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Radiative resistance at the nanoscale: Thermal barrier
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In the present article the radiative thermal current and radiative resistance are introduced and investigated in
a system of parallel slabs. The system is placed in an environment with a constant temperature and subjected to
a constant temperature gradient, which causes a radiative energy flux through the system. We have calculated
the steady-state temperature profile of the system, assuming that the material and thickness of the middle slab
could be different from the other slabs. We propose the exact formulation for calculating the thermal current
and thermal resistances in both linear and nonlinear regimes. According to our results, the middle slab acts
as a thermal barrier, and depending on the width of this barrier, an extreme thermal isolation is achievable.
Simulation results indicate that the thermal resistance of the barrier is an increasing function of the thickness
for near-field separation distances but is virtually insensitive to the barrier width in the far-field regime. The
long-range character of the radiative heat transfer which occurs in systems with identical slabs is also discussed.
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I. INTRODUCTION

In recent years, many studies have been conducted on
radiative heat transfer between objects with separation dis-
tances less than the thermal wavelength [1–5]. Because the
radiative flux at this scale violates Stephen Boltzmann’s law,
heat flux management by controlling geometrical parameters
and system-specific features has attracted much attention.
Dependence on parameters is an interesting part of radiative
heat transfer in two-body systems. These parameters can be
either internal, such as size, shape, orientation, distance, and
material composition of objects [6–10], or an external parame-
ter such as magnetic field in magneto-optical systems, thermal
boundary conditions, the properties of surrounding media, or
an electric field in metallic material systems [11–18]. The
quantitative form of the radiative heat flux can change as
parameters are varied. In particular, the heat flux can be
enhanced or decreased, or the net direction can change. As we
move up from two-body to three-body systems, the radiative
heat transfer can be tuned by changing the parameters, but the-
oretically and more recently it has been shown experimentally
that three-body systems can provide the possibility to enhance
radiative heat transfer over two-body counterparts [19–26].
There has been a large amount of literature seeking to improve
thermal rectification, thermal switching, and thermal split-
ting by controlling various material and structural parameters
[27–29]. As the number of objects in the system increases, the
many-body effects become very significant [30–35], and as
expected, it influences the dynamics of temperature [36,37].
On the other hand, the dynamics and the steady-state radiative
heat flux may exhibit sensitive dependence on parameters,
initial conditions, and also on the thermal boundary conditions
[38–40]. Recent theoretical work on the thermal bistability
has highlighted the importance of an external heat flux on the
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thermal switching in near-field radiative heat transfer [40]. It
has been previously established that the many-body parallel
planar systems can provide distinctive properties for signif-
icant enhancement of near-field heat transport [41,42], and
the geometrical properties as well as the initial condition for
temperatures can have a remarkable effect on the temperature
evolution [43].

The transfer of large amounts of energy between system
components in the near-field regime results in a very strong
temperature coupling at these scales. However, finding ways
to minimize radiation heat transfer in systems that require
thermal insulation is particularly important. In conductive heat
transfer this isolation is mainly carried out using multilayer
structures [44–46]. The temperature profile in such structures
does not show a monotonic trend across an interface between
different materials. Instead, there is a temperature difference
athwart the boundaries. Similarly, a system of planar objects
can resist radiation heat flux, and it is expected to cause
discontinuities in the temperature profile. In other words, the
components of the system provide a thermal resistance that
must be considered in thermal design or analysis.

In this article, we have investigated the radiative thermal
current and steady-state temperature profile in a parallel pla-
nar system which is subjected to an external temperature
gradient and transfer heat in the form of radiation. Using a
simple example, it is shown that the steady-state radiative
thermal current can be tuned by engineering the intrinsic
properties of each layer. Moreover, inspired by the idea of
Kapitza resistance and interfacial thermal resistance [47–49],
we have introduced a radiative thermal resistance in parallel
planar objects and demonstrate the possibility of extreme
radiative thermal isolation. We have introduced a radiative
thermal barrier, and the linear and nonlinear resistances are
calculated for barriers with different materials. It is shown
that both thermal current and temperature profile in the steady-
state regime depend strongly on the width and the composition
of the barrier. The numerical results indicate that for a given
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FIG. 1. Schematic drawing of a thermal barrier of parallel slabs
with width � separated by vacuum gap δ. The two external slabs
(reservoirs) are kept at fixed temperatures T1 = 400 K and T15 =
300 K Circuit diagram of the parallel planar system; Req

i denotes
a resistance, and Jeq represents the radiative thermal current in the
steady-state regime.

composite system, due to the existence of a thermal barrier,
the radiative thermal resistance depends not only on the width
of the barrier but also on the separation distances. While we
have used silicon carbide (SiC) and hexagonal boron nitride
(hBN) as typical materials for slabs, the proposed formalism
is general and can be applied to any planar system with arbi-
trary parameters (materials, widths, vacuum gap distances).
Moreover, the proposed quantities (thermal resistance and
radiative current) can be used to analyze the results of many
studies in the field of radiative heat transfer and improve our
understanding of the subjects in this field.

