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Quasinormal mode expansion of optical far-field quantities
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Quasinormal mode (QNM) expansion is a popular tool to analyze light-matter interaction in nanoresonators.
However, expanding far-field quantities such as the energy flux is an open problem because QNMs diverge
with an increasing distance to the resonant systems. We introduce a theory to compute modal expansions of
far-field quantities rigorously. The presented approach is based on the complex eigenfrequencies of QNMs. The
divergence problem is circumvented by using contour integration with an analytical continuation of the far-field
quantity into the complex frequency plane. We demonstrate the approach by computing the angular resolved
modal energy flux in the far field of a nanophotonic device.
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I. INTRODUCTION

Modern nanotechnology allows for exploring new regimes
in tailoring light-matter interaction [1]. Applications comprise
the design of nanoantennas for quantum information tech-
nology [2], tuning photochemistry applications with nanores-
onators [3], using plasmonic nanoparticles for biosensing [4],
and miniaturization of optical components using dielectric
metasurfaces [5]. Most approaches are based on resonance
phenomena. Optical resonances are characterized by their
wavelength-dependent localized and radiated field energies.
They may appear as, e.g., plasmonic resonances in metals [6]
or resonances in dielectric materials, such as Mie resonances
[7] or bound states in the continuum [8]. The theoretical
description of the resonances is essential for understanding
the physical properties of the systems and for designing
and optimizing related devices. A popular approach is the
modeling with QNMs, which are the eigensolutions of reso-
nant systems [9,10]. In typical nanophotonic setups, outgoing
radiation conditions have to be fulfilled yielding complex
eigenfrequencies and an exponential decay of the QNMs in
time. This means that the QNMs diverge exponentially with
an increasing distance to the resonators [9—12]. Due to the
conceptual difficulties of exponential growth, this behavior
has been termed “exponential catastrophe” [12]. Nevertheless,
QNM-based expansion approaches, where electromagnetic
fields are expanded into weighted sums of QNMs, have been
derived to describe light-matter interaction in various applica-
tions [13—18]. These approaches are based on the expansion
of electromagnetic fields inside and in the close vicinity of
the resonators. In this way, modal near-field quantities, such
as the modal Purcell enhancement [19-21], can be computed.
For time-dependent problems, methods have been proposed to
overcome the divergence problem [22-24].

In many applications, time-averaged far-field quantities
are of special interest [1,2,5]. However, the divergence of
QNMs is a key issue for modal expansion of such quanti-
ties [9,10]. From a physics perspective, for time-harmonic
sources, the excited electromagnetic near- and far-field dis-
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tributions are clearly nondiverging. This has motivated a
discussion about the general applicability of QNMs [25].
Alternative approaches based on model approximations which
yield eigenmodes with real-valued frequencies in the far-field
regions have been proposed [25-27]. Further methods use
the Dyson equation approach [28,29] or near-field to far-field
transformations [30] of the QNMs resulting in approxima-
tions of the computed far-field quantities [18,31]. Also, the
intensively discussed question of how to normalize QNMs is
related to their exponential divergence [9,10,32-35].

In this work, we present a general approach for modal
analysis which allows for expansions of physical observables
in the far-field region. The approach is based on the com-
plex eigenfrequencies of the resonant systems; however, the
diverging behavior of the corresponding QNMs is circum-
vented by using contour integration of the relevant far-field
quantities. Therefore, the presented approach paves the way
for avoiding an exponential catastrophe while retaining the
rigorous model. No approximation regarding the modeling
of the naturally complex-valued frequencies of a resonant
system is required. The method is validated by comparing
the modal expansion to a direct solution of the corresponding
scattering problem. The approach is applied to compute the
modal expansion of the angular resolved energy flux density
radiated to the far field by a localized source in a resonant
nanostructure.

II. MODAL EXPANSION OF FAR-FIELD QUANTITIES

The QNMs of a resonant system are diverging outgoing
waves. Figure 1(a) illustrates the electric field corresponding
to a QNM in a one-dimensional resonator defined by layers
with different refractive indices. In nano-optics, in the steady-
state regime, electric fields E(wy) € C3 are solutions to the
time-harmonic Maxwell’s equations in second-order form,

