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Emergent flat band lattices in spatially periodic magnetic fields
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Motivated by the recent discovery of the Mott insulating phase and unconventional superconductivity due
to the flat bands in twisted bilayer graphene, we propose more generic ways of getting two-dimensional (2D)
emergent flat-band lattices using either 2D Dirac materials or ordinary electron gas (2DEG) subject to moderate
periodic orbital magnetic fields with zero spatial average. We find stark contrast between Schrödinger and Dirac
electrons, i.e., the former show recurring “magic” values of the magnetic field when the lowest band becomes
flat, whereas, for the latter, the zero-energy bands are asymptotically flat without magicness. By examining
the Wannier functions localized by the smooth periodic magnetic fields, we are able to explain these nontrivial
behaviors using minimal tight-binding models on a square lattice. In particular the magicness of the 2DEG can be
understood in terms of destructive quantum interference similar to classic flat-band lattice models. The two cases
can be interpolated by varying the g factor or effective mass of a 2DEG and by taking into account the Zeeman
coupling, which also leads to flat bands with nonzero Chern numbers for each spin. Our paper provides flexible
platforms for exploring interaction-driven phases in 2D systems with on-demand superlattice symmetries.
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I. INTRODUCTION

Moiré structures formed by stacking two-dimensional
(2D) crystals, such as graphene, hexagonal boron nitride,
transition-metal dichalcogenides, etc., have attracted a lot of
attention recently [1–5]. For incommensurate moiré struc-
tures, in-plane translation symmetry is broken, posing chal-
lenges to the paradigm of solid-state physics based on Bloch’s
theorem. Nonetheless, in the long-wavelength limit and when
the moiré potential is weak, one can still adopt a momentum-
space description of the low-energy electronic states, and
obtain “moiré band structures” even in the case of incom-
mensuration [6–8]. In this context, Bistritzer and MacDonald
first found that the moiré structure formed by twisted bilayer
graphene has flat bands at charge neutrality for certain “magic
angles” of twisting [8]. The strongly suppressed kinetic en-
ergy in these flat bands suggests potential for interaction-
driven exotic phases, which were recently revealed exper-
imentally in Refs. [9–11] where both correlated insulating
and unconventional superconducting (Tc ∼ 1 K) phases were
found near charge neutrality in twisted bilayer graphene at the
first magic angle θ ≈ 1.05◦.

Although the flat moiré bands in the family of twisted
multilayer van der Waals materials [12–14] may host other
interaction-driven phases, these phases will inevitably be re-
stricted or selected by the symmetries of the moiré structures,
which determine the form of interactions in the moiré bands
[15–28]. The spatial symmetry of a moiré structure, however,
cannot be easily changed since it is dictated by the crystal
symmetry of the constituent layers. For example, the moiré
pattern of twisted bilayer graphene always has the form of
a triangular lattice with a sixfold rotation symmetry. One
main task of this paper is to provide practical ways of re-

alizing 2D flat bands with different crystalline symmetries
by design, not relying on moiré structures, thus, enabling
exploration of exotic phases in a larger parameter space. This
is made possible through a more generic understanding of
the origin of moiré flat bands, which motivates us to replace
the moiré potential [29–31] by periodic external magnetic
fields or other artificial crystal potentials, such as Zeeman or
strain fields [32–35], that can now be created and controlled
experimentally.

There has been a long effort of creating spatially periodic
electric and magnetic fields and studying their influence on
condensed-matter systems. One of the earliest examples is
the observation of Weiss oscillations in conventional two-
dimensional electron gas (2DEG) in GaAs/AlGaAs subject
to a one-dimensional (1D) periodic static electric potential,
created by parallel fringes or metallic strip arrays, and a
perpendicular homogeneous magnetic field [36], which is
due to the commensuration between the cyclotron radius and
the period of the electric potential [37–40]. Two-dimensional
periodic electric potentials on 2DEG [41–45] with different
symmetries [46–48] were also realized, which show Hofs-
tadter butterfly spectra under moderate homogeneous mag-
netic fields. In parallel, spatially periodic (orbital) magnetic
fields in 1D [49–52], 2D [53–56], and Zeeman fields [57]
have been experimentally realized using periodic arrays of su-
perconducting or ferromagnetic strips or dots. More recently,
1D [58] and 2D [59–61] periodic electric potentials have also
been realized in graphene.

