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Recent experiments on semiconductor quantum dots have demonstrated the ability to utilize a large quantum
dot to mediate superexchange interactions and generate entanglement between distant spins. This opens up a
possible mechanism for selectively coupling pairs of remote spins in a larger network of quantum dots. Taking
advantage of this opportunity requires a deeper understanding of how to control superexchange interactions
in these systems. Here, we consider a triple-dot system arranged in linear and triangular geometries. We
use configuration interaction calculations to investigate the interplay of superexchange and nearest-neighbor
exchange interactions as the location, detuning, and electron number of the mediating dot are varied. We show
that superexchange processes strongly enhance and increase the range of the net spin-spin exchange as the dots
approach a linear configuration. Furthermore, we show that the strength of the exchange interaction depends
sensitively on the number of electrons in the mediator. Our results can be used as a guide to assist further
experimental efforts towards scaling up to larger, two-dimensional quantum dot arrays.
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I. INTRODUCTION

Semiconductor quantum dot spin systems are promising
platforms for quantum computation because of their small
scale, fast controllability, and long coherence times [1-3].
Qubits based on electron spins in quantum dots come in
several varieties, including ones based on individual electron
spins [1,4,5], two-electron singlet-triplet qubits [6,7], and
three-electron resonant exchange qubits [8—11] and hybrid
qubits [12-14]. In the past few years, there has been rapid
progress in improving gate fidelities and in scaling up to
larger quantum dot spin arrays [15-29]. There have also been
remarkable advances in creating long-distance spin-spin inter-
actions using superconducting resonators [30-33] or a large
multielectron quantum dot as a mediator of superexchange
interactions [34-38]. As for most approaches to quantum
computing, one of the current challenges in this field is to
determine suitable, scalable architectures that achieve high
connectivity and controllability while maintaining long coher-
ence times.

In all these types of quantum dot spin qubits, exchange
interactions play a central role, either as a main driver of en-
tanglement generation or as the primary single-qubit control
mechanism in the case of qubits based on the spin states of two
or three electrons. The exchange energy between two spins is
defined as the energy splitting between the triplet state with
S, = 0 and the singlet state. For two electrons in a confining
potential, the exchange energy can be positive or negative
if there is a sufficiently strong magnetic field [39—43]. For
example, it has been shown that the ground state oscillates
between a singlet and a S, = O triplet as the magnetic field
strength is tuned, even in the absence of spin-orbit coupling
[39,42]. On the other hand, negative exchange is harder
to achieve in weak magnetic fields due to the well-known
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two-electron ground state theorem [44,45], although it has
been shown to be possible in double quantum dot systems
if there is a strong bias between the dots [43]. The diffi-
culty in realizing negative exchange in the low-field, low-bias
regime in turn limits the types of control schemes that can
be employed to perform logic gates or dynamical decoupling
[46-48].

However, it has been shown in recent experiments that the
behavior of the exchange energy can be very different if there
is a big multielectron quantum dot in the system [38,49,50].
These experiments reported negative exchange energies due
to contributions from electrons in the higher orbitals of the
big quantum dot. Subsequent theory work showed that it is
possible to have a triplet ground state without a magnetic field
by loading as few as four electrons into the big dot [51]. It
has also been experimentally demonstrated that multielectron
quantum dots can be used to mediate strong superexchange
interactions between spins that do not interact directly [38],
a finding that was anticipated in earlier theory work based
on a Hubbard model [34]. Together, these findings suggest
that architectures based on arrays of smaller one-electron dots
interspersed with larger multielectron dots may be a promis-
ing route to scaling up to larger quantum processors [52].
For instance, one could imagine a square 2d array of single-
electron quantum dots with a large multielectron mediator at
the center of each plaquette. A key outstanding question is
whether one can selectively interact pairs of spins coupled to
the same mediator by adjusting detunings and tunnel barriers.

In this work, we take a first step toward addressing this
question by investigating the interplay of normal exchange
and superexchange in triple quantum dot systems where one
of the dots is a large mediator. Using configuration interaction
(CI) calculations, we explore how these two types of exchange
evolve as the geometry and electron number in the dots are
varied. Specifically, we compare four different cases: (i) a
double quantum dot without the mediator, a triple quantum dot
in a triangular configuration with (ii) two electrons or (iii) four
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FIG. 1. Four different quantum dot configurations studied in this work. D1 and D2 are small dots about 12.5 nm in radius, which
corresponds to a confinement energy of 7iw, = 7.28 meV. The x axis is defined to pass through the centers of both D1 and D2. D3 is the mediator
quantum dot, which is taken to have a radius of about 17.5 nm, which corresponds to a confinement energy of fiw; = %hwo = 3.64 meV. The
y axis passes through the center of D3. Here, we fix 2/, = 56 nm for cases 1, 2, and 3. We distinguish different triangular geometries in cases 2
and 3 by angle «; the distance between the mediator and small dots, /;, is a function of «. The blue dashed lines in every case are the potential
separation lines described in the main text. (a) The two-dot system. Jj, is the exchange coupling between two dots, which are separated by 21/j.
(b) The triangular system with two electrons. We adjust the detuning A to keep D3 empty. (c) The triangular system with four electrons. We
confine two electrons in the big dot by adjusting the detuning parameter A. (d) Linear three-dot with four electrons. This can be thought of as
a limit of case 3 in which we fix /; and rotate the two small dots D1 and D2 with respect to D3 until they are on a line. /; in this case is still a

function of « as in case 3, and we also use « to adjust the interdot separation in this case.