The structure of the paper is as follows. The formalism
is developed in Sec. II. In Sec. III we start with a simple
prototypical example of a thermal barrier. We have computed
the temperature profile in an array of silicon carbide (SiC)
slabs when a hexagonal boron nitride (hBN) or SiC slab
is embedded in the middle of the system, Sec. III A. The
radiative thermal resistances are calculated in Sec. III B. The
effect of the barrier thickness on the temperature profile and
thermal resistances are investigated in Sec. III C. In Sec. III D
the thermal resistance of the barrier is compared for the near-
field and far-field regime. Finally, this study is summarized in
Sec. IV.

II. PHYSICAL SYSTEM AND MODEL

The schematic of the system under consideration is shown
in Fig. 1. It consists of N parallel slabs with thicknesses
�i separated by vacuum gaps of width δ. The slabs are
along the z axis at positions zi. The system is in thermal
baths (environment) from left and right at fixed temperatures
TL ≡ T0 and TR ≡ TN+1, respectively. Moreover, the first (i =
1) and the last (i = N) slabs are connected to reservoirs
with fixed temperatures T1 and TN , respectively. Based on
the boundary condition of the system, i.e., (TL, T1, TN , TR),

the radiative heat transfer that takes place along the sys-
tem drives the system from an initial nonequilibrium
state [TL, T1, T2(0), . . . , TN−1(0), TN , TR] to a nonequilibrium
steady-state configuration [TL, T1, T eq

2 , . . . , T eq
N−1, TN , TR] in

which each slab is in local thermal equilibrium and there is no
time variation of physical variables. The temporal behavior of
each slab is governed by the equation

ρici�i
∂Ti

∂t
= ϕi(TL, T1, . . . , TN , TR) i = 2, . . . , N − 1, (1)

where �i is the thickness of the slab with mass density ρi and
heat capacity ci. For a given thermal boundary condition and
initial condition for temperatures, the net radiative heat flux
per unit surface received by the ith slab is given by [43]

ϕi =
N+1∑
j=0

⎡
⎣∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k

∑
p={S,P}

	(ω, Tj )T j,i(ω, k, p)

⎤
⎦,

(2)

for i = 2, . . . , N − 1. In this relation, the second summation
runs over two physical polarization states of the radiating
field, i.e., S and P polarizations, respectively. Moreover,
	(ω, Tj ) = h̄ω/(eh̄ω/kBTj − 1) denotes the mean energy of the
Planck oscillator at temperature Tj . The contribution of each
slab in the heat flux is given by the transmission coefficient
T j,i = T j,i(ω, k, p), which depends on the geometrical and
intrinsic features of the system (see the Appendix for more de-
tail). The solution of Eq. (1) can be visualized as a trajectory in
a (N-2)-dimensional phase space. However, we are only inter-
ested in the long-time behavior of the system, i.e., the steady-
state temperature profile that the system is able to reach as
t → ∞. Since the right-hand side of Eq. (1) does not depend
on t explicitly, the system is autonomous and we only need
to find the fixed point of the system [50]. The steady-state
temperature profile of Eq. (1) is defined by the fact that the
net energy flux on each slab vanishes, i.e., ϕi(T∗) = 0 for i =
2, . . . , N − 1, where T∗ ≡ (TL, T1, T eq

2 , . . . , T eq
N−1, TN , TR) is

the fixed point of the system in phase space. For further
investigation of the steady state of the system, we summarized
and extend Eq. (2) to cover all system components, including
slabs, environments, and reservoirs. Hence

ϕi = Fi,i +
∑
j �=i

Fj,i + F ext
i , (3)

for i = 0, 1, . . . , N, N + 1. In the second term the value of
index j runs from 0(L) to N + 1(R) (including the reservoirs
and the external environment). Here Fi,i � 0 is a radiative
cooling of the ith component, which could be a slab, a
reservoir, or an environment. Moreover, Fj,i � 0 is the power
transferred from the jth component to the ith one. Finally, an
external amount of heat (F ext) should be transferred from, or
to, heat reservoirs and environments in order to keep them in
constant temperatures. It should be emphasized that F ext

i = 0
for slabs with varying temperature, i.e., i = 2, . . . , N − 1, to
match Eq. (2).