V x pu(wo) 'V x E(wg) — oje(wo)E(wo) = imnd, (1)

where @ € R is the angular frequency and J € C? is the
source field. For a simpler notation, we omit the spatial
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FIG. 1. One-dimensional resonator defined by layers with differ-
ent refractive indices, where n, > n;. Electric field solutions, E(x, w)
and E°(x, w), are obtained by solving the Helmholtz equation with
a source term corresponding to incoming plane waves with unit
amplitude. Only scattered fields (a.u.) outside the resonator are
shown. (a) Diverging field E(x, @y ) = A e/™®.a/9 where @y is a
resonance pole of E(x, w) and @y o = @ + Ady is a frequency close
to @y. (b) Ilustration of resonance poles and integration contours
corresponding to the RPE for the energy flux density given by
Eq. (2). The analytical continuation of the energy flux density has
resonance poles with negative and with positive imaginary parts.
(c) Nondiverging field E°(x, @ o) = B e "™M®.a/9K (d) Constant
product E(x, & o) - E°(x, @ a), which relates to the energy flux
density.

dependence of the quantities and write, e.g., E(wg) instead of
E(r, wp), where r € R? is the position. The permittivity tensor
and the permeability tensor are defined by €(wy) and w(wy),
respectively. For optical frequencies, p(wp) is typically equal

to the vacuum permeability o. QNMs are solutions to Eq. (1)
equipped with outgoing radiation conditions and without
a source, i.e., J =0. The eigenfrequencies @; € C have
negative imaginary parts and are given by the complex reso-
nance poles of the analytical continuation E(w) of the electric
field E(wp) into the complex plane w € C.

We use the Riesz projection expansion (RPE) [17,36] for
modal expansion of the energy flux density in the far field,
which can be expressed as a quadratic form with a sesquilinear
map. The energy flux density [37] is defined by

1
s(E(wp), E*(wp)) = 5Re<E*(a)o) X - V x E(wO)) -n

wo Lo
where E*(wy) is the complex conjugate of the electric field
and n is the normal on the corresponding far-field sphere.
The RPE is based on contour integration in the complex
frequency plane. Since the complex conjugation of the electric
field makes s(E(wg), E*(@wp)) nonholomorphic, the evalua-
tion of this function for complex frequencies is problematic.
This challenge can be addressed by exploiting the relation
E*(wy) = E(—wq) for wg € R. The field E(—wy) is a solu-
tion to Eq. (1) as well. For the harmonic time dependency
e~ with a negative frequency, the radiation conditions are
sign inverted. The field E(—w() has an analytical continu-
ation into the complex plane w € C, which we denote by
E°(w). This yields the required analytical continuation of
s(E(wg), E*(wp)), which is given by s(E(w), E°(»)). Note
that E°(w) introduces resonance poles in the upper complex
half-plane, which are usually not considered in the literature.
These poles are an essential part of the presented approach.
To expand s(E(wp), E*(@y)) = s(E(wp), E°(@)) into modal
contributions, Cauchy’s integral formula,

1 f s(E(w), EO(w))d

Co

s(E(wo), E°(wy)) = i w — wp

’

is then exploited. The contour C is a closed integration path
around wy so that s(E(w), E°(w)) is holomorphic inside of Cy.
Deforming the integration path and applying Cauchy’s residue
theorem yield

K 1 s(E(w), E°(w))
E ,E° = — — j‘g —d
S(E(wo) (@o)) kg; 2mi Je, w — Wy @

_ Z % s(E(w), E°()) E°(w))
2mwi Je w — wy

Lyg S(E(w). E(@)) , @)

2mwi w — wy

where Ci, ..., Cx are contours around the resonance poles
of E(w), given by @y, ..., &k, and C’i“, R C‘,*; are contours
around the resonance poles of E°(w), given by &7, ..., &%.
The outer contour C; includes wy, the resonance poles
@1, ..., ok and @, ..., &, and no further poles, as sketched
in Fig. 1(b). The Riesz projections

5(E(wo), E°(w0)) = — L% SE@), E@)

2mi w — wy
1 s(E(w), E°(w))
- — — —dw
2mi Je w — o

035432-2



QUASINORMAL MODE EXPANSION OF OPTICAL ...

PHYSICAL REVIEW B 102, 035432 (2020)

TABLE I. Eigenfrequencies of the resonator shown in Fig. 2(a).
The eigenfrequencies @; are contained in the circular contour C,,
which is centered at 1.41 x 10" s~! and has a radius of 6.8 x
108 571,

k Re(@) (10" s7) Im(@y) (10 57)
1 1.441 ~0.109
2 1.428 ~0.182
3 1399 ~0.232
4 1.372 ~0.568
5 1.370 ~1.025
6 1398 ~2.475
7 1.406 ~0.470
8 1422 ~0.875
9 1.435 ~1.942

are modal contributions for the energy flux density. The
Riesz projections 5;(E(wp), E°(wy)) are associated with the
eigenfrequencies @y as the integration is performed along the
contours Cy and C;'. The contribution

1 E , E°
s:(E(e). E° (@) = %55 SE@). E@)
G

w — W

is the remainder of the expansion containing nonresonant
components as well as components corresponding to eigen-
frequencies outside of the contour C,.