electrons, and (iv) a triple quantum dot in a linear arrangement
with the mediator in the middle. These cases are summarized
in Fig. 1. Comparing these four cases allows us to distinguish
effects due to electron number or dot detuning from those
caused by the dot geometry. In the triangular configuration
cases, we find that the mediator gives rise to a modest su-
perexchange interaction when it is not occupied, but when two
electrons are added to the mediator, this interaction becomes
orders of magnitude stronger. We show that the same enhance-
ment can also be obtained from the Hubbard model presented
in Ref. [34], where we use CI calculations to compute the
model parameters. We also find that the effective exchange
exhibits nonmonotonic behavior as the mediator moves away
from the two smaller dots. In the linear configuration case,
we find that including the mediator leads to a still stronger
exchange coupling, along with a substantial extension of the
interaction distance of the two remote spin qubits.

This paper is organized as follows. In Sec. II, we give
details of the system Hamiltonian and the CI approach we use.
We also compute the exchange energy for two electrons in
two dots, which is used as a reference to compare against the
triple-dot configurations. In Sec. III, we investigate superex-
change in the triangular dot configuration with two electrons.
In Sec. IV, we study the effect of adding two electrons to the
mediator, finding that superexchange is strongly enhanced as
a consequence. In Sec. V, we compare the triangular triple-
dot case with four electrons to the linear triple-dot case. We
present our conclusions in Sec. VI. An Appendix contains
additional details about our calculations and a detailed sur-
vey of the single-electron density for each of the triple-dot
configurations considered.

II. QUANTUM DOT MODEL AND EXCHANGE ENERGY
FOR DOUBLE DOT

We model each quantum dot by a 2d symmetric parabolic
potential, and we include a uniform external magnetic field in

the z direction, which is orthogonal to the plane of the dots.
The Hamiltonian for N electrons is then
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where m* = 0.067m, is the effective electron mass for GaAs,
m, is the electron mass, g* = —0.44 is the effective Landé
factor, wp is the Bohr magneton, and the dielectric constant for
this material is k = 13.1€y. Throughout this work, we set B =
Byz, where By = 0.845 T. V; is the total quantum dot potential
for case i, where i = 1, ..., 4 refers to one of the cases shown
in Fig. 1.

Let us first consider a system of two small quantum dots
without a mediator, as shown in Fig. 1(a) (case 1). In the
following sections, we use this system as a reference against
which we compare triple-dot configurations involving a medi-
ator. The explicit form of the quantum dot potential in Eq. (1)
forcasei =11s

Vi(r) = 30)m*wy(r — Rp2)?
+ 30(—)m*wj(r — Rp)’. 2

Here, fiwy is the confinement energy for each dot, r is the elec-
tron coordinate, and r = /x2 + y? the corresponding radius.
Rp; and Rp; are the coordinates of the dot centers for D1 and
D2, respectively. The confinement energy of each dot is set
to fiwg = 7.28 meV, which for By = 0.845 T corresponds to
a radius of about 12.5 nm, and the center-to-center separation
between the two dots is 56 nm. ®(x) is the unit step function,
which is used to cut and glue the two harmonic oscillator
potentials together along the x = O line, as indicated by the
blue dashed line in Fig. 1(a) (case 1). Similar cuts are used
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in the triple-dot cases as well. This is explained further in the
next sections.

To compute the eigenstates and energies of Eq. (1), we em-
ploy CI (e.g., exact diagonalization) following the approach
used in our previous work [51,53]. Our single-particle basis
states are comprised of the Fock-Darwin states for each dot.
Because the Fock-Darwin states from different dots are not
orthonormal to each other, we use the Cholesky decompo-
sition to obtain linear combinations of them that do form
a fully orthonormal basis. One could also consider using a
Gaussian grid basis instead; this has been shown to yield sim-
ilar results to the present approach [54,55]. After constructing
our single-particle basis and truncating it to retain only the
lowest L levels, we build our multiparticle states and compute
matrix elements of the Hamiltonian with respect to these
using the Slater-Condon rules (see the Appendix of Ref. [53]
for a review). We then extract the effective exchange energy
J by computing the energy difference of the lowest-energy
triplet |7p) and singlet |S) states. We establish convergence by
adjusting L until the results do not change significantly.

Fig. 2 shows our CI results for case 1, two electrons
in two small dots. Here in Fig. 2(a), the orbital number
is the total number of orthonormalized Fock-Darwin or-
bitals for the whole system. The energy levels of the Fock-
Darwin states are E,, = (n+ 1)iv a)g + a)?/4 + mhw, /2,
where w. = eBy/m*c is the cyclotron frequency, n is a
non-negative integer, and m = —n, —n + 2, ...,n — 2, nis the
magnetic quantum number. In the limit of zero magnetic field,
these levels form degenerate shells labeled by the quantum
number n, where the degeneracy of the nth shell is n + 1. For
the relatively weak magnetic field considered here, for which
w. =2wy/ \/@ the levels in each shell are nearly degenerate.
Because of this, one might expect that it is necessary to retain
all the orbitals within a shell in order for results to converge
[53]. Indeed, Fig. 2(a) shows that keeping other numbers of
orbitals may lead to slight inaccuracies in some cases (orbital
numbers 6, 12, and 20 correspond to keeping full shells).
Therefore, we choose to retain an integer number of shells
in our CI calculations throughout this work to be safe. In
Fig. 2(b), we show the exchange energy as a function of the
interdot half-distance [y (measured from the center of D1 to
the origin) on a logarithmic scale. As expected, the exchange
energy falls off exponentially with the distance. We compare
this result to what happens when the mediator dot D3 is placed
at the origin in Sec. V.