Suppose the left environment absorbs the rate of heat
F ext

L and the first slab absorbs the rate of heat F ext
1 . Accord-

ing to the conservation of energy
∑N+1

i=0 ϕi = 0, it is easy
to show that F ext

L (t → ∞) + F ext
1 (t → ∞) = −[F ext

R (t →

035433-2



RADIATIVE RESISTANCE AT THE NANOSCALE: … PHYSICAL REVIEW B 102, 035433 (2020)

∞) + F ext
N (t → ∞)], which can be referred to as the left-right

symmetry at steady state. Specifically, we can say now that the
same amount of heat which is given to the left environment
and reservoir at a time is equal to the one that taken from the
right environment and reservoir, or vice versa. By setting ϕi =
0 in Eq. (3) for i = 0, 1 and using Eq. (2), it is straightforward
to show that

F ext
1 = −

N+1∑
j=0

∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k
∑

p

	(ω, Tj )T j,1, (4)

F ext
L = −

N∑
j=0

∫ ∞

0

dω

2π

∫ ∞

0

dk

2π
k
∑

p

	 j,RT L, j, (5)

with 	 j,R = 	(ω, Tj ) − 	(ω, TR). It is clear that these ex-
ternal powers are time dependent during the initial stage of
the dynamics of temperatures in the system. However, they
eventually approach the steady-state values as the system
reaches local thermal equilibrium. In addition, we know that
due to the temperature difference caused by the boundary
conditions, the radiative thermal current flows along the z
direction either to the left or to the right. Hence we define
the net current flow along the system as

Jeq = F ext
L + F ext

1 ≡ −(
F ext

R + F ext
N

)
, (6)

which remains constant in the steady-state regime. Here, Jeq

represents the radiant energy passing through the system in
local thermal equilibrium. It is important to emphasize that for
the system under consideration, the transmission probabilities
do not depend on temperature as in phase-changed materials,
which implies that the power dissipated in each slab (ϕi) is
a continuous function of temperatures and the off-diagonal
elements in the Jacobian matrix of the system ( ∂ϕi

∂Tj
, i �= j) have

constant sign, independent of the system’s state.
As a result, the system of equations ϕi = 0 have only one

fixed point, and since the system is nonconservative, the fixed
point is stable. On the other hand, the steady state and so
the equilibrium thermal current do not depend on the choice
of initial condition of the system, i.e., [T2(0), . . . , TN−1(0)].
Using Eqs. (4)–(6), the steady-state thermal current passing
through the system can be expressed as

Jeq =
∫ ∞

0

dω

2π
Ceq(ω), (7)

where the monochromatic thermal current coefficient is de-
fined as

Ceq(ω) =
∫ ∞

0

dk

2π
kSeq(ω, k), (8)

where Seq(ω, k) = Seq
P (ω, k) + Seq

S (ω, k), with

Seq
p (ω, k) =

N∑
j=0

	
eq
R, j[T L, j (ω, k, p) + T j,1(ω, k, p)]. (9)

Here, 	
eq
R, j = 	(ω, TR) − 	(ω, T eq

j ) and Seq(ω, k) can be in-
terpreted as the steady-state dispersion relation of the thermal
current passing through the system. Moreover, Seq

S (ω, k) and
Seq

P (ω, k) are the dispersion relations of the thermal current
for the s- and p-polarized modes. For the special case of

TL = TR, Eq. (9) reduces to

Seq
p (ω, k) = −

N+1∑
j=0

	
(
ω, T eq

j

)
[T L, j (ω, k, p) + T j,1(ω, k, p)].

(10)

It should be emphasized that S depends not only on the
choice of materials and system geometrical properties but also
on the steady-state temperature profile. For very large separa-
tion distances, where the far-field interaction dominates, the
thermal current and so the resistances could mainly be decided
by the coupling of the middle slabs with the thermal baths (de-
pending on the boundary conditions and materials) rather than
the reservoir temperature gradient. For the sake of simplicity
we take TL = TR = 300 K in our calculations. It is also easy to
show that in the absence of thermal baths (TL = TR = 0 K) we
have Seq

p (ω, k) = −∑N
j=1 	(ω, T eq

j )T j,1(ω, k, p), which for
the special case of N = 2, Eq. (7) reduces to the well-known
formula for the heat flux exchanged between two parallel
slabs [7].