In this paper, we propose that 2D-periodic magnetic fields
with zero average, applied on either 2D Dirac systems or ordi-
nary 2DEG, are an effective and versatile way of creating flat
bands with different superlattice symmetries in the low-energy
electronic structure. Studies on 1D-periodic magnetic fields
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with zero average exist in literature [33,62–67], but no general
conclusions have been made on the existence and origin of 2D
flat bands in nonquantizing 2D periodic magnetic fields. We
find that, for a simple 2D sinusoidal magnetic field forming a
square Bravais lattice, Schrödinger and Dirac electrons exhibit
drastically different behaviors in the tendency of realizing
flat low-energy bands: The lowest band for the Schrödinger
electron (or 2DEG) becomes flat repeatedly at magic values
of the dimensionless parameter φ ≡ eB/h̄K2, where B is the
amplitude of the periodic magic field and K is the reciprocal
lattice constant. In contrast, the two particle-hole-symmetric
bands near zero energy of the Dirac electron only become
asymptotically flat with increasing φ without magicness. The
different behaviors of the two systems can be understood by
looking into the Wannier functions of the low-energy bands
and the accompanying tight-binding Hamiltonians. Although,
in the Dirac case, the lowest bands can be described by
Gaussian-like Wannier functions localized around the centers
of square plaquettes with a definite sign of the magnetic field,
in the Schrödinger case, the lowest bands are best described
by two Gaussian-like Wannier functions localized at the cor-
ners of a square plaquette. As a result, the nearest-neighbor
hopping for the Schrödinger case is complex and varies with
φ in an oscillatory way, and, at special values of φ, the
kinetic energy vanishes due to destructive interference, which
explains the magicness. Such a mechanism is reminiscent of
the classic examples of flat-band lattice models [68–73] and
can be captured by a minimal tight-binding model. On the
other hand, in the Dirac case, the nearest-neighbor hopping
between Wannier functions at plaquettes centers is real and
becomes monotonically smaller as φ increases. Moreover,
by taking into account Zeeman coupling and spin degrees
of freedom, one can naturally interpolate between Dirac and
Schrödinger electrons, by varying the g factor or the effective
mass of a 2DEG. In this case, we find that it is common
for the lowest flat band to have a nonzero Chern number
for each spin species, despite the magnetic field having zero
spatial average. Such a behavior can be qualitatively described
by a three-band model. Our paper, thus, provides flexible
platforms for realizing 2D flat-band systems with different
superlattice symmetries and nontrivial topology for exploring
exotic interaction-driven phases.

The remainder of this paper is organized as follows: In
Sec. II, we solve the periodic magnetic-field problem for Dirac
and Schrödinger electrons using momentum-space and real-
space numerical methods and reveal the flat-band behaviors.
For the Dirac case, we also provide an analytic solution which
checks with the numerical results. In Sec. III, we obtain
the maximally localized Wannier functions for the flat bands
in both cases, based on which we construct Gaussian-like
Wannier functions that can give physically intuitive real-space
tight-binding Hamiltonians. In Sec. IV, we provide minimal
nearest-neighbor tight-binding models based on the informa-
tion of the Wannier functions obtained in Sec. III, which
can explain the contrasting behaviors of the two systems. In
Sec. V, we study the effect of Zeeman coupling of the periodic
magnetic field and show that the isolated low-energy flat band
can quite often have a nonzero (spin) Chern number. Based
on the knowledge of the Wannier functions of the low-energy
bands, we construct a minimal three-band model that can

describe this behavior. Brief discussions and conclusions are
given in Sec. VI.

II. BAND FLATTENING FOR DIRAC AND SCHRöDINGER
ELECTRONS IN PERIODIC MAGNETIC FIELDS

A. Dirac electron

We start by considering a generic 2D Dirac system subject
to a perpendicular magnetic field having two cosinusoidal
components along the x and y directions, respectively: B =
B[cos(Kx) + cos(Ky)]ẑ, where K ≡ 2π/a is the wave number
with a as the period of the magnetic modulation. Specific
material realizations and effects of more complex functional
forms of fields will be discussed later. The single-particle
Hamiltonian is

HD = vF σ · �, (1)

where vF is the Fermi velocity of the Dirac electron, � =
−ih̄∇ + eA is the kinetic momentum with e as the absolute
value of electron charge, and σ = σxx̂ + σyŷ. The vector po-
tential A corresponding to the periodic magnetic field in the
Coulomb gauge is

A = B

K
[− sin(Ky)x̂ + sin(Kx)ŷ]. (2)

For such a simple vector potential, it is convenient to use
plane-wave expansion to solve the eigenvalue problem [8]
(see the Supplemental Material [74]). The momentum-space
Hamiltonian is an infinite-dimensional sparse matrix with a
single-dimensionless parameter φ ≡ eB/h̄K2 determining the
strength of the magnetic potential. To obtain the band struc-
ture, one has to truncate the momentum-space Hamiltonian
by choosing an appropriate bound of reciprocal lattice vectors
K for a given φ so that the low-energy band structure is con-
verged. We have used a cutoff of the form max(|Kx|, |Ky|) �
Kc and found that convergence for moderate values of φ ∼
1 can be well achieved with Kc = 5. As has been noted
previously [8,75], such a plane-wave expansion method does
not require φ to be small as long as Kc is large enough.