Before moving on to consider the effect of a mediator, it
is worth pausing for a moment to discuss possible issues with
using the infinitely confining biquadratic potential shown in
Eq. (2). Potentials of this type are used throughout this work.
Prior works showed that models based on infinite confine-
ment potentials can produce erroneous exchange couplings at
short interdot distances [56,57]. These works found that the
exchange energy exhibits a striking nonmonotonic behavior
below a critical distance that is on the order of the dot radius.
However, in Fig. 2(b), the exchange coupling continues to rise
smoothly at the shortest distances considered, as one would
expect, while no indications of nonmonotonic behavior are
evident. It may be that the failure at short distances observed
in Refs. [56,57] is due more to the use of Heitler-London

.
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(a) Exchange energy versus number L of single-particle orbitals
used in CI calculation for two electrons in a double quantum dot.
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FIG. 2. (a) Exchange energy for two quantum dots with one
electron each [see Fig. 1(a)] computed from CI as a function of
the number L of single-particle orbitals (L/2 orbitals for each dot).
Full orbital shells on each dot are retained when L = 6, 12, 20.
(b) Exchange energy for two dots versus interdot half-distance [
from a CI calculation with L = 12 single-particle basis states.

(HL) and Hund-Mulliken (HM) approximations rather than
infinite confinement potentials. This interpretation is consis-
tent with the fact that previous works employing CI to com-
pute exchange energies of electrons confined to biquadratic
potentials also obtained physically reasonable results [53-55].
We further support this conclusion by showing in Sec. IV
that our exchange coupling results are in agreement with
those obtained from a Hubbard model; such models have been
shown to work well even at distances where HL. or HM models
fail [57]. The model potentials we use will likely become
unreliable at very short interdot separations, but this regime
lies outside the scope of the present work, where our focus is
on long-distance spin-spin interactions between electrons in
well separated dots. If one is interested in describing specific
devices in which the dots are very close to each other, then
a more reliable approach might be to use density functional
theory calculations to construct the single-particle basis states
rather than a model potential [58].
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III. TRIANGULAR TRIPLE DOT WITH TWO ELECTRONS

We now move on to case 2, which includes a third, larger
dot as shown in Fig. 1(b). We expect that if the third dot is
brought sufficiently close to the first two, then it can mediate
superexchange interactions between the electrons on the two
small dots. These superexchange interactions can potentially
combine constructively or destructively with the normal ex-
change that still exists between the two small dots.

In order to compare directly with the results of case 1, we
again fix the radius of the two small dots (D1 and D2) to
about 12.5 nm and choose the center-to-center distance (2/)
between them to be 56 nm. The larger mediator dot (D3)
is chosen to have a confinement energy of fiw; = %an)o =
3.64 meV, which corresponds to a radius of about 17.5 nm.
The center of the dot is located on the positive y axis. The
centers of these three dots form an isosceles triangle, and the
angle between the base and one leg of the triangle is defined
to be «. We match the three parabolic potentials of the three
dots along a T cut that separates the plane into three regions as
indicated with the blue dashed lines in Fig. 1(b). Each of these
regions contains one of the dot potentials. The horizontal sep-
aration line is placed at y = y,, where yy depends on the angle
« in such a way that dot D3 remains almost entirely above this
line in all cases. The precise manner in which yj is chosen for
a given value of « is described in Appendix. The remaining
two regions are separated by the y axis at x = 0. Thus, for
case i = 2, the total quantum dot potential in Eq. (1) is

Va(r) = 10y — )@ )m* wj(r — Rpy)*
+ 10y — »)O(—x)m*wj(r — Rpy)*
+ 0@ —yo)[3m e —Rp)> + Al (3)

In the last line of Eq. (3), we introduced the detuning
parameter A for dot D3; this parameter applies a constant
energy shift to all the levels in the mediator relative to the
energy levels in the small dots, D1 and D2. For each angle
o, we adjust A until dot D3 is empty of electrons, which
we check by integrating the multiparticle density over the
region above the horizontal blue dashed line in Fig. 1(b) to
obtain the electron number in D3. Of course, one cannot make
the electron number in D3 exactly zero, but it can be made
very small, at least for o > 45°. For these angles, we can
keep the electron number in D3 below 0.05¢ by choosing
A =20 meV for all angles in this range. For smaller angles
in the range o < 45°, reducing the electron number in D3
becomes more difficult, but we can still get it below 0.1e by
setting A = 20 meV.

The successful depletion of D3 is also visible in the single-
particle density, which we calculate by integrating the multi-
electron density over just one set of electronic coordinates. An
example is shown in Fig. 3 for « = 30°. Increasing A until the
big dot is almost vacant also causes the two small dots to move
downward, as is evident in the figure. However, the separation
between the electrons in the small dots remains unchanged
for both the lowest-energy singlet and triplet state, hence the
normal exchange interaction between them remains the same.
Additional density plots for various angles can be found in
Appendix.
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FIG. 3. Single-particle density for two electrons in a triangular
triple dot (case 2) for &« = 30°. The upper (lower) panel shows the
single-particle density for the lowest-energy singlet |S) (triplet |7p)).
The yellow dashed line is the potential cut at y = yy. The dashed
circles mark the positions of the three parabolic dot potentials for
this value of «. It is apparent that the centers of the electron density in
the small dots are displaced downward. This is due to the large value
of detuning A chosen to deplete the big dot. The distance between
the two small dots remains the same, as does the normal exchange
coupling between them.

