and

κ2
±(q, ω) = q2 − ε1ω

2

c2
±

√
ε2

2ω
2

ε1c2

(
ε1ω2

c2
− q2

)
, (10)

for the Weyl semimetal.
For case B with q = (q, 0, 0) and b = (b, 0, 0), the bound-

ary condition provides the following equation

[κ+(q, ω) − κ−(q, ω)]M‖(q, ω, κ+, κ−) = 0, (11)

where

M‖(q, ω, κ+, κ−)

= κ+κ−(κ+ + κ−) + κ0(κ+κ− + q2) + κ0ε1ω
2

c2

+ ε1κ0

[
κ2

+ + κ+κ− + κ2
− + κ0(κ+ + κ−)

− q2 − ε1ω
2

c2

]
. (12)

Here,

κ2
±(q, ω) = q2 − ε1ω

2

c2
+ ε2

2ω
2

2ε1c2
±

√
ε2

2ω
2

ε1c2

(
ε2

2ω
2

4ε1c2
+ q2

)
.

(13)

Because of the off-diagonal components ε2 in the dielectric
function, the Weyl semimetal region can support two decay
constants, namely κ+ and κ−. Accordingly, the electric field
may become

E = (E+e−κ+|z| + E−e−κ−|z|)ei(qx−ωt ). (14)

The SPP dispersion relation is derived from M⊥(q, ω) = 0
(M‖(q, ω) = 0) for κ+ �= κ−. The associated decay constant is
calculated by inserting the dispersion into Eq. (10) [Eq. (13)].
In addition, the bulk plasmon is obtained from κ+(q, ω) = 0
or κ−(q, ω) = 0.

For case C, it has been shown that the SPP dispersion is
nonreciprocal [51]; the dispersion relation depends on the sign
of q, as commonly observed for normal metals in the presence
of a magnetic field [72]. In addition, surface plasmons in
this configuration couple with collective modes of Fermi arc
states, called as Fermi arc plasmons [69,73,74]. These studies
found a gapped dispersion and a gapless linear dispersion with
a chiral character. On the other hand, effects by Fermi arc
states on SPPs are studied in Ref. [75]. Below, we investigate
SPPs for case A and case B, where Fermi arc states are not
involved [69,73–75], to focus on the peculiarity due to the
chiral anomaly.

III. RESULTS AND DISCUSSION

It is known that for both case A and case B, there exists a
wave-vector region where the SPP dispersion disappears [51];
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FIG. 3. Surface plasmon dispersion (upper panel) and decay
constant (lower panel) for a Dirac semimetal (i.e., ωb/ωp = 0).

such phenomena were first found for SPPs in the presence
of an external magnetic field [72]. For understanding such a
peculiar plasmon more deeply, in this paper, we investigate
the associated decay constants in addition to the dispersions.

Before considering the case of a Weyl semimetal with a
finite ωb, we show the result for a Dirac semimetal, which
is obtained using Eqs. (8) and (11) with ωb = 0. The disper-
sion and decay constant are shown in the upper and lower
panels of Fig. 3, respectively. The frequency of the sur-
face plasmon approaches the characteristic surface plasmon
frequency ω = ωp

√
εb/(εb + 1) in a short wavelength limit.

On the other hand, the minimum of the decay constant is
given by κ = 2ωpεb/c(εb + 1) at the wave vector of q =
ωp

√
2εb(εb − 1)/c(εb + 1). Thus, the dispersion and decay

constant of a Dirac semimetal are similar to those of a normal
metal with a Drude dielectric function.

Next, we see the dispersion relations and decay constants
for SPPs for a Weyl semimetal with ωb/ωp = 0.2, 0.5, 1.0.
The SPP dispersions (decay constants) are plotted in the upper
(lower) panels of Figs. 4 and 5 for case A and case B,
respectively.

Regarding the dispersion relations, the ωb dependence is
similar for case A and case B [51]. Indeed, as ωb increases,
the frequency of the bulk plasmon becomes lower than ωp. As
a consequence, the SPP is pushed down and overlaps the bulk
plasmon in the wavevector region (purple regions in Figs. 4
and 5). In this region, the pure SPP disappears, leaving a gap;
such a plasmon is called a pseudo-SPP [72]. The pseudo-SPP
was first investigated for a magnetoplasmon in Ref. [72] and
then for a Weyl semimetal in Ref. [51]. The ωb dependence of
the gap is shown in Fig. 6; the upper panels plot the gap in the
frequency and the lower panels plot that in the wave vector.

We now examine the ωb dependence of the decay constant
for a Weyl semimetal. Despite the similarity of the peculiar
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FIG. 4. Dispersion relations (upper panels) and decay constants (lower panels) of case A for (a) ωb/ωp = 0.2, (b) ωb/ωp = 0.5, and
(c) ωb/ωp = 1.0. In the upper panels, the black curve represents the SPP dispersion and the red dashed curve represents the bulk propagating
plasmon. In the lower panels, the red (blue dashed) curve represents the real (imaginary) part of the decay constant, i.e., κ ′

± (κ ′′
±). The orange

and purple background regions correspond to the pure SPP and the pseudo-SPP, respectively.

feature observed for the plasmon dispersion between case A
and case B [51], we found that the decay constant behaves
differently for the two cases as shown below.

