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Recently experiments have shown very significant spin activity in biological molecules such as DNA, proteins,
oligopeptides, and aminoacids. Such molecules have in common their chiral structure, time reversal symmetry
and the absence of magnetic exchange interactions. The spin activity is then assumed to be due to either the
intrinsic spin-orbit (SO) interaction or SO coupled to the presence of strong local sources of electric fields. Here
we derive an analytical tight-binding Hamiltonian model for oligopeptides that contemplates both intrinsic SO
and Rashba interaction induced by hydrogen bonding. We use a lowest order perturbation theory band-folding
scheme and derive the reciprocal space intrinsic and Rashba type Hamiltonian terms to evaluate the spin activity
of the oligopeptide and its dependence on molecule uniaxial deformations. SO strengths in the tens of meV are
found and explicit spin active deformation potentials. We find a rich interplay between responses to deformations
both to enhance and diminish SO strength that allow for experimental testing of the orbital model. Qualitative
consistency with recent experiments shows the role of hydrogen bonding in spin activity. Hydrogen bonding as
the source of spin activity further enhances, coupled to chirality, the ubiquity of spin effects that may be pervasive
and functional in biological molecular structures.
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I. INTRODUCTION

There has been considerable interest recently in the elec-
tron spin polarizing ability of biological chiral molecules
such as DNA, proteins, oligopeptides, and aminoacids [1–5].
The effect known as chiral-induced spin selectivity (CISS)
is impressive since the electron polarizations achieved, both
for self-assembled monolayers and single molecule setups,
exceeds those of ferromagnets [6]. The qualitative explanation
for spin activity, in the absence of a time reversal symmetry
breaking interactions, has been suggested to be due to the
atomic spin-orbit coupling [7,8]. Although the small size of
such an interaction has encouraged invoking sources such
as inelastic effects [9–11], recent works have shown that
tunneling alone can exponentiate the small spin-orbit values
to yield very high polarizations [12].

Analytical tight-binding modeling has proven very pow-
erful to understand the qualitatively different features of low
dimensional systems. An emblematic example is the discov-
ery of topological insulators [13] and the integer quantum
hall effects without magnetic fields [14]. In the context of the
CISS effect, a recent model [15] described the spin activity of
DNA on the basis of a tight-binding (TB) model that assumes
mobile electrons on the π orbitals of the bases and the spin-
orbit coupling (SOC) due to the intra-atomic interactions of
C, O, and N. The resulting model yields a consistent picture
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of how a time reversal symmetric Hamiltonian can result in
spin polarization. A more recent analytical TB model has also
described spin-polarizing transport features of Helicene [16].

While attempting to assess the dominant player in electron
spin transport effects on large chiral molecules, an oppor-
tunity arises to validate the orbital model using mechanical
deformations [17]. The spin polarization response hints at
the orbital participation involved in determining the SOC
strength [18,19]. One can then also perform transport calcula-
tions and determine the behavior of a finite system including
details of the coupling to reservoir [20].

In this work, we derive an analytical tight-binding Hamil-
tonian model for oligopeptides that assumes that the basic
ingredients are (i) the atomic SO interaction from double
bonded (orbital) oxygen atoms, in the carboxyl units, provide
transport electrons, (ii) the Stark interaction matrix element
between the pz orbital and the oxygen s orbital is produced
by the hydrogen bond polarization, and (iii) overlaps between
nearest neighbor oxygen orbitals [21]. The manifestations
of these ingredients through a mechanical probe will be a
specially compelling verification of the source the electric
field feeding the SOC and determining its magnitude. The
case for oligopeptides [17], because of the arrangement of the
hydrogen bonds, is very different from that of DNA [19] and
should yield opposite effects on stretching. Finally, there are
already experimental results for CISS on oligopeptides that
will serve as an experimental check.

The paper is organized as follows: in Sec. II we first
introduce the full TB model of the oligopeptide including
both the Stark and the SOC. Then we use band folding
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to reduce an 8 × 8 space encompasing the orbital space to
a 2 × 2 effective space involving one effective pz per site.
Thus we derive the resulting Rashba and intrinsic SOC’s
and energy corrections. We find closed form expressions
for dependences of the interactions on the geometry of the
molecule and the type of amino-acid units. There arise four
different SOC terms: two associated to the Rashba interaction
and two to the intrinsic coupling. In Sec. III we obtain the
Hamiltonian in reciprocal space by way of a Bloch expansion.
In Sec. IV we show the analysis of the behavior of the
SOC magnitudes under deformations. The interplay between
these spin active interactions yield opposite responses to the
longitudinal mechanical deformations, with predominance of
the SO enhanced stretching. Furthermore, the Rashba cou-
pling, depending on the polarization of the hydrogen bond,
yields additional enhanced SO due to stretching as reported
experimentally for oligopeptides [17]. These results point to
the role of the atomic SO and hydrogen bonding in the spin
activity of biological molecules. Finally, in Sec. V we offer
summary and conclusions.