We now calculate the effective exchange interaction Jj,
between the electrons on dots D1 and D2. This interaction in-
cludes contributions from normal, nearest-neighbor exchange
between D1 and D2 as well as a superexchange interaction
mediated by dot D3. We compute Jj, as a function of an-
gle «; this allows us to control the relative strength of the
superexchange coupling compared to the normal exchange,
because increasing « increases the distance between D3 and
the other two dots. The result is shown in Fig. 4 (blue
line with green points). We see that across a broad range
of angles, the effective Jj, exceeds the normal exchange
interaction (dashed red line) that we obtain in the absence
of the mediator. We attribute the difference between these
two curves to superexchange processes. It is evident that, in
this case, superexchange provides only a modest enhance-
ment of the total effective exchange that is at most 20% of
the normal exchange. This enhancement quickly fades as «
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FIG. 4. Effective exchange interaction between electrons on dots
D1 and D2 as a function of angle « [see Fig. 1(b)] in the case of two
electrons in a triangular triple dot (case 2). In the CI calculation used
to obtain this result, we retain six, six, and three orthonormalized
Fock-Darwin orbitals for D1, D2, and D3, respectively, correspond-
ing to a total of L = 15 single-particle basis states. The red dashed
line is the result for Jj, from case 1 (two electrons in a double dot)
using 12 single-particle orbitals. We see only modest contributions
from superexchange processes in this case.

increases beyond 50° (which corresponds to /; = 43.56 nm),
although some evidence of superexchange remains visible
in the large-angle regime. Interestingly, we also find non-
monotonic behavior in Jj; in the small angle regime, with
a maximum near 40°. This may be because the downward
shift of the electrons in D1 and D2 caused by A effectively
increases the distance to D3, leading to a small suppression of
superexchange.

IV. TRIANGULAR TRIPLE DOT WITH FOUR ELECTRONS

We now investigate the impact of increasing the number
of electrons on the effective exchange coupling. In particular,
we add two more electrons to the system, while keeping the
form of the potential (V3 = V;) and almost all the parameters
the same. The only parameter we change is A, which is now
adjusted so that two electrons occupy D3 as in Fig. 1(c). The
precise values used are given in Appendix.

Before proceeding, we need to clarify the definition of J;,
in the case where there are four electrons. For each possible
occupancy of spatial orbitals, there are a total of 16 spin states,
many of which are singletlike and tripletlike. To compute the
effective exchange energy, we identify the lowest-energy state
with §°% =0 and S©* = 0 as our singlet state |S) and the
lowest-energy state with S = 1 and S = 0 as our triplet
state |7p). We then calculate Jj, by taking the difference of the
two corresponding eigenenergies. In all four-electron cases
considered in this work, we confirm the suitability of this
definition by verifying that the resulting |S) and |Tp) states
have the property that the two electrons on D3 approximately
form a singlet.

The one-electron density (obtained this time by integrating
the full multielectron density over three sets of electronic
coordinates) for « = 30° is shown for both the lowest-energy
singletlike and tripletlike states in Fig. 5. It is evident in both
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FIG. 5. Single-particle density for four electrons in a triangular
triple dot (case 3) with @ = 30°. The upper (lower) panel shows the
single-particle density for the lowest-energy singletlike |S) (triplet-
like |Tp)) four-electron state. The yellow dashed line marks the
potential cut at y = y,. The blue dashed circles indicate the original
positions of the three dots for this value of «. The electrons in the
small dots are displaced slightly downward and outward, while the
electrons in the big dot move upward due to Coulomb repulsion.

cases that the electrons in D1 and D2 are displaced slightly
downward as a consequence of D3, similarly to Fig. 3, while
the two electrons on D3 undergo a more substantial upward
shift. This is due to a combination of Coulomb repulsion and
the fact that the confinement energy of D3 is much smaller
than that of D1 and D2, which allows the electrons in D3 more
freedom to move away from the other two electrons. Unlike
the two-electron case, here the electrons in D1 and D2 are also
pushed away from each other horizontally as a consequence
of the Coulomb repulsion from the two electrons on D3, and
this in turn can impact the normal exchange. As one would
anticipate based on fermion statistics, it is also evident in
Fig. 5 that the singlet density is more uniformly spread across
the three dots compared to the triplet density. This is, of
course, directly related to the nonzero superexchange energy.
Additional plots of the single-particle density for other values
of @ can be found in Appendix.

Next, we show that the inclusion of the two additional
electrons compared to case 2 can either strongly enhance
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(a) Effective exchange energy for triangular triple dot with four
electrons.
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FIG. 6. (a) Effective exchange energy Ji, versus angle « for
four electrons in a triple quantum dot as in Fig. 1(c) (case 3).
Results are obtained from a CI calculation in which six, six, and
three orbitals are retained for D1, D2, and D3, respectively, for a
total of L = 15 single-particle basis states. Superexchange processes
strongly enhance Jj, for @ < 65°. (b) A zoom-in of (a), along with
the CI result for two electrons in a double dot (case 1) when L = 12
single-particle states are kept (red dashed line). The dip in J;, near
o = 70° is likely caused by Coulomb repulsion as explained in the
text.