There is an electrical analogy with radiative heat transfer
that can be exploited, see Fig. 1. From this perspective the
radiative heat flux is equivalent to the electric current and each
slab is a pure resistance to radiative heat flux. Hence we can
define slab resistance as

Ri = �Ti

Ji
, (11)

where by definition �Ti = (Ti−1 − Ti+1)/2 is the temperature
difference at the position of the ith slab and Ji is the net
radiative thermal current passing through it. It is plausible
that the thermal current and so the temperatures are function
of times. However, when the system reaches steady state,
they depend only on the temperature of the two reservoirs
and environments, the slab properties, and their separation
distances. Since the thermal current has only one path to
take in the system under consideration, it is the same through
all slabs at the steady-state regime, i.e., Ji → Jeq. It also
seems reasonable to postulate that thermal resistances are
independent of environment and reservoir temperatures in the
linear regime where TL ∼ T1 ∼ TN ∼ TR. To this end, a more
useful quantity to work with is the linear resistance of slabs,

Req
i = lim

J→0

d (�Ti )

dJ

∣∣∣
eq

. (12)

In the system under consideration, we have used TL =
TR = 300 K, since the contribution of environments in the
thermal current is small compared to that of reservoirs (i.e.,
|F ext

L | � |F ext
1 |, especially for small separation distances), the

derivative evaluated at thermal equilibrium in the limits of
T1 ∼ TN . The total thermal resistance of the system could be
calculated by simply adding up the resistance values of the
individual resistors, i.e.,

Req
total =

N∑
i=1

Req
i ≡ lim

�T →0

�T

Jeq
, (13)

with �T = T1 − TN . We could also define a thermal boundary
resistance, similar to the Kapitza resistance [48], as the ratio
of the temperature variation at the interface to the heat current
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across it. As a result, like a series circuit, the resistance of each
slab would be the addition of its interface resistances,

Req
i = Req

il + Req
ir , (14)

where Req
il = (T eq

i−1 − T eq
i )/2Jeq

i is the resistance of the left
interface of the slab, and Req

ir = (T eq
i − T eq

i+1)/2Jeq
i is the right

part. It should be emphasized that the interface resistances Req
il

and Req
ir are the equivalent of the Kapitza resistance between

interfaces, and as long as the thickness of a layer is not zero (or
it is sandwiched between different media), the layer persists
against the incident thermal current and has a resistance
Req

i �= 0.

III. RESULTS AND DISCUSSION

Based on the framework built above, we can calculate
the steady-state temperature profile of a typical radiative
thermal barrier. The system that we consider here consists
of 15 slabs, which is a hBN or a SiC slab with thickness
�8 = �barrier sandwiched between 14 identical SiC slabs. The
separations between slabs are equal, i.e., δ, and the system is
positioned in an environment with constant temperature TL =
TR = 300 K. The thermal gradient is applied by maintaining
the two reservoir slabs at constant but different temperatures.
For the nonlinear regime, the temperature of the hot reservoir
and cold reservoir are fixed at T1 = 400 K and T15 = 300 K,
respectively. However, we have used T1 ∼ T15 = 300 K to
calculate resistances in the linear regime. For the complex
dielectric function of SiC and hBN, we used the Lorentz-
Drude model:

ε(ω) = ε∞
ω2

L − ω2 − i�ω

ω2
T − ω2 − i�ω

, (15)

where the parameters for silicon carbide are as follows:
ε∞ = 6.7 is the high-frequency dielectric constant, ωL =
1.83 × 1014 rad/s is the longitudinal optical frequency, ωT =
1.49 × 1014 rad/s is the transverse optical frequency, and � =
0.897 × 1012 rad/s is damping coefficient. For hexagonal
boron nitride these constants are ε∞ = 4.9, ωL = 3.03 × 1014

rad/s, ωT = 2.57 × 1014 rad/s, and � = 1.0 × 1012 rad/s.

A. Temperature profile

Figure 2 shows the stationary-state temperature profile of
a 15-body parallel planar system as a function of normalized
position of slabs Zi. The temperature of the reservoirs and en-
vironments are (TL, T1, T15, TR) = (300,400,300,300) K. The
slab separation distances are δ = 100 nm, and the thickness
of the barrier is chosen as �8 = �barrier = 200 nm, equal to
the rest of the slabs.

The typical temperature profile of Fig. 2(a), which cor-
responds to SiC barrier (SiC–SiC–SiC system), is clearly
continuous. This profile has a part that varies roughly linearly
across a large portion of the system, with large gradients
at the two ends due to the boundary effect. Since the slabs
are very close to each other, near-field radiative heat transfer
is the dominant mechanism that determines the steady-state
temperatures. As a result, the coupling with the left and right
reservoirs is strong, and the temperature gradient in the profile
is large. Figure 2(b) displays a similar thermal profile when

FIG. 2. The steady-state temperature profile for a 15-body par-
allel slab system as a function of normalized position of each slab.
The boundary condition is (TL, T1, T15, TR) = (300,400,300,300) K.
The thicknesses of slabs are the same and considered � = 200 nm,
and the widths of vacuum gaps between slabs are δ = 100 nm. The
material used for the slabs is SiC and for the barrier is (a) SiC and
(b) hBN.

the material used for the barrier (slab no. 8) is hBN (i.e., a
SiC–hBN–SiC system). This profile is dramatically different
from the system with a SiC barrier [Fig. 2(a)] in that a
sharp discontinuity in temperature appears across the barrier
position. In addition, there are pronounced boundary effects
as for the SiC case. It can be seen that the left slabs (Zi < 0.5)
coupled to the left reservoir (T1 = 400 K) and the right slabs
(Zi > 0.5) are isolated from the left reservoir and well coupled
to the right reservoir (T15 = 300 K).