II. TIGHT-BINDING MODEL

Consider a helix as shown in Fig. 1. Each atom is described
by a set of {s, px, py, pz} orbitals associated with valence
oligopetide constituents such as C, N, O. The mobile electrons
are assumed to be provided with the double bonded oxygen
[21] (carboxyl group) attached by hydrogen bonding [see
Fig. 1(a)] to the amine group in the oligopeptide. The high
polarization of the hydrogen bonds produce local electric
fields on carboxyl group. The hydrogen bonds connect con-
secutive helix turns as shown by dashed lines in Fig. 1(a).
Such bonds have a small tilting due to a small nonperiodicity
of real structures [22], which we capture in our model. The
π structure of the double-bonded oxygen is accounted for by
the pz orbitals in the radial direction [see Fig. 1(b)] akin to
the structure of a single walled nanotube. The backbone of
the molecule is bonded through the σ structure, i.e. {s, px, py}
orbitals, that lie tangentially to the oligopeptide structure.
These bonds mediate alternate electron transfer paths between
pz orbitals that are small compared to the direct pz − pz

transfer or kinetic term, such that they are omitted in our
model. The axis of the chain is considered along the Yaxis
with a set of orbitals on sites ı, such that ı = 1, ..., N . The
position vector Rı in the fixed or global coordinate system
(XYZ) describes points on a cylinder and is written as

Rı = r cos[(ı − 1)�ϕ]eZ

+ r sin[(ı − 1)�ϕ]eX + h
(ı − 1)�ϕ

2π
eY, (1)

where r is the radius of the helix, h is the pitch, and �ϕ

represents the angle between the positions of two consecutive
sites. The vector that connects two sites ı and j of the helix is
Rjı = Rj − Rı . Structural parameters used [22] to describe a
real oligopeptide can be found in Table III in Appendix B.

Electrons are well coupled along the helical structure (as
opposed to the coupling from one turn of the helix to the next)
and couplings between π and σ structures are included. The

FIG. 1. (a) Front view of the helical oligopeptide in the XY -
plane. The pitch of the helix is indicated as h and labels for each p
orbital are shown. The internal electric field caused by the hydrogen
bond and the component along each direction are shown in red.
(b) Top view of the helical oligopeptide in the XZ plane where
r represents the radius of the helix, and �ϕ is the angle between
consecutive amino acids.

full Hamiltonian of the system can be written in the form

H = HK + HSO + HS, (2)

where HK is the kinetic term or the bare Slater-Koster (SK)
overlaps, HSO include the SO interactions, and HS is the Stark
interaction resulting from electric dipoles (hydrogen bonding)
in the molecule.

A. Stark interaction and hydrogen bonding

In a helical peptide, the hydrogen bonds between the amino
and carboxyl groups stabilize the helical structure [23]. As
shown in Refs. [18,24], the near field electrostatics of the
bond yield among the highest electric field one finds in a
molecules that goes unscreened. These electrostatic fields,
have been proposed to generate local interactions that open
new transport channels. In the model, the Stark interaction
associated with hydrogen bond polarization couples s with
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TABLE I. SO matrix elements between p orbitals in the local
coordinate system.

|px〉 |py〉 |pz〉
〈px| 0 −izpsz izpsy

〈py| izpsz 0 −izpsx

〈pz| −izpsy izpsx 0

p orbitals on the double bonded oxygen of the carboxyl
group along the direction of the dipole field in the form
HS = −eE · r where E is the electric field (see Ref. [18]),
r = r(sin θ sin ϕ, cos θ, sin θ cos ϕ) is the vector position in
spherical coordinates, θ being the angle with Y axis, and e is
the electron charge. Then, in local coordinates, we have

HS = −er(Ex sin θ cos ϕ + Ey cos θ ), (3)

where Ex,y represents the components of the electric field in
the indicated directions (red arrows in Fig. 1). The source of
the electric field along x and y was obtained from Ref. [18]
where the electric field was computed accounting for the local
dipole field of hydrogen bonding.