or weakly suppress the effective exchange interaction J;,
depending on «. Our CI results for Ji; as a function of «
for case 3 are shown in Fig. 6. The most striking difference
compared to the two-electron case considered in the previous
section is that the effective exchange energy is more than two
orders of magnitude larger in the low-angle regime (compare
with Fig. 4). We can understand this as a consequence of
Fermi statistics combined with the fact that the three quantum
dot potentials are merging together in the low-o regime, which
forces the four electrons to occupy the same space. This
happens in the four-electron case because here we lower A
substantially in order to keep two electrons trapped in the
mediator. This is unlike the previous case where A was set to
a large value to keep the mediator empty, which in turn keeps
the potential similar to what it was in the case of two isolated
dots (case 1). If we were to think of the triple-dot potential

in case 3 (low A) as effectively one big dot Deg, and if we
neglect Coulomb interactions for the moment, then the ground
state of the system would be a $*%@ = ( state consisting of
two pairs of two-electron singlets occupying the lowest two
single-particle orbitals of Deg. The lowest-energy state with
Sl =1 and $° = 0 would be formed by moving one of
the electrons to the second excited orbital, which produces an
exchange splitting that is on the order of the level spacing of
Dcft. In the present context, this is on the order of meV. (In
case 2 where A is large, this splitting is very small because
we have essentially two independent dots with nearly degen-
erate orbitals.) Restoring the Coulomb interactions reduces
this splitting because the more symmetric spatial part of the
sl — () state incurs a larger Coulomb energy penalty, but
the splitting can still remain large. Note that this mechanism
is closely related to the notion of spin blockade in singlet-
triplet qubits, where the singlet and triplet two-electron states
are nearly degenerate when the electrons are separated into
distinct dots, but when a large detuning is applied to one dot,
the electrons are pushed into the same dot, opening a large
energy gap between the singlet and triplet states [6]. In the
next section, we show that the vertical shift of the mediator
electrons due to Coulomb repulsion (Fig. 5) actually leads to
a significant reduction in the superexchange in the small-angle
regime compared to what would occur in the absence of this
shift.

Figure 6 shows that the effective exchange energy ex-
hibits three different qualitative trends as a function of «.
For o < 65°, Jj, is dominated by a very strong superex-
change interaction mediated by D3 as discussed above. For
o > 72°, Ji» quickly converges to the value obtained in the
two-electron case without the mediator (which is indicated
with a red dashed line in the figure). In between these regimes,
68° < o < 72°, Jy is close to but clearly below the two-dot
value. One possible explanation for this behavior is that the
superexchange contribution is becoming negative in this range
and partially cancels the positive normal exchange energy.
Negative superexchange couplings mediated by large quan-
tum dots have recently been observed experimentally [38].
We have also shown in prior work that negative exchange
can arise in quantum dots containing as few as four electrons
[51]. However, we believe that it is more likely that the
superexchange coupling quickly drops to zero before @ = 68°
and that the suppression of Jj, after this point is instead due
to the horizontal displacement of the electrons in D1 and D2
caused by Coulomb repulsion as shown in Fig. 5. We have
checked numerically that displacing dots D1 and D2 by a
similar amount in the two-dot geometry leads to a change
in Jy, that is of the same order of magnitude in that case,
supporting this interpretation. This effect could have impor-
tant consequences in general for architectures in which long-
distance interactions are mediated by multielectron quantum
dots because, in addition to mediating superexchange inter-
actions, the extra electrons on the mediators can also have a
negative impact on the resulting spin-spin coupling strength
due to Coulomb interactions depending on the layout of
the dots.

Next, we show that the strong enhancement in the superex-
change coupling can also be obtained from the Hubbard model
introduced in Ref. [34]. We would expect the Hubbard model
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to be reliable for the dot geometries considered here since
we are focusing on long-distance spin-spin couplings between
well separated dots. To show that this is true, we first use CI
to compute the parameters of the Hubbard model. We focus
on the dot configuration with o« = 30° since this corresponds
to the shortest distances between the dots and thus the regime
in which the Hubbard model is most in danger of failing. The
Hubbard model parameters we need to compute are the onsite
energy associated with filling a dot with one electron (P) and
the additional energy needed to add a second electron (Q),
along with the analogous energies for the mediator (U and
A, respectively). See Fig. 1 of Ref. [34]. Here, we set P = 0,
Q=C,U =YV, A =C, +V,;, where C; and C, are the sums
of the orbital and Coulomb energies for a small dot and the
mediator, respectively, V; is the detuning on the mediator,
and the index i = 0,2 indicates the number of electrons
on the mediator. From CI calculations, we find that these
parameters are Vp &~ 20 meV, V, &~ 1 meV, C; =~ 11 meV, and
C, =~ 8 meV. Plugging these values into the expressions for
the effective exchange couplings from Ref. [34], we find that
the ratio of the couplings for two or zero electrons on the
mediator is J2;/J% ~ 200, which agrees with what we obtain
from a direct CI calculation [compare Figs. 4 and 6(a) at
a = 30°].

The main difference between these two methods is that
full CI includes all the contributions from the electronic
interactions while Hubbard-type models normally neglect the
exchange part of the Coulomb interaction and keep onsite
direct terms and hopping terms only. Hubbard-type models
become unreliable when the exchange terms become signifi-
cant. For instance, if one wants to describe the ferromagnetic
behavior of the intradot interactions, one needs to use CI
rather than Hubbard-type models since the exchange part of
the Coulomb terms is important. In our case, the three dots
are not too close to each other, so the exchange terms in the
Coulomb interaction are negligible, and the Hubbard model
works well.