The Dirac Hamiltonian Eq. (1) with the periodic vector po-
tential Eq. (2) has a particle-hole symmetry: σzHDσz = −HD

and a zero-energy solution. By diagonalizing the truncated
Hamiltonian and focusing on the two particle-hole symmetric
bands near zero energy, we found that the velocity near zero
momentum monotonically decreases with increasing φ and
approaches zero asymptotically as shown in Fig. 1. The two
low-energy bands are separated from other bands, and their
overall bandwidth is monotonically decreasing. Thus, one can
get as flat as possible low-energy bands by keeping increasing
φ without fine-tuning. Moreover, the flatness is controlled by
φ = eB/h̄K2 instead of B alone and can, thus, be large by hav-
ing a large period even with a relatively small B. Quantitative
estimates, including lower bounds on the magnetic field set by
the disorder potential, will be given in the Discussion.

Such behavior of Dirac electrons in periodic magnetic
fields can also be obtained analytically by perturbing the zero-
energy eigensolution of HD with h̄vF σ · k, where k is a small
wave vector [76,77] and the Supplemental Material [74].
This gives a renormalized Fermi velocity veff

F = vF /[I0(2φ)]2,
where I0 is the zeroth modified Bessel function of the first
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(a) (b)

FIG. 1. Flat bands for Dirac electrons in periodic magnetic fields.
(a) Band structure for the two particle-hole symmetric bands close to
zero energy when φ = 2. E0 = h̄vF K is the energy unit. The color
scale is the same as E/E0. (b) Renormalized Fermi velocity veff

F vs
φ. A plane-wave cutoff of Kc = 5 K is used.

kind. At large φ, veff
F takes the asymptotic form 4πφe−4φvF .

For a triangular lattice periodic magnetic field, we did not find
an analytic expression of veff

F , but numerical calculation shows
that the band-flattening behavior is qualitatively the same as
the square lattice case (see the Supplemental Material [74]).
Thus, periodic magnetic fields can be used as an effective way
of creating flat band Dirac systems with different superlattice
symmetries.

On the other hand, when φ � 1, one can also obtain an
effective 2 × 2 Hamiltonian using perturbation theory and
keeping the lowest order in φ. Such a calculation (see the
Supplemental Material [74]) shows that veff

F ≈ (1 − φ2)vF

which describes the quadratic behavior of veff
F (φ) at small φ in

Fig. 1. When φ � 1, the perturbation theory obviously breaks
down, but φ ∼ 1 can, nevertheless, be viewed as a critical
scale of the magnetic field at which veff

F (φ) starts to decay
exponentially.

We note that veff
F = 0 does not necessarily mean the cor-

responding bands are flat throughout the Brillouin zone. In
practice, flat bands are interesting mainly because they lead
to diverging density of states (DOS) which makes correlation
effects most pronounced. veff

F = 0 at k = 0 is not a sufficient
condition for diverging density of states. However, for the
smooth potential profile considered here, the overall flattening
of the lowest band throughout the Brillouin zone is consistent
with the behavior near k = 0. This can be seen, for exam-
ple, by looking at the momentum-space Hamiltonian at the
Brillouin-zone boundary. The lowest bands at k = 1

2 x̂ are
doubly degenerate in the absence of the magnetic field and
have energies ε = ±1/2. In each of the twofold degenerate
subspaces, the magnetic field induces a splitting proportional
to φ/2. We note, in passing, that a periodic scalar potential
does not split the two doublets, which is another reason why
periodic magnetic fields are special in getting flat bands. Thus,
φ ∼ 1 is a crude estimate of when the lowest bands become
very close to zero energy at the Brillouin-zone boundary. (The
estimate based on degenerate perturbation breaks down when
φ � 1.) For a smooth vector potential, such as Eq. (2), the
lowest bands are not expected to vary strongly throughout
the Brillouin zone. Thus, the monotonic decrease of veff

F at
k = 0 together with the approaching of low-energy bands
towards 0 at zone boundary suggest the overall flattening
of the lowest band and the diverging density of states as φ

increases. To provide additional support of the claims above,

FIG. 2. Flat bands for 2DEG in periodic magnetic fields.
(a) Band structure for the lowest band when φ = 0.6 near the first
magic value. E0 = h̄2K2/2m is the energy unit. The color scale is
the same as E/E0 with white corresponding to the energy at k = 0.
(b) Renormalized inverse effective-mass m−1

eff (in units of m−1) vs φ.
A plane-wave cutoff of Kc = 9 K is used.

we have plotted the bandwidth of the lowest positive energy
band in Fig. 1 of the Supplemental Material [74]. The trend of
bandwidth narrowing in the Dirac case is faithfully reflected
by the reduction of velocity at k = 0.