The RPE is based on evaluating s(E(w), E°(w)) by solving
Eq. (1) for the frequencies w and —w. Consequently, the
quadratic form s(E(w), E°(w)), where a product of E(w)
and E°(w) is involved, does not diverge. This is due to the
cancellation of the factors ¢!/ and e~i"/)" of the fields
in the far-field region, where r = ||r||. In this way, it becomes
possible to compute modal expansions of far-field quantities
with nondiverging expansion terms. To illustrate this, we con-
sider a one-dimensional resonator and compute electric fields,
E(x, w) and E°(x, w), fulfilling the corresponding Helmholtz
equation. Figures 1(a) and 1(c) sketch the diverging field
E(x, @ o) and the nondiverging field E°(x, @ o) outside
of the resonator, respectively. The frequency @i A = @x +
Ad&y represents an evaluation point on an integration contour
C. Figure 1(d) shows the nondiverging product E(x, @y a) -
E°(x, & a), which relates to the energy flux density. The ap-
proach also applies to arbitrary three-dimensional problems,
where, in the far-field region, E(r, w) ~ €@/ (1/r) and
E°(r, ) ~ e '@/ (1/r).

II1I. APPLICATION

The presented approach is used for modal analysis of a
quantum technology device. We revisit an example from the
literature [38], where a quantum dot acts as a single-photon
source. For a specific far-field region, the photon collection
efficiency (PCE) has been enhanced by using a numerically
optimized circular Bragg grating nanoresonator. Such devices
can be realized experimentally by using deterministic fabrica-
tion technologies [39]. For more details on the specific device
and material properties, the reader is referred to [38]. The
geometry is sketched in Fig. 2(a). To numerically analyze the
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FIG. 2. Circular Bragg grating resonator with localized light
source. (a) Geometry with an illustration of the electric field intensity
(a.u.) of the QNM corresponding to the eigenfrequency &,; see
Table I. The gallium arsenide (GaAs) grating has a thickness of
240 nm and consists of an inner disk with a radius of 550 nm and
10 rings with a width of 340 nm and a periodicity of 500 nm. The
grating is placed on a silicon dioxide (SiO,) layer with a thickness
of 240 nm, which is coated from below with a gold (Au) layer of
300 nm thickness. The light source is modeled by a dipole emitter
placed at the center of the inner disk. The dipole radiates at the
frequency w, and is oriented in x direction. (b) Radiation diagram at
wp = 2mc/(1360 nm) for the total modal expansion sy, (6) computed
by Eq. (2) and for the quasiexact solution of the energy flux density
s(6). The quantities are evaluated at r = 1 m and ¢ = 90°, which
corresponds to the yz plane. (¢) Modal decomposition of the radiation
diagram for the contributions 3,(8), 53(6), and 54(0).

light source, we spatially discretize the system with the finite
element method (FEM) using the solver JCMSUITE [40].

The quantity of interest is the energy flux density in the
far field s(wy, 6) = s(E(wy, 6), E°(wy, 0)), see Eq. (2), where
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0 is the inclination angle as shown in Fig. 2(a). For the
modal expansion of s(wy, 6), the outer contour C; is chosen
to enclose the wavelength range of interest, 1280 nm <
Ao < 1400 nm, where A9 =2mc/wg. We compute all
eigenfrequencies inside of the contour, which are listed in
Table 1. Note that only those rotationally symmetric QNMs
which can couple to the dipole source are computed. Fig-
ure 2(a) sketches the electric field intensity of the QNM
corresponding to @, in the near field of the structure. The
QNM exhibits a maximum of the field intensity at the center
of the resonator and it diverges in the far-field region.