B. Thermal resistance

In Fig. 3(a) the temperature drop at the barrier �T eq
8 is

plotted against the steady-state thermal current Jeq that corre-
sponds to different boundary conditions. As it can be seen, the
temperature drop increased linearly with thermal current for
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FIG. 3. (a) Temperature drop at the barrier vs thermal current
for two configurations considered in Fig. 2. The typical boundary
condition that the system behaves linearly is presented by a solid
black dot, i.e., (TL, T1, T15, TR) = (300,310,300,300) K, and that the
system behaves nonlinearly with a solid green dot (TL, T1, T15, TR) =
(300,400,300,300) K. (b) The profile of the linear resistance for a
15-body parallel slab system as a function of normalized position of
each slab.

both SiC and hBN barriers, but for very large thermal currents,
their behavior becomes nonlinear, to some extent. The linear
regression is used to determine the slope that is the resistance
of the barrier in both linear and nonlinear regimes. As an
example, the solid black dots on the diagram correspond to
linear regimes caused by boundary conditions (TL, T1, T15, TR)
= (300,310,300,300) K. On the other side, the solid green
dots correspond to nonlinear regimes for boundary conditions
(TL, T1, T15, TR) = (300,400,300,300) K. The temperature pro-
files of the latter case are those shown in Fig. 2. Compared
with the linear thermal resistance of 0.018 K m2 W −1 for the
SiC barrier, the thermal resistance is 16 times higher for the
hBN barrier. It is clear from Fig. 3(a) that larger temperature
gradients �T create a larger temperature difference across the
barrier �T eq

8 and result in a higher thermal current Jeq. We

FIG. 4. (a) The steady-state temperature profile and (b) the cor-
responding linear resistance profile for the SiC–hBN–SiC system
as a function of normalized position of each slab for different
hBN thicknesses. The thicknesses of other slabs are the same and
considered � = 200 nm and the widths of vacuum gaps between
slabs are δ = 100 nm.

observe that thermal resistances decrease with temperature in
a power-law form, and the decrease is larger for an interface
with weaker coupling (here the hBN barrier). Using Eq. (12),
we have calculated the linear thermal resistance Req

i of all
slabs, and results are shown for both SiC–SiC–SiC and SiC–
hBN–SiC systems in Fig. 3(b) as a function of the normalized
position of slabs. We observe that both systems show similar
trends on the sides; however, the resistance of the hBN slab
and its neighbors are (∼20 times) greater in the SiC–hBN–
SiC system compared to the SiC barrier in the SiC–SiC–SiC
system.

C. Barrier width effect

To analyze the effect of barrier width on the radiative
thermal transport properties, in Fig. 4(a) we present the tem-
perature profiles of the SiC–hBN–SiC system for different
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FIG. 5. Left panel: The steady-state thermal current dispersion relation Seq in (ω, k) space fixing δ = 100 nm and �i �=8 = 200 nm for
boundary condition (TL, T1, T15, TR) = (300,400,300,300) K. The yellow lines mark the hyperbolic bands as determined from effective medium
theory. (a) SiC barrier, �8 = 200 nm. (c) hBN barrier, �8 = 200 nm. (e) hBN barrier, �8 = 1000 nm. The solid blue (green) curves are the
borders of the Bloch bands for p-polarized (s-polarized) modes, respectively. Right panel: The monochromatic thermal current coefficient
Ceq(ω) of propagating (k < ω/c) and evanescent (k > ω/c) modes for the same structure in the left panel. (d) SiC barrier, �8 = 200 nm.
(e) hBN barrier, �8 = 200 nm. (f) hBN barrier, �8 = 1000 nm.

hBN thicknesses. As can be seen, the increase in the thick-
ness of the hBN barrier is associated with the increase in
temperature discontinuity on both sides of the barrier. The
corresponding linear resistance profiles which are shown in
Fig. 4(b) confirm that as the barrier thickness increases, its
thermal resistance increases. In order to see the structure
of contributing modes, we have investigated the steady-state
thermal current dispersion relation Seq in (ω, k) space for both
the SiC-SiC-SiC and SiC-hBN-SiC structures in Fig. 5. We
start with the structure investigated Fig. 2(a), which is made
of alternating layers of SiC and vacuum. The geometrical
parameters in Fig. 5(a) are �8 = � = 200 nm for the SiC
layers and δ = 100 nm for the vacuum gaps. Such a periodic
structure behaves as a photonic crystal and can be described
by homogeneous anisotropic media with the effective per-
mittivities ε⊥ = f1ε1 + f2ε2 and ε‖ = (ε1ε2)/( f1ε2 + f2ε1),
where ε1 and ε2 are the permittivities of the vacuum gap and