In general, the hydrogen bond direction has a component
both along the x and y directions. However, the component
along the x direction is much smaller than the y component,
since the bond is essentially in the Y = y direction. Then,
consider ξsx and ξsy, where these are given by

ξsx = 〈s|HS|px〉, ξsy = 〈s|HS|py〉. (4)

In the case of mechanical deformation, higher order terms
may be relevant when the helix is stretched.

B. Spin-orbit interactions

The SO interaction has been well described by tight-
binding treatments in the context of low dimensional sys-
tems [15,25–27]. The atomic SO interaction couples the spin
of the electron to the internal electric field of the nuclei. The
SO Hamiltonian is

HSO = e

2m2
oc2

(∇V × p) · S,

= �L · S, (5)

where V is electrical potential of the nuclei as seen by valence
electrons of the orbital basis, mo is the rest electron mass, e
is the charge of the electron, c is the speed of light, S and L
are the spin and orbital angular momentum operators, respec-
tively. The SO matrix elements couple the basis p orbitals as
shown in Table I, where zp = �/2 is the magnitude of the SO
interaction for p orbitals and s j are the Pauli matrices in the
rotating coordinate system. The rotated spin operators, i.e., the
spin operators in the local frame, are

sx = − sin(ϕi )σx + cos(ϕi )σz,

sy = σy,

sz = cos(ϕi )σx + sin(ϕi)σz.

(6)

There are two relevant SO interactions that lead to different
spin active processes. The first is the intrinsic SO interaction,

TABLE II. The matrix elements of the full Hamiltonian in the
local coordinate system. The π and σ spaces are the diagonal com-
ponents while the off diagonal correspond to T and T † of Eq. (11).

|pz〉i |pz〉 j |s〉i |px〉i |py〉i |s〉 j |px〉 j |py〉 j

〈pz|i επ
p Vz 0 −izpsy izpsx Vs Vx Vy

〈pz| j Vz επ
p Vs −Vx −Vy 0 −izpsy izpsx

〈s|i 0 Vs εs ξsx ξsy 0 0 0
〈px|i izpsy −Vx ξsx εσ

p 0 0 0 0
〈py|i −izpsx −Vy ξsy 0 εσ

p 0 0 0
〈s| j Vs 0 0 0 0 εs ξsx ξsy

〈px| j Vx izpsy 0 0 0 ξsx εσ
p 0

〈py| j Vy −izpsx 0 0 0 ξsy 0 εσ
p

which is the pure matrix element between atomic orbitals, i.e.,
HSO. This interaction can be understood as a transport process
in the π structure with intermediate steps in the σ structure.
The paths of first order in SO coupling are

pı
z → E ıj

zx → pj
x → zp → pj

z , (7)

pı
z → E ıj

zy → pj
y → zp → pj

z , (8)

where the SK overlaps E ıj

μμ′ between an orbital μ on ı site
and orbital μ′ on site j , are defined in Appendix B. The
second type of SO interaction is possible when there is Stark
interaction. The Rashba SO interaction arises as a combina-
tion of both the Stark interaction and the bare SO coupling.
The Stark interaction has been argued to be the strongest
source of electric fields in molecules outside the vicinity of
the nucleus [18] because of the presence of hydrogen bond
polarization in the near field [24]. The paths of a first order
Rashba process are

pı
z → E ıj

zs → pj
s → ξsx → pj

x → zp → pj
z , (9)

pı
z → E ıj

zs → pj
s → ξsy → pj

y → zp → pj
z . (10)

Geometrical details of the problem determine the effective SO
magnitudes resulting from the interplay between different first
order transport processes, e.g., interference between Eqs. (9)
and (10).

C. Effective Hamiltonian

The Hamiltonian of Eq. (2) in the basis of atomic orbitals
can be written as

H =
(

Hπ T
T † Hσ

)
, (11)

where Hπ and Hσ are the structural Hamiltonians and T
correspond to the connection between π and σ spaces. In
Table II, all the matrix elements of the full Hamiltonian are
written explicitly. Here, the SK overlaps are represented by Vs,
Vx, Vy, and Vz are calculated using the Harrison formula [28]
(see Appendixes B and A), εσ

p is the site energy for the bonded
orbitals px and py, επ

p is the site energy of the orbital pz, and
εs is the energy of the orbital s.