V. LINEAR TRIPLE DOT WITH FOUR ELECTRONS

We now move on to the final quantum dot configuration
considered in this work: the linear triple dot with four elec-
trons depicted in Fig. 1(d). The total quantum dot potential in
this case is

Vi =30(x — xo)m*wy(r — Rpp)?
+ 30 (=x0 — x)m*wy(r — Rpy)?
+ O +x0)O(xo — X)[3m*wi(r — Rp3)* + A]. (4)

This potential is formed by cutting and gluing together the
individual dot potentials along vertical lines located at x =
+x9. We are interested in computing the effective exchange
energy between dots D1 and D2 as a function of the interdot
distance /;. For each [;, we set the detuning A such that the
mediator is occupied by two electrons. The particular values
used are given in Appendix.

To make it easier to compare directly to the triangular
triple dot studied in the previous section (case 3), we again
compute Jj, as a function of angle «, but where o now
refers to the corresponding angle in the triangular triple dot

Density (nm~2)
0.0004

0.0003

y (nm)

0.0002

0.0001

A

0

Density (nm~2)

0.0004
€
£ 0.0003
>
& 0.0002
0.0001
0

-40 -20 0 20 40
x (nm)

FIG. 7. Single-particle density for four electrons in a linear triple
dot (case 4) with « = 30°. The upper (lower) panel shows the single-
particle density for the lowest-energy singletlike |S) (tripletlike |75))
four-electron state. The yellow dashed lines mark the potential cuts at
x = %x¢. The blue dashed circles indicate the positions of the three
dots for this value of . The electrons in the small dots are displaced
slightly outward due to Coulomb repulsion.

geometry that has the same distance /; between the mediator
D3 and the smaller dots D1 and D2. Imagine that each linear
geometry we consider in this section is obtained by starting
from a triangular configuration with angle «, freezing I,
and then rotating D1 and D2 around D3 until all three dot
centers lie on a line. In this way, each value of « that we
start with corresponds to a different interdot distance in the
linear geometry according to the formula /; = [ sec o, where
lo = 28 nm. We are thus computing Ji,(/;) = Ji2(lp sec ) as
a function of «.

An example of the one-electron density for o = 30° is
shown in Fig. 7. Although the interdot distance is rather short
at this value of « (I; = 32.33 nm), the electrons in D1 and D2
shift only slightly away from D3. This is because of a trade-off
between the Coulomb repulsion and the large confinement
energy of the small dots. The electrons in the small dots need
to move only a little bit to cancel the Coulomb repulsion from
the mediator electrons. The horizontal shift of the D1, D2
electrons is smaller than in case 3 (see Fig. 5) because D1 and
D2 are a bit further apart here. It is also evident in Fig. 7 that
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(a) Effective exchange energy for linear triple dot with four
electrons.
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(b) Zoom-in of panel (a).

FIG. 8. (a) Effective exchange energy Ji, versus interdot sepa-
ration (given by 2/, = 2l sec o, with [y = 28 nm) for four electrons
in a linear triple dot as in Fig. 1(d) (case 4). Results are obtained
from a CI calculation in which six, six, and three orbitals are retained
for dots D1, D2, and D3, respectively, for a total of L = 15 single-
particle basis states. The presence of the two mediator electrons
strongly enhances Jj, for a < 65°. (b) A zoom-in of (a). In the
large-distance regime (large o and /;), J;, monotonically approaches
Zero.

the density for the triplet state is more disjointed (exhibiting
four distinct maxima) compared to the singlet density as one
would expect based on fermion statistics. Additional single-
electron density plots for other values of @ can be found in
Appendix.

Our CI results for Ji, as a function of « in the linear
geometry are shown in Fig. 8. The first thing to notice is that
the superexchange again dominates in the small o regime,
even more so here than in the triangular triple dot (case 3), as
is evident in Fig. 8(a). We also see from Fig. 8(b) that the inter-
action strength remains above 1 ueV for interdot distances of
up to ~130 nm. This should be compared to the case without
the mediator [Fig. 2(b)], where the corresponding distance
is only 56 nm. Thus, the mediator extends the interaction

range by more than a factor of 2. Figure 8(b) further reveals
that the effective exchange decays to zero monotonically with
interdot distance. Because the horizontal displacement caused
by Coulomb repulsion is smaller in this case, a dip in J, does
not arise as in case 3.

The large enhancement in Ji, at smaller « relative to that
seen in case 3 is likely due to the fact that the vertical Coulomb
repulsion in case 3 effectively increases the distance to the
mediator electrons (see Fig. 5), which in turn reduces the
benefit to the superexchange that comes from the presence of
these extra electrons. The vertical shift is significant because
of the weak confinement energy of the mediator. On the other
hand, the additional symmetry in the linear geometry prevents
a similar phenomenon from happening in this case, yielding a
stronger superexchange enhancement. If this interpretation is
correct, then we should adjust the ¢ values in case 3 to account
for the upward shift of the mediator electrons in order to
do a proper comparison to the linear configuration. To check
whether this makes sense, we will in fact do the opposite: We
first determine the shift in «®**® needed to make J{3*** equal to
Jiase4 (setting the interdot distances equal in both cases), and
we will then check whether this shift corresponds to a vertical
displacement Ay of the mediator electrons that is comparable
to that seen in Fig. 5. The first step then is to solve the
equation