The lower panels of Fig. 4 show the ωb dependence of de-
cay constants for case A. For ωb/ωp = 0.2, shown in Fig. 4(a),
the decay constants only have real parts with two different
values. Therefore, the SPP for such a small ωb is localized near
the boundary as a pure surface wave (colored orange), which
is similar to that for the Dirac semimetal shown in Fig. 3. For
ωb/ωp = 0.5, shown in Fig. 4(b), one of the decay constants,

say κ+, is still real and the other, κ−, becomes pure imaginary
in the wave-vector region (colored purple). The electric field
in the region is given by the superposition of the surface wave
and the bulk propagating wave:

E = (E+e−κ ′
+|z| + E−e−iκ ′′

−|z|) ei(qx−ωt ), (15)

where κ ′
± and κ ′′

± are the real and imaginary p art of κ±, re-
spectively. An increase in ωb extends the gap region, as clearly
shown in Fig. 4(c). From the above analysis, a SPP of a Weyl
semimetal for case A (the perpendicular configuration) can be
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FIG. 5. Dispersion relations (upper panels) and decay constants (lower panels) of case B for (a) ωb/ωp = 0.2, (b) ωb/ωp = 0.5, and
(c) ωb/ωp = 1.0. In the upper panels, the black curve represents the SPP dispersion and the red dashed curve represents the bulk propagating
plasmon. In addition to the real modes, we plot the degenerate mode as the blue dashed curves. In the lower panels, the red (blue dashed) curve
represents the real (imaginary) part of the decay constant, i.e., κ ′

± (κ ′′
±). The orange, purple, and green background regions correspond to the

pure SPP, pseudo-SPP, and generalized SPP, respectively.
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FIG. 6. Gap region of the pseudo-SPP for (a) case A and (b)
case B. The upper (lower) panels show a gap in the frequency (wave
vector).

a pure surface wave or a pseudosurface wave depending on
the wave vector.

The lower panels of Fig. 5 show the ωb dependence of de-
cay constants for case B. For ωb/ωp = 0.2, shown in Fig. 5(a),
the decay constants κ+ and κ− are complex conjugates of each
other (green region). Therefore, even for such a small ωb, for
which the SPP behaves as a pure surface wave for case A,
the SPP is different from those for normal metals and for the
configuration of case A of a Weyl semimetal; actually it is not
a pure surface wave but a damped oscillating wave:

E = [E1 cos(κ ′′|z|) + E2 sin(κ ′′|z|)] e−κ ′|z|ei(qx−ωt ), (16)

where we denote κ± = κ ′ ± iκ ′′, E1 ≡ E+ + E−, and E2 ≡
i(E+ − E−). This type of the SPP is called a generalized
SPP in Ref. [72]. For ωb/ωp = 0.5, shown in Fig. 5(b), a
pure SPP appears (orange region). With a further increase
of ωb to ωb/ωp = 1.0, shown in Fig. 5(c), the region of
the generalized SPP disappears at long wavelengths and the
pseudo-SPP appears within the region of the pure surface
wave. Therefore, SPPs of a Weyl semimetal for case B (the
Faraday configuration) can be a pure surface wave, a pseudo-
surface wave, or a generalized surface wave depending on the
wave vector. The surface mode for case B thus exhibits more
diverse and richer characteristics compared with that for case
A. To see the difference more clearly, in Fig. 7, we plot the
decay constants for case A and case B as a function of ωb/ωp

for the fixed momentum of cq/ωp = 1.8 and cq/ωp = 1.0,
respectively.

We now consider the origin of the different behaviors in the
decay constants for case A and case B. The decay constants in
Eqs. (10) and (13) have a structure of

κ2
±(q, ω) = A(q, ω) ±

√
D(q, ω). (17)

For D > 0, κ+ and κ− become real with different values, and
for D < 0, κ+ and κ− become complex conjugates of each
other. For case A, the condition of D > 0 is equivalent to

0 < ω < ωp or ω > ωp

√
1 + 1

ε0εb

(
cq

ωp

)2

. (18)
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FIG. 7. Decay constants of (a) case A at cq/ωp = 1.8 and
(b) case B at cq/ωp = 1.0 as a function of ωb/ωp. The red (blue
dashed) curve represents the real (imaginary) part of the decay
constant, i.e., κ ′

± (κ ′′
±).The orange, purple, and green background

regions correspond to the pure SPP, pseudo-SPP, and generalized
SPP, respectively.

Therefore, the SPP dispersion derived from M⊥(q, ω) = 0
always satisfies the condition of D > 0. Consequently, only
the pure SPP and the pseudo-SPP appear for case A.

For case B, there is a region of (q, ω) where the condition
of D < 0 is satisfied. Indeed, the curve D = 0, which can be
written as

ω = ωp

[
1 + ε0εbω

2
b

4

(
ωp

cq

)2
]−1/2

, (19)

spans the dispersion relation derived from M‖(q, ω, κ+, κ−) =
0 (see the blue dashed curve representing D = 0 in the lower
panel of Fig. 5). As a result, when the SPP dispersion is
located above (below) the curve represented by D = 0, it
becomes a pure (generalized) surface wave.