The goal is to obtain an effective Hamiltonian that de-
scribes the π space including the physics of the σ space as
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a perturbation. For this purpose, we use an energy indepen-
dent perturbative partitioning approach developed by Löwdin
[29–32]. The band folding (BF) method (see Appendix C) is
used to obtain an effective Hamiltonian using matrix perturba-
tion theory. It is a canonical transformation in the same sense
of the Foldy-Wouthuysen transformation [33] maintaining
only first order corrections. The effective Hamiltonian for the
π structure is

H ≈ Hπ − T H−1
σ T †. (12)

No additional corrections, to the same order, arise from wave-
function normalization [34]. Then, one simplifies the problem
from 8 × 8, in orbital and site space, to 2 × 2. Spin active
terms are written implicit. Using Eq. (12) and the correspond-
ing matrices for the subspaces shown in Table II, we obtain
the effective Hamiltonian

H =
(

επ Vz − i((α + λ) × s)z

Vz + i((α + λ) × s)z επ

)
. (13)

There are intrinsic SO linear in zp and Rashba bilinear in
zpξsy interactions that contribute to the total SO interaction
in the π structure. There is no correction for the kinetic
interaction. The intrinsic SOC contribution between sites ı

and j is given by

Hıj
so = i(αxsy − αysx ) = i(α × s)z, (14)

where s is the vector of Pauli matrices and α is the vector with
the magnitude of the intrinsic SO in each coordinate that are
defined as

αx = 2zpVx

εp
, αy = 2zpVy

εp
. (15)

The estimated values, considering characteristic values for the
oligopeptide, are αx ∼ 8.97 meV and αy ∼ 10.20 meV (see
Appendix B). The Rashba SO has contributions from higher
order terms from the Stark interaction in the form

Hıj
R = i(λxsy − λysx ) = i(λ × s)z, (16)

where λ is a vector with the Rashba SO magnitude in each
component. They are given by

λx = zp(ξsy,ı − ξsy,j )Vs

εpzεs
− 2zpε

2
pyεsξ

2
sxVx

ε2
px

(
ξ 2

sy − εpyεs

)
2

+ 2zpξsxξsyVy

εpx

(
ξ 2

sy − εpyεs

) ,

λy = −2izpξ
2
syVy

ε2
pyεs

+ 2zpξsxξsyVx

εpx

(
ξ 2

sy − εpyεs

) . (17)

Note that the first-order contribution in Stark interaction on
λx magnitude depends on the difference of the electric dipoles
at two consecutive sites ı and j , so even though this is the
term of the highest order, it is not necessarily the largest in
magnitude, therefore, we consider that the second order terms
are important for this description. In fact, the estimated values
for the largest contributions are λx ∼ 0.15 meV and λy ∼
1.2 meV (see Appendix B), where we have considered that

the angle of inclination of the hydrogen bonds with respect to
the helix axis is very small, so ξsx is negligible against ξsy.

The full SO effective interaction can be written as, HSO =
Hso + HR. The properties of the system will be determined
mainly by the lowest order terms of Eq. (13). However, in the
case of mechanical deformations, higher order terms may be
are relevant, so we consider here interactions up to second
order in ξsy and first order in ξsx. Then, the spin interactions of
the effective Hamiltonian are determined mostly by the intrin-
sic SO, and the Rashba contribution become of comparable
size in the case of mechanical deformations.

III. BLOCH SPACE HAMILTONIAN

Consider a local cartesian coordinate system that is on
top of an atom, then each atom on the chain will have the
same system. The nearest neighbor atoms are described by
the following vectors in the local system:

r′ =
√

2rex + h

4
ey. (18)

Considering only first nearest neighbors interaction, the
Hamiltonian can be taken as the Bloch sum of matrix ele-
ments. Considering kz = 0 and assuming that the contribution
of each site is independent with nearest neighbor interaction
only, the Bloch expansion can be obtained as

H(k) = 1

N

N∑
ı=1

N∑
j=1

eik·Rıj 〈φı |H|φj 〉

= 1

N

N∑
ı=1

⎛
⎝∑

j=ı

〈φı |H|φı〉 +
∑
j 
=ı

eik·Rıj 〈φı |H|φj 〉
⎞
⎠

= 1

N

N∑
ı=1

(επ1s + Vz f (k)1s + g(k)((α + λ) × s)z )

= επ1s + Vz f (k)1s + g(k)((α + λ) × s)z, (19)

where we have only taken nearest neighbor couplings and
strict periodicity of the lattice turn by turn. In Eq. (19), φı

are the orbitals per unit cell and N is the number of the unit
cells in the molecule. This model considers an approximate
structure, shown in Fig. 1(a), where the angle, �φ, between
successive aminoacids is smaller than the angle for real
oligopeptides [22]. The latter assumption is not quite correct
for oligopeptides since there is a small incommensurability
(non-periodicity in the axial direction) of the potential when
one goes from one turn to the next. This is an approximation
of the model .