J]cezise3 (aCaSC3 ) — Jf:gseél (acase4)’ (5)

for «®®°4, which we then interpret as the effective angle for
case 3: %3 = @4 The shift in o caused by Coulomb re-
pulsion is then Aa = ozgﬁfm — a®3_In order to solve Eq. (5),
we must first interpolate our data for Jj, versus « to obtain
a smooth function J&3%*4(@°®°*). This interpolation is shown
in Fig. 9(a), and the A« that results from solving Eq. (5) is
shown in Fig. 9(b). The corresponding vertical displacement

is then given by
Ay e —y  lotan (aS%) — [ tan(a®)
y N y o lO tan(acaseS)

_tan (0rCe3) — tan(ar®®3)

€
tan (Ot case3 )

(6)

These results are shown in Fig. 9(c), where it is clear that
substantial vertical shifts are needed to account for the sup-
pression of Jj, in the triangular triple dot case. For exam-
ple, when o = 30°, Ay/y & 0.95, corresponding to a ~95%
vertical shift. From Fig. 5, where y = [ptana = 16.17 nm,
we see that y. ~ 25 nm, yielding Ay/y =~ 0.55. Although
this is less than 0.95, it is still large enough that we believe
this is the primary mechanism responsible for the suppression
of Jj» in the triangular case. The discrepancy is likely due
to the downward shift of the electrons in D1 and D2, which
we have neglected in this analysis. From Fig. 5, we see that
this shift is on the order of 5 nm; this would bring the net
vertical shift up to yes & 30 nm, which is consistent with the
95% value obtained from our analysis. As the angle or [;
gets larger, the Coulomb repulsion becomes weaker, and the
vertical displacement becomes negligible, which is also clear
from Fig. 9(c). One can also see this from the shifts in the
single-particle densities at larger o shown in Appendix.
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(a) Interpolating function for effective
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exchange in case 4.

a (%)

(b) Effective angular shifts for case 3.

a (%)

(c) Relative electron position shifts for case 3.

FIG. 9. Calculation of the vertical shift in electron positions due to Coulomb repulsion in case 3 (triangular triple dot) using the exchange
energy from case 4 (linear triple dot). We assume the electrons in D1 and D2 remain fixed and only consider the movement of electrons in D3.
(a) Effective exchange energy versus « and /; for case 4. Green diamonds are the original data from Fig. 8. The blue line is an interpolating
function for lower angles to intermediate angles. One can map the data of case 3 to this function to get information about the shifts in electron
positions as explained in the main text. (b) The resulting angular shifts due to Coulomb repulsion for different angles «. (c) The relative change

in vertical position of the electrons in D3 for different angles.

Before we conclude, it is worth commenting on why we
have not seen any evidence of negative exchange interactions,
even though our previous work showed that these can arise in
quantum dot systems containing as few as four electrons [51].
In that work, we showed that if four electrons are confined in
a symmetric parabolic potential, the ground state is a triplet
provided the splitting between the second and third single-
particle levels is sufficiently small. This splitting vanishes in
the limit of zero magnetic field due to rotational symmetry,
and it remains small in the low magnetic field regime. These
findings suggest that, in the present case of the linear triple
dot, if one were to gradually tune /; down to zero, one would
see the exchange energy reach a maximum positive value and
then decrease all the way down to negative values as the
three dots merge into one big dot. Before /; reaches zero,
the triple dot potential looks like one large elliptical dot. In
Ref. [51], we calculated how the exchange energy depends on
dot ellipticity, and we showed that a transition from negative
to positive exchange occurs as the ellipticity increases past
a certain threshold value that depends on the confinement en-
ergy. This transition happens because increasing the ellipticity
breaks the rotational symmetry of the dot and opens a gap
between the second and third single-particle levels. Figure 3
of Ref. [51] shows that the exchange energy vanishes when
the ellipticity /idw is about 1-2 meV (when the confinement
energy is 7-8 meV), which corresponds to a difference of
2-4 nm between the vertical and horizontal extent of the dot
potential. For the linear triple-dot geometry, this implies that
the small dots would need to overlap almost completely with
the mediator, which happens for /; <5 nm, which is well
below the /; values we have considered. Thus, it is not surpris-
ing that we have not encountered negative exchange energies
in this work. Unfortunately, probing this crossover behavior
from three separate dots to one large dot is computationally
challenging because a very large number of single-particle
basis states would be needed to obtain accurate results, which
translates to a very large computational cost. It would also
be interesting to explore the possibility of negative superex-
change interactions when four electrons are confined to the

mediator instead of two. We leave these investigations to
future work.

VI. CONCLUSIONS

In this work, we explored the interplay of normal exchange
and superexchange processes in triple quantum dot systems
where a large dot is used to mediate long-range spin-spin
interactions between a pair of smaller dots. We consider trian-
gular geometries in which both normal exchange and superex-
change can be present simultaneously. Using configuration
interaction simulations, we showed that the effective exchange
energy receives a modest enhancement due to superexchange
when the mediating dot is brought sufficiently close to the
small dots. We further showed that this enhancement can
be increased by two orders of magnitude if the mediating dot
is loaded with two electrons, a phenomenon we attribute to
a combination of Fermi statistics and quantum confinement.
We also found that the effective exchange energy exhibits
nonmonotonic behavior as the distance between the small
dots and the mediator is varied. This can be understood as
a consequence of the rapid decay of superexchange with
distance and a more slowly changing lateral shift of the
electron positions in the small dots due to Coulomb repulsion
from the mediator electrons. Our calculations also reveal that
the effective exchange interaction can be made still larger by
placing the mediating dot exactly between the two smaller
dots, and we provided evidence that the somewhat smaller
interaction in the triangular case is likely due to an additional
Coulomb repulsion that is not present in the linear case.
Moreover, we found that in addition to sharply increasing the
effective exchange coupling, the electron-filled mediator also
more than doubles the range of the interaction.