Another consequence of the flat band, at least, near k = 0,
is the immobility of the wave packet centered around k = 0.
Physically, it means that particles described by such wave
packets will be easily trapped or localized by disorder. This is
formally considered as the homogenization problem in partial
differential equation theory, which absorbs the effect of a
periodic potential into an effective-mass tensor by considering
the dynamics at a much larger scale than the period. There is
a great amount of literature on the subject in the Schrödinger
case, see, e.g., Refs. [78,79] for some rigorous mathematical
references. The situation is similar for the Dirac equation
under appropriate assumptions, which will be addressed in a
future work [80]. In this context, the vanishing veff

F directly
corresponds to flat bands for the Dirac operator.

B. Schrödinger electron

We next show that periodic magnetic fields can lead to flat
bands for 2D Schrödinger electrons but only at discrete values
of the parameter φ. Using the same vector potential Eq. (2),
the Hamiltonian is

HS = 1

2m
�2, (3)

where m is the effective mass of electrons in a given system.
By diagonalizing the momentum-space Hamiltonian with a
large enough cutoff, we calculate the inverse effective mass of
the lowest band m−1

eff at k = 0 and plot it against φ. Figure 2(b)
shows that m−1

eff has an oscillatory dependence on φ and
crosses zero repeatedly as φ increases. In Figs. 1 and 2 of
the Supplemental Material [74], we show that, although the
bandwidth of the lowest band is nonzero when m−1

eff (k = 0)
vanishes, it reaches local minima at these points, accompanied
by diverging density of states at the energy of the lowest band
at k = 0. In the more generalized context mentioned above, it
is still reasonable to be called flat bands at these magic values.

Our real-space calculation using the spectral method gives
the same result (see the Supplemental Material [74]). Our
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calculations for a triangular lattice periodic magnetic field also
show similar oscillatory behavior [74]. Later in the Discus-
sion, we will show that the qualitative behavior is retained
even for more realistic Gaussian-like magnetic-field profile.
Thus, in contrast to Dirac electrons, 2DEG can have flat bands
with exact vanishing of m−1

eff at magic values of φ.
For Schrödinger electrons, we are not able to find an ana-

lytic solution of the lowest band. However, since the smallest
magic value of φ ≈ 0.6 is less than 1, second-order perturba-
tion may still be valid near this value (see the Supplemental
Material [74]). The effective Hamiltonian, thus, obtained is

HS
eff (k) = k2(1 − 2φ2) + φ2. (4)

The inverse mass vanishes when φ = 1√
2

≈ 0.707, which is
off by only about 15%. That the second-order perturbation
is approximately valid can also be seen from the exact re-
sult in Fig. 2(b), which shows that, before reaching its first
minimum, m−1

eff is roughly quadratic in φ. Since the quadratic
φ dependence in Eq. (4) is accurate when φ → 0, it should
serve as a good approximation until the behavior of m−1

eff (φ)
significantly changes. However, to understand the origin of
the recurring magic values in the Schrödinger case and why
there is no magicness in the Dirac case, we have to look into
details of the wave functions associated with the flat bands.

III. WANNIER FUNCTIONS OF THE FLAT BANDS

We next examine the Wannier functions associated with
the lowest bands for both Schrödinger and Dirac electrons
and, based on them, explain the contrasting band-flattening
behaviors using minimal tight-binding models. We note that
Wannier functions localized by periodic magnetic fields is
by itself an interesting problem as historically the discus-
sion on the effect of magnetic fields on Wannier functions
is mostly focused on slow-varying magnetic fields on the
length scale of the Wannier functions or, equivalently, of the
lattice constants [81–83] in crystalline solids. In this case,
the effect of magnetic fields can be approximately described
as the Peierls phase in the Hamiltonian written in the basis
of Wannier functions, and the Wannier functions themselves
are only slightly modified through a phase factor. In the
present systems, however, the “lattice constant” is set by the
spatial period of the magnetic field, and the slow-variation
assumption cannot be justified a priori.

We first consider the Schrödinger case. We found that the
absolute value of the maximally localized Wannier function
(MLWF) of the lowest band has four peaks at ± π

K x̂ and ± π
K ŷ,

which are minima of |A|2 (see the Supplemental Material
[74]). This suggests that it may be possible to use a basis of
two Gaussian-like Wannier functions, located at the plaquette
corners (π/K, 0) and (0, π/K ) to describe the lowest band.
We, thus, project ψ1k and ψ2k, Bloch functions of the two low-
est bands, onto two Gaussians gA and gB located at (π/K, 0)
and (0, π/K ), respectively,

φAk(r) = 〈gA|ψ1k〉ψ1k(r) + 〈gA|ψ2k〉ψ2k(r),
(5)