SiC layer, respectively. Based on the choice of parameters
in Fig. 5(a), the filling fractions are f1 = δ

δ+�
= 1

3 and f2 =
�

δ+�
= 2

3 , respectively. The effective permittivities are helpful
for determining the hyperbolic frequency bands of the struc-
ture fulfilling the condition ε⊥ε‖ < 0. The dashed yellow lines
in Fig. 5 represent the edges of the type-I (ε⊥ > 0, ε‖ < 0)
and type-II (ε⊥ < 0, ε‖ > 0) hyperbolic modes determined
from effective medium theory. Moreover, these structures can
support the Bloch modes which are located in Bloch bands.
The borders of the Bloch bands for s- and p-polarized waves
can be easily determined for infinite multilayer structures and
semi-infinite materials [51–53]. For the |SiC|vacuum| peri-
odic structure, the Bloch modes are fulfilling the dispersion
relation

cos [βB(δ + �)] = −ξ sin(β1δ) sin(β2�)

+ cos(β1δ) cos(β2�), (16)
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with

ξ = 1

2

(
ε1β2

ε2β1
+ ε2β1

ε1β2

)
for p-polarized modes, (17)

ξ = 1

2

(
β1

β2
+ β2

β1

)
for s-polarized modes. (18)

Here, βi=1,2 =
√

εiω2/c2 − k2 are the wave vectors along the
optical axis of the structure in each layer, and βB is the Bloch
wave vector inside the periodic structure.

The solid blue (green) curves in Figs. 5(a), 5(c), and
5(d) are the borders of the Bloch bands for p-polarized (s-
polarized) modes, respectively. From the dispersion relation
of the SiC–SiC–SiC shown in Fig. 5(a), it is apparent that the
thermal current has quite large contributions stemming from
modes inside the Bloch bands. However, there is also a con-
tribution of narrow-band resonance modes outside the Bloch
regions and concentrated around the surface phonon polariton
resonance of the SiC layer at ωSPhP = 1.787 × 1014 rad/s.
It is interesting to know that according to the values se-
lected for the thermal boundary conditions (TL, T1, T15, TR)
= (300,400,300,300) K, the direction of thermal current Jeq

is from left to right (i.e., positive). However, the sign of
Seq(ω, k) is not necessarily positive. On the other hand, some
modes have positive contributions to the thermal current while
the rest have negative contributions. Since the slabs are very
close to each other, δ = 100 nm, we observe in Fig. 5(a) that
the contribution of evanescent waves in the thermal current is
positive in (ω, k) space while the contribution of propagating
waves is mostly negative. The contribution of propagating
and evanescent modes is plotted in Fig. 5(b) where we show
the monochromatic thermal current coefficient Ceq(ω). From
this figure, it becomes obvious that the thermal current is
dominated by a positive contribution of evanescent modes in
both the Bloch and non-Bloch regions. However, the negative
contributions of propagating waves are dominated solely by
modes located inside the Bloch bands.

If we introduce a defect for the chosen structure, by chang-
ing the width of the middle layer or by changing the compo-
sition of its material, the structure will no longer be periodic.
Such a defect can introduce multiple defect states in the band
gap that have different frequencies [54]. We start with the case
where the SiC barrier is replaced with hBN material of the
same thicknesses. The temperature profile of this structure
is investigated in Fig. 2(b). The thermal current dispersion
relation of this structure is shown in Fig. 5(c). From this figure,
one notices that the surface Bloch modes in frequencies inside
the hyperbolic band type II are fully suppressed in this case.
Moreover, we observe that a significant decrease in both the
intensity and number of confined Bloch modes in polarization
TE (green region) and TM (blue region) are accompanied by
the emergence of localized p-polarized modes in the photonic
band gap of the structure.

From the plot shown in Fig. 5(e), it is apparent that
the remaining evanescent modes in the Bloch bands of the
SiC–SiC–SiC structure persist when we increase the hBN
barrier width to �8 = 1000 nm. However, their contribution
is slightly suppressed. We also notice that the intensity of
the two defect modes drastically decreased, and they are
shifted away from the ωSPhP of SiC. In contrary, we observe

FIG. 6. The steady-state linear resistance of the thermal barrier
as a function of barrier thickness for different vacuum gap width
values. The thicknesses of other slabs are the same and considered
� = 200 nm. The material used for the barrier is (a) SiC and
(b) hBN.

the amplification in the propagating modes with negative
contribution to thermal current. Moreover, new channels for
the opposing thermal currents also emerge in the spectral
frequency window between ωT and ωL of the SiC layer.
Also, in Fig. 5(f) we see that the contribution of evanescent
waves to the monochromatic thermal current is negative in all
frequency ranges. As a result, in addition to the significant
change in the dispersion curves of photons, the increase in the
opposing thermal currents in Seq(ω, k) is responsible for the
increase in the thermal resistance for large barrier thicknesses.