Overall, we found that the strength of the superexchange
interaction depends on both the detuning of the mediator
and on the geometry of the three dots. Low detunings on
the mediator can lead to very high superexchange couplings.
This is the main reason the superexchange is much larger
when two electrons are confined on the mediator compared to
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FIG. 10. Single-particle density plots for the triangular triple dot with two electrons (case 2) for « = 30°, 40°, 45°, 50°, 60°, 70° and for
the lowest-energy singletlike (S) and tripletlike (T) states. The white and blue dashed circles indicate the dot potentials, and the yellow dashed
line is the potential cut (here we do not show the x = 0 cut in the plots). The big dot contains approximately zero electrons. At low angles,
the two small dots move a little bit downward due to the large detuning of the big dot. At high angles, this effect is small because the dots are

sufficiently far apart.

no electrons. We also saw that geometry plays an important
role as well, albeit to a lesser extent. In the triangular dot
configurations, the superexchange coupling is lower than in
the linear case because of a shift in the electron density on
the mediator, which in turn changes the effective distance
between the small dots and the mediator. Both factors should
be taken into consideration when designing multidot devices
that utilize superexchange interactions.

Our results show that including electrons in a quantum
dot mediator can substantially enhance the strength and range
of spin-spin interactions between remote quantum dots. They

also suggest that the precise geometry of the dots can have
important ramifications and provide additional flexibility in
the design of larger-scale architectures based on quantum
dot-mediated exchange couplings.
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APPENDIX: SINGLE-PARTICLE DENSITIES
AND MEDIATOR DETUNING VALUES

In this Appendix, we show additional plots of the single-
particle density for cases 2, 3, and 4, for both the lowest-
energy singletlike (S) and tripletlike (T) eigenstates with total
spin projection S;"‘al = 0. We also provide further details
about the way we choose our potential cuts and detuning val-
ues A to guarantee the mediator contains the desired number
of electrons in each case.

1. Triangular triple dot with two electrons (case 2)

In this case, the potential cut between D1 and D2 is always
the half-line, x = 0, y < yo, and the horizontal line, y = yy.
For the latter, we choose different values of y, depending
on the angle we choose. For o = 30°,40°, 45°, 50°, we set
yo = 6, 10, 12, 15 nm, respectively. For the larger angles, we
do the following. First we choose the detuning A and then
determine the equal-potential point on the line connecting D1
and D3. Due to symmetry, we can find a similar point on the
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FIG. 12. Single-particle density plots for the linear triple dot with four electrons (case 4) for « = 30°, 40°, 45°, 50°, 60°, 70° and for the
lowest-energy singletlike (S) and tripletlike (T) states. The blue dashed circles indicate the dot potentials, and the yellow dashed lines are the
potential cuts. The big dot contains two electrons as can be confirmed by integrating the density over the middle region.

line connecting D2 and D3. We then connect these two points
by a line, which gives us the y = y, cut. The reason we do not
use this procedure for smaller angles is because the big dot is
very close to the x axis, and the equal-potential point is too
close to the small dots in these cases, and so placing the cut
here would leave the small dots with too much overlap in the
big dot region.

We set the detuning on D3 to a high value, A = 20 meV,
to deplete the mediator as much as possible. The tolerance
threshold for the electron number on D3 is set as discussed
in Sec. III. The corresponding single-particle density plots for
several different angles are shown in Fig. 10. The three dot
potentials are marked by white and blue dashed circles, and

the potential cut y = yj is indicated by a yellow dashed line.
It is evident that the mediator remains empty in all cases.

2. Triangular triple dot with four electrons (case 3)

Here, we do the same potential cuts as in case 2. To
determine appropriate choices for the detuning A, we perform
a systematic scan over A values, in each case calculating how
many electrons are in the big dot region above y = y,. We find
that the following values correspond to having two electrons
in the big dot: A = 1.0, —1.0, —1.5, —2.0, 3.5, 4.0, 4.0, 4.0,
4.0, 4.0, 4.0, 4.0 meV for « = 30°, 40°, 45°, 50°, 60°, 64°,
68°, 70°, 72°,74°, 76°, 80°, respectively.
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We show several density plots for various values of « in
Fig. 11. The three dots are illustrated by the blue dashed
circles, and the potential cut at y =y, is indicated by the
yellow dashed line. One can see that the shifts in the po-
sitions of the electrons in the big dot are much larger at
lower angles, which agrees with the analysis in Sec. V and
Fig. 9.

3. Linear triple dot with four electrons (case 4)

In this case, we make two potential cuts (x = %xg) parallel
to the y axis. To do this, we first choose the detuning A for D3
and then compute the equal-potential point (xg, 0) between D2

and D3. Thus, we can separate the space into three parts using
the two cuts x = %xg.

To decide the detunings A, we again scan over a range of
values and integrate the density to see how many electrons
are in the big dot region (middle region). This process yields
the following values at which two electrons are confined to
D3: A =-0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 3.0, 3.5, 3.5, 3.5,
3.5 meV for o = 30°, 35°, 40°, 45°, 50°, 55°, 60°, 64°, 68°,
70°,72°, 80°, respectively.

Single-particle density plots for several different values of
« are shown in Fig. 12. The three dots are illustrated by the
blue dashed circles, and the potential cuts at x = +x; are
indicated by the yellow dashed lines.
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