φBk(r) = 〈gB|ψ1k〉ψ1k(r) + 〈gB|ψ2k〉ψ2k(r),

which are then orthonormalized. Even though we did not
run the maximal localization routine (see the Supplemental

FIG. 3. Wannier functions of the two lowest bands of a
Schrödinger electron. (a) and (b) Norm and phase of the first Wannier
function φA located at (π/K, 0). (c) and (d) Norm and phase of
the second Wannier function φB located at (0, π/K ). (e) Wannier-
interpolated band structure (red solid lines) compared with the plane-
wave result (black solid lines). φ = 0.6. A plane-wave cutoff of Kc =
5 K and a Brillouin-zone discretization of 11 × 11 were used. Widths
of the two Gaussians used for constructing the Wannier functions are
set at 8/K .

Material [74]), the tight-binding Hamiltonian in this basis has
fast decaying hopping parameters with increasing distance
(see the Supplemental Material [74]), and the interpolated
band structure from this Hamiltonian fits that obtained using
the plane-wave method very well [Fig. 3(e)].

Although the shapes of the two Wannier functions deviate
from Gaussian-like after projection and orthonormalization,
they are still localized at (π/K, 0) and (0, π/K ). Moreover,
each of them has a phase distribution qualitatively consistent
with the Peierls form, i.e., the phase increases fastest along the
lines with large line integral of the vector potential. One would
then wonder if the real-space tight-binding Hamiltonian in
the basis of these two Wannier functions also has complex
hopping parameters with Peierls phases. We find that this is,
indeed, the case. For example, the nearest-neighbor hopping
from φA to φB at φ = 0.6 is about 0.057i along ±(x̂ + ŷ)
and −0.057i along ±(x̂ − ŷ), which are mutually complex
conjugate as expected from the behavior of exp (i e

h̄

∫
A · dl).

Moreover, it is surprising that the nearest-neighbor hopping
is almost purely imaginary near the first magic value of φ.
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These features provide important clues for our construction of
a minimal tight-binding model below.

We next turn to the Wannier functions of the Dirac case. To
describe Dirac and Schrödinger electrons in a unified manner,
we make use of the particle-hole symmetry of the Dirac
Hamiltonian HD in Eq. (1) and consider its square (HD)2

(see the Supplemental Material [74]). In stark contrast to the
Schrödinger case, the peaks of the MLWF of the lowest band
are now located at (±π/K,±π/K ) (four equivalent points)
and (0,0), which are the minima of ±B(r) for spin up and spin
down, respectively [74]. Since the tight-binding Hamiltonians
are one dimensional now, all the hopping parameters are real
and monotonically decrease as φ increases. This is because
the potential wells of ±B(r) become monotonically deeper,
which also explains the asymptotic band-flattening behavior.

We note that, for both cases, the lowest band is touching
the next lowest one at the Brillouin-zone boundary. For the
Schrödinger case, the band touching is at the X point or
(kx, ky) = (1/2, 0) and its symmetry related points, whereas,
for the Dirac case [either HD or (HD)2], it is at the R point
or (1/2,1/2) and its symmetry-related points. If such degen-
eracies are removed and the lowest band has a nonzero Chern
number, which is possible because of the broken time-reversal
symmetry in the present systems, exponentially localized
Wannier functions for the lowest band cannot exist. We will
discuss the Chern number in more detail below.

IV. MINIMAL TIGHT-BINDING MODELS FOR
THE FLAT-BAND LATTICES

The Wannier functions obtained above motivate us to
construct a minimal tight-binding model to explain the recur-
ring magic values for the Schrödinger case. The model has
spinless free fermions hopping between nearest neighbors on
a 2D square lattice where the lattice sites coincide with the
plaquette corners, i.e., positions of the Wannier functions in
Fig. 3,

H = −
∑
〈i j〉

teiϕi j c†
i c j + 4t, (6)

where t = h̄2/2ma2 is the hopping parameter between nearest
neighbors and the summation is over nearest neighbors. For
convenience, we have rotated the coordinate system by π/4
around the z axis, compared to that used for Eq. (2). For the
2D-cosinusoidal magnetic field used above, the absolute value
of the flux through a plaquette is 	 = 16B/K2 = 8Ba2/π2.
All positive flux plaquettes only share edges with negative flux
ones. The square lattice looks like a checkerboard with two
sites per unit cell, and the black and white squares correspond
to positive and negative magnetic fluxes of the same size
[Fig. 4(a)]. Based on the spatial distribution of the phase of
the Wannier functions, we expect it to be qualitatively correct
to include the magnetic field as a Peierls phase in the hopping
parameter, which is eiϕi j in Eq. (7). Integrating the vector
potential in Eq. (2) along the bonds gives the phase ϕi j ,

ϕi j = ± 4eB

h̄K2
= ± π	

2	0
= ±4φ, (7)

where the positive sign means the plaquette on the left of the
directional hopping path has positive flux, and 	0 = h/e.