For a fixed dipole frequency, the radiation diagrams for
the total modal expansion s (wg, 8) = Zzzl Si(wp, 0) +
sy (wp, ) and for the quasiexact solution s(wy, 6) are depicted
in Fig. 2(b). The quasiexact solution is computed by solving
scattering problems given by Eq. (1) directly. The total modal
expansion coincides with the quasiexact solution with an ab-
solute error of $(0)/Smax < 5 X 1073 and, for the angle region
—60° < 6 < 60°, with a relative error smaller than 3 x 1072,
The differences in these solutions are related to numerical
discretization errors and would decrease further by refining
the numerical parameters. The agreement demonstrates that,
although the associated QNMs diverge in the far field, the RPE
of the energy flux density gives correct results with nondi-
verging expansion terms. Figure 2(c) shows the modal energy
flux densities 5, (wy, 0), §3(wg, 0), and 54(wyp, 0). These are the
significant contributions for the total energy flux density and
they have different directivities corresponding to the different
diffraction intensities of the Bragg grating. The contributions
$3(wy, 0) and 34(wo, 0) also have negative values. A negative
modal energy flux density can be understood as suppression
of light emission into specific directions arising from the
interference of various modes excited by the source at the fre-
quency wy. Negative modal contributions have been reported
also for QNM expansions of near-field quantities [19]. Note
that, as physically expected, the total modal expansion of the
energy flux density, si(wp, 0), is positive for all angles 6.

Next, the RPE is used to obtain insight into the properties
of the device for the wavelength range 1280 nm < Xp <
1400 nm. Figure 3(a) shows the normalized decay rate, also
termed Purcell enhancement,

1
wp) = =5 Re(E(wo) - J)/To,

where j = —iwp with the dipole moment p and T, is the
dipole emission in homogeneous background material [17].
It can be observed that, in the wavelength range of interest,
the three resonances corresponding to the eigenfrequencies
@y, @3, and @, are significant for the Purcell enhancement.
The resonance with the eigenfrequency @; has a very small
influence. The nonresonant contributions and the contribu-
tions associated with other eigenfrequencies are negligible.
Figure 3(b) shows the PCE,

1 1
n(wo) = —/ 5Re<E*(wo) X
59

1
V x E(a)o)) . dS,
Pog 0

Lo

where 82 is the far-field region corresponding to NA = 0.8
and Ppg is the emitted power of the dipole emitter into the
upper hemisphere. In the case of the PCE, the resonances
corresponding to @, @;, @3, and @4 play an important role. In
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FIG. 3. Modal expansions of Purcell enhancement and PCE
for the resonator with a localized light source shown in
Fig. 2(a). Eigenfrequencies &y, ..., &9 are considered; see Table I.
(a) Modal expansion of the Purcell enhancement. The contributions
[ (%), ..., T4(xo) correspond to the eigenfrequencies @, . . ., @,
respectively. The remaining modal contributions are added to the
remainder of the expansion 22:5 I (ho) + Te(Xo). The term Ty (o)
includes also modal contributions corresponding to eigenfrequen-
cies outside the integration contour C,. (b) Modal expansion of
the PCE. Total modal expansion, 1 (1) = Zzzl e(ho) + 1:(Ao),
single modal contributions, 7;(Xg), . . ., 74(A9), and the sum of other
contributions, Z:=5 T(Ao) + 1n:(Ro).

contrast to the Purcell enhancement, the modal contribution
f1(wp) is significant for the PCE. It contributes to 1y (wo)
for the wavelength region near to its maximum. Note that
the behavior of the remaining contributions, 22:5 e (Xo) +
n:(Ap), is partially based on resonances with eigenfrequencies
outside the integration contour C;.

IV. CONCLUSIONS

A theoretical approach to investigate modal quantities in
the far field of resonant systems was presented. Although
the QNMs decay exponentially in time and thus represent
diverging outgoing waves, modal expansions can be computed
rigorously. The approach was applied to expand the energy
flux density in the far field of a nanoresonator with an em-
bedded point source. It was demonstrated that, by computing
modal far-field patterns, those resonances which contribute
significantly to the scattering response of the nanophotonic
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device can be identified. Thus deeper physical insights into
the system are gained.

The method cannot only be used to efficiently compute
the scattering response and to compare to experimental re-
sults, but also for an optimization of devices for a tailored
functionality. It can be applied to far-field as well as to
near-field quantities. Examples are quantities involving the
electromagnetic energy flux density or the electromagnetic
absorption. However, the investigations in this work are lim-
ited to quadratic forms with a sesquilinear map. We expect
that, with resolving the key issue of the far-field treatment
in QNM modeling, the presented approach will enable usage
of QNMs in various fields. Applications include systems in
nano-optics with any material dispersion and any resonant
system in general, e.g., in acoustics or quantum mechanics.
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