The helix can be considered as a one-dimensional (1D)
system in the local frame that satisfies tan η = h/2πr. Then,
the k functions in Eq. (19) are

f (k) = cos(k · r′), g(k) = sin(k · r′). (20)

The spectra of the system can be obtained by solving the
secular equation

det(H(k) − ES) = 0, (21)
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where S is the overlap matrix and we assume that the eigen-
functions are orthogonals, such that S = 1. By solving the full
system, Eq. (21), we obtain the spectra of the system for the
two spin species, and is given by

E±(k) = Vz cos(k · r′) ± |α + λ| sin(k · r′), (22)

where each band correspond to a different spin species.

A. Hamiltonian in vicinity of half filling

We consider the orbitals that provide mobile electrons, to
be half filled as a reference, when the molecule is isolated.
However, deviation from half filling occurs due to electron
doping by the molecular environment, e.g., the residues of the
amino acid are projected into the water phase, resulting in the
polarization of the molecular unit adding/withdrawing elec-
trons from the carbonyl group [35]. Consider that the Fermi
energy of pz orbital is εF = 0. By solving Eq. (21) only for the
kinetic component at half filling, εF = Vz cos(kF R) = 0, the
Fermi vector is kF = π/2R, where R = √

2r + tan ηh/4. To
describe the physics in the vicinity of the Fermi level, consider
a small perturbation q around kF , such that k = kF − |q|, and
|q|R < 1. Then, the Bloch expansion of the system, Eq. (19)
can be approximated as

H1/2(q) = επ + VzqR + ((α + λ) × s)z. (23)

The spectra of the system shows that the bands do not cross
each other, they are always separated by a constant gap
between spin up and spin down states of the order of |α| ∼
10−2 eV. In such a system, the SO interaction is not coupled
to momentum in the vicinity of kF . Nevertheless, molecular
contact with an environment, either a surface or surrounding
structure will dope the system due to difference in electroneg-
ativity. We must then consider an energy shift by above or
below εF = 0. One can expand Eq. (19) around the doped
energy, and the resulting expression has a spin component
linear in momentum. Let us consider a small deviation from
kF , that is, k′ = 3π/5R. The effective Hamiltonian around k′
is

Hk′ (q) = επ + Vz

⎛
⎝1 − √

5

4
−

√
5 + √

5

8
qR

⎞
⎠

+ ((α + λ) × s)z

⎛
⎝1 − √

5

4
qR +

√
5 + √

5

8

⎞
⎠. (24)

Coupling between momentum and spin causes wave functions
with a chiral component that increases approaching a crossing
point at k = 0.

The previous Hamiltonian, aside from the geometrical
details that determine the SO strength to within tens of meV,
has the same form as that of DNA [15] and of helicene [16]
and leads to polarized electron transport, as has been reported
experimentally [4,17].

IV. SPIN ACTIVE DEFORMATION POTENTIALS

In this section we show the behavior, under mechanical
deformations, of the SOC magnitudes. The response to defor-
mations depends on the geometrical relations of the orbitals

FIG. 2. Graphical representation of a mechanical deformation
setup. Left: Oligopeptide in initial structure r0 and L0. Right:
Stretched structure along the helical axis to r and L.

involved and will serve to provide an experimental probe to
the model [17]. Although DNA and oligopeptides are helices,
the orbitals involved are quite different and thus should be
distinguishable in a mechanical probe.

We consider stretching and/or compressing of the
oligopeptide model in the form shown in the schematic Fig. 2.
In the deformation scheme, we consider that the rotation angle
�ϕ (see Fig. 1) between consecutive atoms does not change
for small deformations. The longitudinal strain is defined as
ε = (L − L0)/L0 where L0 and L are the initial and final
lengths of the helix, respectively. A change in ε implies a
change on the radius and pitch, such that r = r0(1 − νε)
and h = h0(1 + ε), where ν is the Poisson ratio of the he-
lix [36,37]. For our model, the Poisson ratio was taken from
experimental data in Ref. [38]. The deformation changes the
relative distances between orbitals, so the magnitude of the
vector connecting two neighboring sites is written in the form

Rjı (ε) =
√

r2
0 (1 − νε)2 + h2

0(1 + ε)2/16. (25)