(a) (b)

FIG. 4. (a) Tight-binding model on a square lattice with stag-
gered magnetic fields for Schrödinger electrons. The xy axes are
rotated by π/4 compared to that used for Eq. (2). (b) Inverse effective
mass vs φ based on Eq. (8).

The momentum-space Hamiltonian can be easily diagonal-
ized (see the Supplemental Material [74]). For any given φ, we
can expand the two eigenenergies ε± around small k, which
gives

ε±(k) ≈ 4t ± 2
√

2 + 2 cos(8φ)t

∓
√

1 + cos(8φ)

2

(
k2

x + k2
y

)
a2t + O(k3). (8)

Thus, when φ → π/8, the quadratic term approaches zero,
i.e., the low-energy band for long wavelengths becomes
flat. The magic value is, therefore, 8φ

π
= 	

	0
= 1 or φ ≈

0.393. At this value of φ, the eigenenergies are ε±(k) =
4t ± 2t | cos(kxa) − cos(kya)| where the second term vanishes
along kx = ±ky. The density of states (at ε = 4t) does not
diverge at this exact point because of the linear band touching
along kx = ±ky. It will, however, diverge when φ is infinitely
close to π/2. The band structure and DOS can be found in the
Supplemental Material [74].

Although the model gives a first magic value that is smaller
than the first one shown in Fig. 2(b), it predicts a series of
magic values,

φ = (2n + 1)π

8
, n ∈ Z, (9)

with the periodicity 
φ = π/4 ≈ 0.785, which is close to
the period of the oscillation in Fig. 2(b). We, thus, believe
that the recurring magic values in the original problem of the
Schrödinger electrons should be due to the same reason as the
magicness in the minimal model. Moreover, the latter can help
us make connections with many early examples of flat-band
lattice models [68–73] where the origin of the flat bands
can be understood in terms of destructive interference. In
the present case, the destructive interference comes from the
values of φ in Eq. (9) at which ti j ≡ teiϕi j = −t ji for nearest-
neighbors i and j. Specifically, for some local wave function
having equal weights on two diagonal sites of a plaquette,
which belong to the same sublattice, hopping to their common
nearest neighbors will cancel out. This is the reason for the
complete flatness of the bands along kx = ±ky. At distances
much longer than the lattice period, such cancellation leads
to strong suppression of hopping along almost all directions,
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which is the reason for the vanishing inverse effective mass
near k = 0.

Plotting the inverse effective mass obtained from Eq. (9)
vs φ gives Fig. 4(b), which is similar to Fig. 2(b) in terms of
the oscillation. It fails, however, to capture some fine features
in the latter, e.g., the negative values of m−1

eff near the magic
values, the decreasing amplitudes of the oscillation with in-
creasing φ, etc., which is not surprising given the simplicity of
the model. We do note that the decaying amplitude in Fig. 2(b)
should be due to the general tendency of enhanced localization
with increasing strength of the magnetic field. In the limit of
the strong magnetic field, the eigenfunctions should be close
to Landau orbits, and all bands are expected to be very flat.

We finally comment on the Dirac case. Because it is
sufficient to use a single Gaussian-like Wannier function to
describe the lowest band (for a given spin), the hopping pa-
rameters are real due to inversion symmetry. Thus, a minimal
model for it [more exactly for (HD)2] should be a nearest-
neighbor hopping model on a square lattice with one site per
unit cell. Such a trivial model obviously cannot describe the
band flattening as it stands, unless one allows the hopping
amplitude to depend on φ which is a posteriori. Physically,
the decreasing hopping with increasing φ should have two
origins. The first is the Landau localization mentioned above.
The second, which is unique to Dirac electrons, is the localiza-
tion due to the Zeeman potential (last term in Eq. (21) of the
Supplemental Material [74]), which has a Berry phase origin.

V. ZEEMAN COUPLING AND FLAT-BAND
CHERN INSULATORS

We now consider the Zeeman coupling between the 2DEG
and the periodic magnetic field, which always accompanies
the orbital coupling. As mentioned in the Supplemental Ma-
terial [74], Dirac electrons in the present problem can be
viewed as a special case of 2DEG plus Zeeman coupling
with gm/me = 2, where g is the g factor, m is the effective
mass of the 2DEG, and me is the free-electron mass. In
common 2DEGs, this ratio can vary significantly depending
on materials realization [84,85] and may even be tunable in a
given system [57,86,87]. We, thus, take the Zeeman coupling
strength gm/me as a variable and study how the flat-band
behaviors of Schrödinger and Dirac electrons can be smoothly
bridged by changing it between 0 and 2.