To compare the thermal resistance of hBN with the SiC
barrier, we have calculated the linear resistance of barriers
with different thicknesses. Shown in Fig. 6(a) are our results
for the resistance of SiC barrier as a function of the barrier
thickness for different vacuum gap separation distances. The
thickness of the other slabs in the system are � = 200 nm,
as in the previous figures. It is striking that, for a given
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width for vacuum gaps, the calculated resistance depends
not only on the thickness of the barrier but on the thickness
of the other slabs too. It is interesting that this dependence
follows a certain rule for the SiC–SiC–SiC structure. For
large separation distances δ � �, the thermal resistance of the
barrier of width �8 � � is always minimal.

To understand the physics behind this result, we note
that as discussed earlier, for very small separation distances
between SiC layers, the thermal current is dominated solely
by the evanescent modes of the SiC layers. For sufficiently
large separation distances, the thermal current is mainly due
to the contributions of propagating modes. In such a case,
the distance between the leftmost layer (left reservoir) and
the rightmost (right reservoir) layer is far enough, and since
T1 > TN and TN = TR = TL, we may approximate the ther-
mal current passing through the system by radiation energy
emitted from the left reservoir that transmitted through the
periodic structure made by alternating layers of a SiC and
a vacuum gap, say |n1|n2|n1|n2| · · · |n1|n2| bounded on both
sides by vacuum, where n1 and n2 are the refractive index
of the SiC layers and vacuum gaps, respectively. Such a
periodic structure can increase the transfer of the incident
thermal current impinging from the left by decreasing the
reflected thermal current, similar to antireflection structures
[55]. The condition of excitation of the antireflecting modes
is satisfied in frequency ranges where the optical thickness of
each layer equals up to a quarter of the incident wavelength
of the thermal current. In general, the number of layers and
the intrinsic properties of each layer can be engineered so that
the excitation of antireflecting modes, which produce destruc-
tive interference in the beams reflected from the interfaces
and constructive interference in the corresponding transmitted
beams, occurs within the desired frequency range. For the
periodic structure used here, the contribution of these modes
to the heat transfer becomes important, since they are ex-
cited by the incident radiation from the left reservoir, located
around the Wien frequency at T1 � TB = 300 K. However, by
perturbing the periodicity (i.e., �8 �= �), the antireflecting
modes are shifted away from the Wien’s frequency of the left
reservoir so that they do not contribute anymore to radiative
heat transfer. As a result, the thermal current is reduced, which
is equivalent to an increase in the thermal resistance.

On the other hand, as the separation distance decreases, this
minimum occurs for smaller barrier thicknesses, i.e., �8 �
�. The conditions of the hBN barrier are quite different from
those of SiC, see Fig. 6(b). In this case, increasing the barrier
thickness is accompanied by an increase in thermal resistance.
Although this increase is negligible and slightly oscillatory
for high separation distances but similar to the SiC barrier, the
resistance is saturated at large barrier thicknesses, as expected.

D. Vacuum gap effect

Finally, the influence of the width of the vacuum gaps on
the linear resistance of the hBN barrier is presented in Fig. 7.
The steady-state linear resistance is shown for different barrier
thickness values as a function of vacuum gap widths from
the near-field to far-field regime. It is seen that the thermal
resistance of the hBN barrier and consequently, the thermal
resistance of the whole structure in the near-field regime is

FIG. 7. Variation of the barrier resistance as a function of slab
separation distance in the SiC–hBN–SiC system. The results are
shown for different barrier thickness values, and the thicknesses of
SiC slabs are the same and considered � = 200 nm.

much lower than the far-field regime. On the other hand,
the rapid decrease in the transmission probabilities between
slabs by increasing the vacuum gap widths is responsible
for the power-law increment of the thermal resistance in the
near-field regime, which is modulated by logarithmic periodic
oscillations and saturates in the far-field limit. In agreement
with previous results, the barrier resistance increased for
larger barrier thicknesses in the near-field regime.

IV. CONCLUSION

In summary, we have used an electrical circuit approach
to introduce heat resistance for the components of systems
that transmit energy through radiation at the nanoscale. For
this purpose we proposed a method for calculating the steady-
state radiative current in parallel planar systems. This method
can be a useful guide for understanding and optimizing the
thermal performance of nanoscale systems. The simulation
results indicate that the temperature profile in a parallel planar
system exhibits fantastic changing characteristics around the
barriers. We have shown the thermal insulation occurs due to
the presence of a thermal barrier, and the temperature does not
show a monotonic trend across the barrier; instead, there is a
temperature difference athwart the barrier.