The expressions for the SO intrinsic terms are

αx = 2h̄2zp

mεp(Rjı (ε))2

(
κπ

pp − r2
0 (1 − νε)2(κσ

pp − κπ
pp)

(Rjı (ε))2

)
, (26)

and

αy = −2h̄2zpr0h0(1 − νε)(1 + ε)(κσ
pp − κπ

pp)

mεp(Rjı (ε))4
, (27)

where we have considered that επ
p = εσ

p = εp, and κπσ
pp are

the atomic parameters used in the Harrison formula [28] (see
Appendices B and A for the equation and for the values of the
parameters). For the first order dependence on ε we have

αx ≈ α(ε=0)
x − 16r0zpCν

(
κσ

pp − κπ
pp

)
ε + · · · , (28)
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FIG. 3. SOC intrinsic intensities αx and αy versus deformation
ε. We used r0 = 0.23 nm, h0 = 0.54 nm, �ϕ = π/2, and ν = 0.5.
For ε = 0, the intensity of the interactions are αx = 8.97 meV and
αy = 10.20 meV.

and

αy ≈ α(ε=0)
y + 8h0zpC(1 − ν)

(
κσ

pp − κπ
pp

)
ε + · · · , (29)

where we have defined the constant

C = 64h̄2r0

mεp
(
h2

0 + 16r2
0

)2 .

The coefficients of the linear in ε are the spin-dependent
deformation potentials [39] for the intrinsic interaction.

Figure 3 displays the intrinsic SOC magnitudes as a func-
tion of the deformation ε. Positive values for ε show the
behavior when the helix is stretched and negative values when
it is compressed. For small values of deformations, αx grows
with elongation at the same time as αy slightly decreases (see
inset in Fig. 3). However, the longitudinal deformation that
arises from considering the SO net magnitude, has an increase
during stretching and a decrease when compressed, the oppo-
site behavior of the corresponding deformation configurations
obtained for DNA [19].

The αy increase reaches a maximum for an optimal strain
value, in this case up to 20 meV, for a deformation of 20%
with respect to the initial length. Thus, the magnitude of the
interaction doubles with respect to the value without defor-
mation. Nevertheless, this elongation may alter the assumed
structure as hydrogen bonding may rupture [36].

The expressions for the Rashba terms as a function of
deformation are

λx = h̄2zpκ
σ
spr0(1 − νε)(ξsy,ı (ε) − ξsy,j (ε))

mεpεs(Rjı (ε))3
, (30)

and

λy = 2h̄2zp(ξsy(ε))2r0h0(1 − νε)(1 + ε)
(
κσ

pp − κπ
pp

)
mεsε2

p(Rjı (ε))4
, (31)

where we only consider the first terms in Eq. (17) for λx and
λy, since they are the most significant in magnitude. The Stark
parameters are modulated by the changes in the polarization
for a hydrogen bond due to the longitudinal deformation, in
the same form that is in the recent work of Ref. [24]. They

FIG. 4. Rashba magnitudes λx and λy versus deformation ε. We
used r0 = 0.23 nm, h0 = 0.54 nm, �ϕ = π/2, and ν = 0.5. For
ε = 0, the intensity of the interactions are λx = 0.15 meV and λy =
1.2 meV. Stretching the helix (ε > 0) increases the Rashba coupling
while compressing decreases it.

simulated in detail what happens to the near field electric
field as a function of the O-H bonding distance. In Ref. [19],
these changes in polarization where proposed to modulate a
Rashba interaction on the double bonded atoms of the bases
of DNA where these hydrogen bonds are attached. In oligo-
peptides, the origin of the SOC is the same but the hydrogen
bond geometry is different yielding a contrasting mechanical
response of the spin-active interaction.

The Rashba terms are proportional to the electric fields of
the dipoles, therefore, when stretching the helix the relative
distances between the orbitals become large, which decreases
the Slater-Koster elements, but the length of the dipoles
increase and this behavior is dominant such that it increases
the Rashba magnitude, as it is shown in Fig. 4. This is the
opposite behavior seen for DNA [19].

For the first order dependence of the Rashba interaction on
ε we have

λx ≈ λ(ε=0)
x + κspzpCν(ξsy,ı − ξsy,j )

εs
(
h2

0 + 16r2
0

)−1/2 ε + · · · , (32)

and

λy ≈ λ(ε=0)
y + 8h0zpC(1 − ν)(ξsp)2

(
κπ

pp − κσ
pp

)
εsεp

ε + · · · ,

(33)

where the linear in ε terms are the spin-dependent deformation
potentials of the Rashba coupling. Note that λx is sensitive
to differences in the Stark interaction at two different sites.
On the other hand, λy depends on the square of the Stark
interaction. Although these features may lead to a smaller size
of the SOC they are actually enhanced by deformation to be
comparable to the intrinsic contribution (see Fig. 4).