Figure 5(a) shows the phase diagram of the inverse
effective-mass m−1

eff (in units of m−1) at k = 0 vs φ and gm/me.
One can see that, along the horizontal line of gm/me = 0, i.e.,
pure Schrödinger without Zeeman coupling, m−1

eff oscillates
between positive (red color) and negative (blue color) values,
and reaches 0 (white color) at magic values of φ. This is
basically the same as Fig. 2(b). Similarly, when gm/me = 2,
the figure reproduces the monotonic decay of m−1

eff for the
Dirac case shown in Fig. 1(b). In between these two limits,
the regions with negative m−1

eff form bands which start from
being perpendicular to the φ axis when gm/me = 0 and grad-
ually bend toward the horizontal gm/me = 2 line as gm/me

increases. Accordingly, the lines of magic values of φ and
gm/me, defined by m−1

eff = 0, also bend to gm/me = 2 and
disappear from the field of view.

(a) (b)

FIG. 5. (a) Inverse effective mass at k = 0 and (b) Chern number
of the up spin for the lowest band vs gm/me and φ. Kc = 5 K .
Brillouin-zone discretization of 11 × 11 and 10 × 10 were used for
calculating m−1

eff and the Chern number, respectively.

In the Supplemental Material [74], we have constructed a
minimal three-band model, based on the Wannier functions, to
qualitatively capture the band-flattening behavior for general
values of gm/me. Interestingly, we find that the lowest band
of the model quite generally has a nonzero Chern number,
making it similar to the Haldane model of quantum anoma-
lous Hall effect with a zero net magnetic field [88] but on
the square lattice instead of the honeycomb lattice. Such an
observation motivates us to calculate the Chern number of the
lowest-band C1 (see the Supplemental Material [74]) in a 2D
parameter space spanned by φ and gm/me and to see if, in
the original problem, the flat bands can also be topologically
nontrivial.

The phase diagram of the Chern number, shown in
Fig. 5(b), is somewhat surprising since the Chern insulator
phase is ubiquitous. Most regions have a C1 = −1 whereas on
several narrow bands it is +1. These regions are separated by
lines corresponding to band touching where the Chern number
is ill defined. Comparing Figs. 5(a) and 5(b), one can see
that the C1 = 1 regions coincide with places where m−1

eff is
extremal, indicating that there is band inversion near these
values of m−1

eff . Most importantly, the regions with zero or
vanishingly small m−1

eff almost all have nonzero C1. Thus, by
tuning to the magic values of φ and gm/me, one could have
flat bands and nontrivial topology simultaneously.

The above results have a caveat, however, due to spin
degeneracy. The Schrödinger Hamiltonian with the Zeeman
term included has an emergent symmetry T(π,π ) ⊗ K, where
K is complex conjugation and T(π,π ) is a real-space translation
by (π/K, π/K ). Such a symmetry transforms the spin-up
part of the Hamiltonian to the spin-down part and vice versa
and is the reason for the double degeneracy of the spinful
bands. Since the Chern number changes sign under complex
conjugation, the two-spin species of a given band should
always have opposite Chern numbers. This makes the net
charge Chern number of a spinful band vanish but not the
spin Chern number, which is the difference between the Chern
numbers of opposite spins. We note that the vanishing of the
net Chern number of a spinful band is a consequence of the
high symmetry of the present model rather than a fundamental
constraint. For example, adding a periodic scalar potential
commensurate with the periodic magnetic field can have the
same effect as the Zeeman potential for a single spin and
can, thus, make the net Chern number of the lowest band
nonzero.
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VI. DISCUSSION AND CONCLUSION

The magnetic field used above has a very simple form
[49–52]. In reality, magnetic fields created by periodic arrays
of bar magnets or superconducting wires will have more
Fourier components as well as finite in-plane magnetic fields.
However, on one hand, the sinusoidal potential can be viewed
as a legitimate first approximation if the spatial profile of
the magnetic field is smooth [49–52]. On the other hand, we
expect the general low-energy behavior of Dirac electrons or
2DEG revealed in this paper to qualitatively hold even with
more realistic potential profiles, including that due to the pseu-
domagnetic fields created by strain in graphene [35,89–91].
For example, Schrödinger electrons will be likely to exhibit
magicness since their low-energy Wannier orbitals should
localize near zero-field lines, which will lead to complex hop-
ping that periodically changes with field strength. To prove
this, we have performed calculations for periodic Gaussian
magnetic fields (for 2DEG) and periodic Gaussian strain fields
(for Dirac electrons) [89–91] (Fig. 3 in the Supplemental
Material [74]). The calculations could only be performed
using the real-space method explained in the Supplemental
Material [74] since there are infinitely many Fourier com-
ponents. The results strongly resemble those for the simple
cosinusoidal fields. Namely, in the Dirac case, the velocity
monotonically decreases, whereas, in the Schrödinger case,
the inverse effective mass repeatedly crosses zero.