APPENDIX: TRANSMISSION COEFFICIENTS
IN PARALLEL PLANAR SYSTEMS

The system under consideration consists of N parallel slabs
placed at zi along the z axis. The separation distance between
the consecutive slabs i and i + 1 is δi = zi+1 − zi − �i/2 −
�i+1/2, where �i is the thickness of the ith slab. The first
(i = 1) and the last (i = N) slabs are connected to reservoirs
with fixed temperatures T1 and TN , respectively. The indexes
i = 0 ≡ L and i = N + 1 ≡ R are used for the left and the
right thermal baths, which are kept at fixed temperatures
TL and TR, respectively. The many-body energy transmission
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coefficients T j,i take into account the presence of different slabs at the same time and can be fully determined in terms of
T̂ = T̂ (ω, k, p) [43]:

T L,i = T̂ L
i−1 − T̂ L

i ,

T j,i = T̂ j
i−1 − T̂ j−1

i−1 − T̂ j
i + T̂ j−1

i ,

T R,i = −T̂ N
i−1 + T̂ N

i ,

(A1)

for j, i = 1, . . . , N . The definition of these coefficients are as follows:

T̂ j
γ = �pw|τ j+1→γ |2(1 − |ρL→ j

+ |2)(1 − |ργ+1→R
− |2)

|1 − ρ
L→γ
+ ρ

γ+1→R
− |2|1 − ρ

L→ j
+ ρ

j+1→γ
− |2 + �ew4|τ j+1→γ |2Im(ρL→ j

+ )Im(ργ+1→R
− )

|1 − ρ
L→γ
+ ρ

γ+1→R
− |2|1 − ρ

L→ j
+ ρ

j+1→γ
− |2 , j < γ ,

T̂ γ
γ = �pw(1 − |ρL→γ

+ |2)(1 − |ργ+1→R
− |2)

|1 − ρ
L→γ
+ ρ

γ+1→R
− |2 + �ew4Im(ρL→γ

+ )Im(ργ+1→R
− )

|1 − ρ
L→γ
+ ρ

γ+1→R
− |2 ,

T̂ j
γ = �pw|τ γ+1→ j |2(1 − |ρL→γ

+ |2)(1 − |ρ j+1→R
− |2)

|1 − ρ
L→ j
+ ρ

j+1→R
− |2|1 − ρ

L→γ
+ ρ

γ+1→ j
− |2 + �ew4|τ γ+1→ j |2Im(ρL→γ

+ )Im(ρ j+1→R
− )

|1 − ρ
L→ j
+ ρ

j+1→N+1
− |2|1 − ρ

L→γ
+ ρ

γ+1→ j
− |2 . j > γ ,

(A2)

These coefficients satisfy the reciprocity relation T̂ j
i = T̂ i

j . The many-body scattering coefficients ρ
j→m
+ , ρ

j→m
− and τ j→m are

given by

ρ
j→m
+ = ρ̂

j→m
+ e−ikz (�m+2zm ),

ρ
j→m
− = ρ̂

j→m
− e−ikz(� j−2z j ),

τ j→m = τ̂ j→m exp

⎛
⎝−ikz

m∑
�= j

��

⎞
⎠,

(A3)

where

ρ̂
j→m
+ = ρm + (τm)2ρ̂

j→m−1
+ u j→m−1,me2ikzδm−1,

ρ̂
j→m
− = ρ j + (τ j )

2ρ̂
j+1→m
− u j, j+1→me2ikzδ j ,

τ̂ j→m = τ̂ j→m−1u j→m−1,mτm,

(A4)

with

u j→m−1,m = (
1 − ρ̂

j→m−1
+ ρme2ikzδm−1

)−1
, u j, j+1→m = (

1 − ρ j ρ̂
j+1→m
− e2ikzδ j

)−1
. (A5)

Here, ρ j and τ j are the scattering coefficients for a single body which are given by

ρ j = rp, j
1 − e2ikz j� j

1 − r2
p, je

2ikz j� j
, τ j =

(
1 − r2

p, j

)
eikz j� j

1 − r2
p, je

2ikz j� j
. (A6)

In Eq. (A6), rp, j is the Fresnel coefficient in which p indicates the polarization. This coefficient for two possible polarizations,
including TE and TM, is defined as

rTE, j = μ jkz − kz j

μ jkz + kz j
, rTM, j = ε jkz − kz j

ε jkz + kz j
. (A7)

In the above equations ε j and μ j are electric permittivity and magnetic permeability, representing the optical properties of the
jth slab.
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