In the deformation range of 10%, the magnitude of the
Rashba interaction can increase up to five times its initial
value (inset, Fig. 4). This result is opposite to the corre-
sponding deformation previously obtained in the DNA, where
stretching the helix longitudinally decreased the polarization
of the hydrogen bonds that in that case were oriented trans-
versely to deformation.
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The behavior under deformation agrees qualitatively with
that found in experiments [17], where spin polarization de-
creases with compression of the oligopeptide under an ap-
plied force. This experimental response to compressions of
is qualitatively the same shown in Figs. 3 and 4, where a
net decrease in the magnitude of the spin orbit coupling is
observed, assuming there is a proportionality between the
SOC magnitude and the respective polarization of spin. It is
important to highlight that the quadratic terms in λy are much
more sensitive to deformation than the first order term (λx),
so deformations during experimental tests can induce higher
order terms in interactions to contribute significantly to the
magnitude of the effective coupling.

It is important to note that we consider a completely peri-
odic model for the oligopeptide, however, an actual molecule
does not repeat the sequence turn by turn, there being a small
shift or incommensurability [22]. This non-periodicity can
have two main effects on the behavior of the system: (a) the
first is that the magnitude of the SK elements corresponding
to the overlaps of the orbitals vary, since the angle �ϕ (see
Fig. 1) between consecutive sites changes, impacting the mag-
nitude of the SOC. This effect should be small; (b) the second
effect is on the hydrogen bonding. The real molecule can have
hydrogen bonds with small differences in their orientations
with respect to the axis of the molecule. Although we have not
accommodated for the geometrical effect we have captured
the tilting of the bonds by introducing the two components of
the electric dipoles through the Stark terms that give rise to
the Rashba SOC, Eq. (32).

V. SUMMARY AND CONCLUSIONS

In this work we have studied a model for spin interactions
in oligopeptides, paying particular attention to the peculiar
hydrogen bonding producing the source electric fields for the
SOC. We built a minimal analytic tight-binding model to de-
scribe the mobile electrons of the system in a helical geometry
using the Slater-Koster approach. We assume mobile electrons
spring from carboxyl group double bonds attached to amine
groups directly in the near field electric field of polarized
hydrogen bonding. Perturbative band folding then yields ef-
fective SO interactions of the intrinsic and Rashba types. We
find a rich interplay between intrinsic and Rashba SOCs that
allows manipulation of the spin polarization of oligopeptides
under mechanical longitudinal deformation probes. The low-
energy effective Hamiltonian, in the vicinity of the half filling
Fermi level, shows the same form of Hamiltonians derived
for DNA and Helicene that have shown spin polarization,
explaining features of the CISS effect. The response to defor-
mations expressed as spin-dependent deformation potentials,
are consistent with the results of Ref. [17] and show opposite
trends to the results previously found for DNA [19]. These re-
sults both make strong predictions to verify our orbital model
and open the possibility of mechanical probes to spintronic
properties of biological molecules. Hydrogen bonding as the
source of spin activity further enhances (beyond chirality) the
possible ubiquity of spin effects in biological systems, which
coupled to tunneling effects [12], may be pervasive in many
unexplored contexts.

TABLE III. Left column: SK parameters for s and p orbitals
from [15]. Center column: Atomic parameters for carbon atoms from
[15,26]. Right column: Structural parameters used to describe the
oligopeptide [22]. In realistic systems, �φ is different that π/2, but
this value is used to have a commensurable system.

Parameter eV Parameter eV Parameter Å/rad.

κσ
pp −0.81 εp −8.97 r 2.3

κπ
pp 3.24 εs −17.52 h 5.4

κsp 1.84 zp 0.006 �ϕ π/2
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APPENDIX A: PARAMETERS FOR THE
EFFECTIVE SYSTEM

We estimate the overlaps of the atomic wave functions
using the empirical model described in Ref. [28]. The geo-
metrical structure of the oligopeptide includes four atoms per
turn and it does not differ significantly from realistic situations
where oligopeptides are not strictly periodic from one turn to
the next [22]. Atomic and structural parameters for the system
are given in Table III. The SK and SO effective magnitudes
are written in Table IV.