We note that D = 0 is equivalent to the relation κ+ − κ− =
0. Therefore, the points of (q, ω) satisfying D = 0 also meet
the boundary condition, i.e., the relation in Eq. (11). This is
called a degenerate mode, which was extensively studied for a
magnetoplasmon a few decades ago [76–79]. For a degenerate
mode, the solution [Eq. (14)] of the wave equation becomes

E = (E+e−κ|z| + E−e−κ|z|)ei(qx−ωt )

= E ′e−κ|z|ei(qx−ωt ), (20)
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θ θ θ

Prism

Weyl semimetal

FIG. 8. Experimental setup that can be used to observe the bulk-
penetrating SPP. The red arrow indicates the light direction and the
blue arrow indicates the plasmon direction. The wavy line indicates
the SPP. The light angle increases from left to right. At a certain
angle θ of the light direction (center panel), the SPP penetrates the
bulk region.

with E ′ ≡ E+ + E−, where κ+ = κ− = κ . It has been shown
that E ′ that satisfies the boundary condition should be zero,
resulting in a trivial solution [79]. Therefore, there is no
electromagnetic field corresponding to the degenerate mode,
which means that the degenerate mode is not a physical mode
but just expresses the line that divides the SPP into pure and
generalized surface waves. At the points (q, ω) where both
κ+ − κ− = 0 and M‖(q, ω, κ+, κ−) = 0 are satisfied, we thus
adopt a different form of the solution for the wave equation
since the plane wave solution does not exist. The following
form of the wave can be used to solve the wave equation
[80–82]

E = (A + B|z|)e−κ|z|ei(qx−ωt ), (21)

with some vectors A and B. The dispersion for such a wave is
obtained from M‖(q, ω, κ+, κ−) = 0 with κ± replaced by κ .

Having elucidated the peculiar behavior of the decay con-
stants of the SPP in a Weyl semimetal, we now propose
an experimental setup for identifying Weyl semimetals by
measuring the SPP. As shown above, for some wave-vector
region, we have the superposition of the surface wave and bulk
propagating wave as a pseudosurface wave, which leaks into
the bulk region. Therefore, if the leak due to the pseudosurface
wave is observed, we can identify a material as a Weyl
semimetal.

We estimated the relevant values for measuring the leak
for the configuration of case A. When we use ωb/ωp = 0.5
and εb = 13, the frequency where the leak occurs due to the
pseudosurface wave is in the range of 0.7 � ω/ωp � 0.9,
obtained from the upper panel of Fig. 6(a). This corresponds
to 5.8 � ω � 7.5 THz for EF = 10 meV and 58 � ω � 75
THz for EF = 100 meV. In this region, the decay length
ξ ≡ 1/κ+ is estimated as 7.2 � ξ � 10 μm for EF = 10 meV
and 0.72 � ξ � 1.0 μm for EF = 100 meV. Therefore, if the
leak is measured for a sample with a thickness larger than ξ ,

we can identify the sample as a Weyl semimetal since the leak
originated from the pseudosurface wave.

The experimental setup for detecting the leak is shown in
Fig. 8. With the usual setup of the Otto configuration, the
light is irradiated onto a prism (triangle in Fig. 8). Up to a
certain angle of the irradiation light, only the evanescent wave
exists in the Weyl semimetal. With increasing angle, the SPP
becomes coupled to the bulk plasmon at a certain range of
the wave vector, resulting in penetration into the bulk region.
Therefore, at a certain range of the incident angle, we can
observe light from the bottom of the prism, which indicates
that the material placed under the prism is a Weyl semimetal.
In addition, the measurement of the reflection spectra provides
further information on the characteristics of the SPP. We
note that the Kretschmann configuration as well as the Otto
configuration can be applied to detect the above phenomenon,
especially for the latter measurement.

IV. SUMMARY

In the present work, we theoretically investigated the SPP
of a Weyl semimetal for two different geometrical config-
urations (perpendicular and Faraday) of interface, focusing
on the decay constant. Even though the dispersion relation
is similar for both configurations as found in the previous
studied, the decay constant behaves completely different and
exhibits diverse characteristics. Indeed, from the analysis of
the decay constant, we found that the SPP of a Weyl semimetal
for the perpendicular configuration (case A) becomes a pure
surface wave or a pseudosurface wave depending on the
wave vector, while for the Faraday configuration (case B),
it becomes a pure surface wave, a pseudosurface wave, or a
generalized surface wave. The diverse behavior of SPPs is one
of essential features to understand a peculiar behavior due to
the chiral anomaly of Weyl semimetals. We then proposed
an experimental method and a setup for probing a Weyl
semimetal by measuring such unusual surface modes, which
are a unique feature of Weyl semimetals. The unusual surface
modes, such as the generalized mode, in a Weyl semimetal can
be used as a frequency or wave-number filter for plasmonic
circuits and crystals.
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