The typical strength of fields needed to get flat bands
should be such that the magnetic flux through each plaquette is
on the order of 	0. We emphasize that this is a rather modest
requirement (with additional constraint from the disorder po-
tential explained below) especially for large periods or small
K . Since 	0 ≈ 4.136 × 10−3 T μm2, a micrometer period
field only needs to have an amplitude ∼102 G. In the case of
graphene, such long wavelengths also mean the two valleys of
graphene can be viewed as independent [92,93]. Based on the
lessons learned from the twisted multilayer graphene systems,
for interaction-driven phases to appear, the number of moiré
unit cells in a given sample does not have to be macroscop-
ically large—102 × 102 is sufficient. Artificial superlattices
with such numbers of periods are not out of reach [49,50,54–
57]. Experimentally, one can use either transport [54–56,59–
61] or spectroscopic [92] methods to reveal the existence of
the flat bands [9,10,12,13] and to look for exotic phases at very
low temperatures. The complex hopping in the tight-binding
models is reminiscent of the loop-current model for cuprates
[94,95], thus, suggesting potential new phases more proxi-
mate to high-temperature superconductors on a square lattice.

Disorder places another constraint on the lower bound of
the magnetic field or the upper bound of the spatial period.
For the Bloch wave picture to be valid, the kinetic energy of
the electron must be larger than the disorder potential denoted
by �. For a given spatial period 2π/K , the consideration
above suggests the width of the lowest-energy band (or lowest
positive energy band for the Dirac case) must be, at least,
larger than the disorder potential when the magnetic field is
weak. This requires h̄2K2/2m > � for 2DEG and h̄vF K > �

for Dirac electrons and, consequently, gives a lower bound of
the magnetic field if φ ∼ 1. For Dirac electrons, in the case of
graphene, � ∼ 1 meV if we adopt the experimental relaxation
time of 3.0 × 10−13 s [96]. Thus, K � 1.67 × 10−3 nm−1, or

the period must be smaller than 3.8 μm and B � 3.7 mT for
achieving nearly flat bands (φ ∼ 2). For high mobility 2DEG,
such as GaAs/AlGaAs, � ∼ 0.01 meV if using the mobil-
ity μ = 70 m2 V−1 s−1 [97] and the effective-mass 0.067me.
This corresponds to a lower bound K � 4.6 × 10−3 nm−1 (or
a period of 1.4 μm) and B � 8.6 mT for achieving nearly
flat bands (φ ∼ 0.6). These values of B are, at least, one
order of magnitude smaller than that achieved experimentally
for smooth spatial modulations of the real magnetic field
[49,50,98–102] or strain [35,89–91], and the micrometer pe-
riod is experimentally realizable [49,50,98–102].

Although our prescription works for the whole spectrum
bridging Dirac materials and 2DEG, the former can take
advantage of the various pseudomagnetic fields through, e.g.,
periodic strain or Zeeman field that may be easier to im-
plement experimentally. Moreover, practically the absence of
magicness in the Dirac case makes it much easier to realize
flat bands without the need of fine-tuning. In contrast, in the
twisted multilayer graphene systems, the magicness requires
not only precise control of the twisting angle, but also that of
its spatially uniformity. On a side note since the continuum
description of graphene moiré also has the form of Dirac
electrons subject to non-Abelian gauge potentials [29–31], it
is possible to use similar arguments to understand the origin
of the moiré flat bands as well.

Although we have been focusing on periodic magnetic
fields, band flattening as a general trend should be common
for periodic potentials getting stronger and stronger. Even for
Dirac electrons which are known to be difficult to confine
with scalar potential wells, periodic scalar potentials can still
lead to 1D flat bands [92,93]. Finally, weak periodic electric
potentials can be used together with a periodic magnetic field
on 2DEG to get the ubiquitous Chern insulator phase.

In conclusion, we find that spatially periodic magnetic
fields can be a practical and versatile approach to realizing
emergent flat-band lattices with different superlattice sym-
metries. The contrasting band-flattening behaviors of Dirac
(no magicness) and Schrödinger (with magicness) electrons
can be understood through different minimal tight-binding
models based on their respective Wannier functions localized
by the periodic magnetic fields. In particular, the magicness in
the Schrödinger case is due to a complex hopping amplitude
along zero-field lines whose phase changes periodically with
increasing field. The two limiting cases can be interpolated by
considering the Zeeman coupling between the spin degrees of
freedom of a 2DEG and the magnetic field and by varying the
g factor or the effective mass. The Zeeman coupling also quite
generally leads to topologically nontrivial flat bands with
nonzero Chern numbers for each spin. Future experimental
and theoretical studies on this platform, which is a powerful
alternative to the moiré system, may reveal more exotic phases
when interaction is taken into account.
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