APPENDIX B: SLATER-KOSTER INTEGRALS

The overlap E ıj

μμ′ between orbitals μ and μ′ that correspond
to the site ı and j , respectively, can be obtained using the
expression [15,16]

E ıj

μμ′ = 〈μı |V |μ′
j 〉 = (n(μı ), n(μ′

j ))V π
μμ′

+ (n(μı ), Rjı )(n(μ′
j ), Rjı )

(Rjı, Rjı )
(V σ

μμ′ − V π
μμ′ ), (B1)

where n(μj ) is the unit vector on the direction of the orbital μ

of site j , Rjı is the vector that connect two consecutive sites,
and V σ

μμ′ and V π
μμ′ represent the SK overlaps of the orbitals.

The unit vector of each orbital in a local coordinate system
(xyz) on site ı is given by

n̂(sı ) = R̂jı,

n̂(xı ) = − sin(ϕı )ex + cos(ϕı )ez,

n̂(yı ) = ey,

n̂(zı ) = cos(ϕı )ex + sin(ϕı )ez. (B2)

TABLE IV. Estimation of effective interactions for the system
without deformations. Left column: Hopping interactions. Right
column: SO interactions.

Parameter eV Parameter meV

Vs 3.786 αx 8.97
Vx −4.143 αy 10.20
Vy −7.666 λx 0.15
Vz −3.265 λy 1.2
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The SK terms have a dependence on the distance representing
in the empirical expression in the literature [28]

V π,σ
μμ′ = κπ,σ

μμ′
h̄2

mR2
jı

, (B3)

where m is the mass of the electron and κπ,σ
μμ′ depend on the

specific set of orbitals or atoms.
Without loss of generality we can assume that E ıj

μμ′ =
0, where μ = {s, px, py}, because those electrons form the
bond. The SK integrals that are relevant for transport pro-
cesses, in terms of general parameters of the structure, are
the following:

E ıj
zz = 〈zı |V |zj 〉

= cos[�ϕ]V π
pp − r2

|Rjı |2 (1 − cos[�ϕ])2
(
V σ

pp − V π
pp

)
,

E ıj
zx = 〈zı |V |xj 〉

= sin[�ϕ]

(
V π

pp − r2

|Rjı |2 (1 − cos[�ϕ])
(
V σ

pp − V π
pp

))
,

E ıj
zy = 〈zı |V |yj 〉

= − hr

|Rjı |2 (1 − cos[�ϕ])(j − ı)
(
V σ

pp − V π
pp

)

E ıj
zs = 〈zı |V |sj 〉 = r(1 − cos[�ϕ])

|Rjı | V σ
sp. (B4)

Using the geometry shown in Fig. 1, i.e., �φ = π/2, the
following symmetry relations are obtained:

Vz = Ei j
zz = E ji

zz = − r2

|Rji|2
(
V σ

pp − V π
pp

)
,

Vs = Ei j
zs = E ji

zs = Ei j
sz = E ji

sz = r

|R ji|V
σ

sp,

Vx = Ei j
zx = −E ji

zx = −Ei j
xz = E ji

xz = V π
pp − r2

|Rji|2
(
V σ

pp − V π
pp

)
,

Vy = Ei j
zy = −E ji

zy = −Ei j
yz = E ji

yz = − rh

|Rji|2
(
V σ

pp − V π
pp

)
.

(B5)

APPENDIX C: DERIVATION OF THE
BAND-FOLDING FORMULA

Let us consider a system with two kinds of eigenstates α

and β, which are weakly coupled to each other. The secular
equation, in matrix form, can be written as(

Hαα Hαβ

H†
αβ Hββ

)(
vα

vβ

)
= E

(
vα

vβ

)
, (C1)

where Hαα and Hββ are the Hamiltonian of each kind
with corresponding eigenstates vα and vβ , respectively, and
Hαβ is their coupling. It is easy to see that vβ = (1E −
Hββ )−1H†

αβvα . Then, vα can be expressed as(
Hαα + Hαβ

(
1E − Hββ

)−1
H†

αβ

)
vα = Evα. (C2)

Expanding (1E − Hββ )−1 to first order in Hββ and E , we find
that (

Hαα − Hαβ

1

Hββ

H†
αβ

)
vα = SEvα, (C3)

where S = (1 + Hαβ (H−1
ββ )2H†

αβ ).
Then,

S−1/2(Hαα − Hαβ (Hββ )−1H†
αβ )S−1/2� = E�, (C4)

where � = S1/2vα . Considering first order in H−1
ββ , the expres-

sion for the effective Hamiltonian reduces to Eq. (12).
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